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1 Introduction

In this paper, in the domain Ω̄ = [0, T ]× [0, ω] we consider the following nonlocal multipoint problem
for a system of fourth-order partial differential equations

∂4u

∂x3∂t
=

3∑
i=1

{
Ai(t, x)

∂4−iu

∂x4−i +Bi(t, x)
∂4−iu

∂x3−i∂t

}
+ C(t, x)u+ f(t, x), (1.1)

m∑
j=0

3∑
i=0

Mi,j(x)
∂iu(tj, x)

∂xi
= ϕ(x), x ∈ [0, ω], (1.2)

u(t, 0) = ψ0(t),
∂u(t, x)

∂x

∣∣∣
x=0

= ψ1(t),
∂2u(t, x)

∂x2

∣∣∣
x=0

= ψ2(t), t ∈ [0, T ], (1.3)

where u(t, x) = col(u1(t, x), u2(t, x), ..., un(t, x)) is the unknown vector function, the (n×n) matrices
Ai(t, x), Bi(t, x), i = 1, 2, 3, C(t, x), and the n vector function f(t, x) are continuous on Ω̄, the (n×n)
matrices Mi,j(x), and the n vector function ϕ(x) are continuous on [0, ω], i = 0, 3, j = 0,m, the n
vector functions ψ0(t), ψ1(t), ψ2(t) are continuously differentiable on [0, T ].

Let C(Ω̄,Rn) (C(Ω,Rn)) be the space of all continuous on Ω̄ (Ω) vector functions u(t, x) with the
norm

||u||0 = max
(t,x)∈Ω̄

||u(t, x)|| (||u||0 = sup
(t,x)∈Ω

||u(t, x)||), ||u(t, x)|| = max
i=1,n
|ui(t, x)|;

C([0, ω],Rn) be the space of all continuous on [0, ω] vector functions ϕ(x) with the norm

||ϕ||0 = max
x∈[0,ω]

||ϕ(x)||;
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C1([0, T ],Rn) be the space of all continuously differentiable on [0, T ] vector functions ψ(t) with the
norm

||ψ||1 = max
(

max
t∈[0,T ]

||ψ(t)||, max
t∈[0,T ]

||ψ̇(t)||
)
.

A function u(t, x) ∈ C(Ω̄,Rn) having partial derivatives ∂s+pu(t,x)
∂xp∂ts

∈ C(Ω̄,Rn), s = 0, 1, p = 0, 3,
s+ p < 4, ∂

4u(t,x)
∂x3∂t

∈ C(Ω,Rn) is called a classical solution to problem (1.1)–(1.3) if it satisfies system
(1.1) for all (t, x) ∈ Ω and boundary conditions (1.2), (1.3).

In recent decades, various problems for fourth-order partial differential equations are of great
interest to specialists. Many problems for equation (1.1) arise in the study liquid filtration in fissured
media, moisture transfer in soil, impulse radial wave propagation, various biological processes, and
in the inverse problem theory [9, 11-18]. Note that system of equations (1.1) is a generalization of
many model equations describing physical processes, for example, the generalized moisture transfer
equation, heat transfer equation, telegraph equation, string vibration equation, etc. [13, 16, 21]. As
noted in [16] the solutions of the generalized Hallaire moisture equation

∂3u

∂x2∂t
= a1(t, x)

∂2u

∂x2
+ a2(t, x)

∂2u

∂x∂t
+ a3(t, x)

∂u

∂x
+ a4(t, x)

∂u

∂t
+ a5(t, x)u+ g(t, x)

can be smooth solutions of equation (1.1) when choosing the appropriate coefficients.
In [2], a linear multipoint boundary value problem for a system of hyperbolic equations was

investigated by the method of introducing a functional parameter [3-5]. The necessary and sufficient
conditions for the well-posedness of a linear multipoint boundary value problem for a system of
hyperbolic equations with a mixed derivative were established in terms of the initial data. This
method and these results were applied to a multipoint boundary value problem for a system of
quasilinear hyperbolic equations with a mixed derivative in [6].

In this article, we study the problem of existence of a classical solution of a nonlocal multipoint
problem for a system of fourth-order partial differential equations (1.1)–(1.3) and methods for con-
structing their approximate solutions. The results and methods [2, 6] are extended to the nonlocal
multipoint problem for a system of fourth-order partial differential equations in two variables. Intro-
ducing a new unknown function, we reduce the original problem (1.1)–(1.3) to an equivalent problem
for a system of ordinary integro-differential equations of the first order containing a parameter. We
establish sufficient conditions for the unique solvability of nonlocal multipoint problem (1.1)–(1.3)
in terms of the unique solvability of a family of multipoint boundary value problems with integral
conditions of a system of ordinary first-order integro-differential equations. The results can be used
in the numerical methods of solving applied problems.

2 Equivalent problem and its solvability

In this section, we introduce a new unknown function v(t, x) =
∂3u(t, x)

∂x3
.

Taking into account conditions (1.3), we have:

∂2u(t, x)

∂x2
= ψ2(t) +

∫ x

0

v(t, ξ)dξ, (2.1)

∂u(t, x)

∂x
= ψ1(t) + ψ2(t)x+

∫ x

0

(x− ξ)v(t, ξ)dξ, (2.2)

u(t, x) = ψ0(t) + ψ1(t)x+ ψ2(t)
x2

2!
+

∫ x

0

(x− ξ)2

2!
v(t, ξ)dξ. (2.3)
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From (2.1)–(2.3) we can find their partial derivatives in t:

∂3u(t, x)

∂x2∂t
= ψ̇2(t) +

∫ x

0

∂v(t, ξ)

∂t
dξ, (2.4)

∂2u(t, x)

∂x∂t
= ψ̇1(t) + ψ̇2(t)x+

∫ x

0

(x− ξ)∂v(t, ξ)

∂t
dξ, (2.5)

∂u(t, x)

∂t
= ψ̇0(t) + ψ̇1(t)x+ ψ̇2(t)

x2

2!
+

∫ x

0

(x− ξ)2

2!

∂v(t, ξ)

∂t
dξ. (2.6)

Using representations (2.1)–(2.6), we reduce problem (1.1)–(1.3) to the following equivalent problem:

∂v

∂t
= A1(t, x)v +

∫ x

0

{
K1(t, x, ξ)

∂v(t, ξ)

∂t
+K2(t, x, ξ)v(t, ξ)

}
dξ + F (t, x), (2.7)

m∑
j=0

M3,j(x)v(tj, x) +
m∑
j=0

∫ x

0

Lj(x, ξ)v(tj, ξ)dξ = Φ(x), (2.8)

where
K1(t, x, ξ) = B1(t, x) +B2(t, x)(x− ξ) +B3(t, x)

(x− ξ)2

2!
,

K2(t, x, ξ) = A2(t, x) + A3(t, x)(x− ξ) + C(t, x)
(x− ξ)2

2!
,

F (t, x) = A2(t, x)ψ2(t) + A3(t, x)[ψ1(t) + ψ2(t)x] + C(t, x)
[
ψ0(t) + ψ1(t)x+ ψ2(t)

x2

2!

]
+B1(t, x)ψ̇2(t) +B2(t, x)[ψ̇1(t) + ψ̇2(t)x] +B3(t, x)

[
ψ̇0(t) + ψ̇1(t)x+ ψ̇2(t)

x2

2!

]
+ f(t, x),

Lj(x, ξ) = M2,j(x) +M1,j(x)(x− ξ) +M0,j(x)
(x− ξ)2

2!
,

Φ(x) = ϕ(x)−
m∑
j=0

{
M2,j(x)ψ2(tj)+M1,j(x)[ψ1(tj)+ψ2(tj)x]+M0,j(x)

[
ψ0(tj)+ψ1(tj)x+ψ2(tj)

x2

2!

]}
.

A continuous function v : Ω̄→ Rn having a continuous derivative with respect to t on Ω is called
a solution to the family of multipoint boundary value problems for ordinary integro-differential
equations (2.7), (2.8) if it satisfies system (2.7) and condition (2.8) for all (t, x) ∈ Ω and x ∈ [0, ω],
respectively.

Let u∗(t, x) be a classical solution to problem (1.1)–(1.3). Then the function v∗(t, x) defined by
equality v∗(t, x) = ∂3u∗(t,x)

∂x3
, is a solution to problem (2.7), (2.8). Conversely, if a function ṽ(t, x) is a

solution to problem (2.7), (2.8), then ũ(t, x) defined by equality

ũ(t, x) = ψ0(t) + ψ1(t)x+ ψ2(t)
x2

2!
+

∫ x

0

(x− ξ)2

2!
ṽ(t, ξ)dξ

is a classical solution to problem (1.1)–(1.3).
Problem (2.7), (2.8) is a family of multipoint boundary value problems with integral conditions

for the system of ordinary first-order integro-differential equations. Problem (2.7), (2.8) can be
interpreted as a multipoint boundary value problem for a system of parametrically loaded differential
equations [16]. The variable x plays the role of a parameter and changes on [0, ω].

For a fixed x ∈ [0, ω] problem (2.7), (2.8) is a linear multipoint boundary value problem with
integral condition for a system of ordinary integro-differential equations. Suppose that the x takes
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values in the interval [0, ω], then we obtain a family of multipoint boundary value problems with an
integral condition for a system of ordinary integro-differential equations. System (2.7) depends on
the variable x, the integrals of the desired function, and its derivative with respect to this variable.

Various boundary value problems for the system of ordinary integro-differential equations (2.7)
have been studied by numerous authors (see [1, 8, 10, 19, 20] and their bibliography). Having found
the function v(t, x) from problem (2.7), (2.8), we determine the function u(t, x) from integral relation
(2.3), which is a classical solution to problem (1.1)–(1.3).

Consider a family of multipoint boundary value problems with integral conditions for system
of ordinary integro-differential equations (2.7), (2.8). The following theorem provides conditions
for the unique solvability of problem (2.7), (2.8) in terms of the fundamental matrix of the system
∂v
∂t

= A1(t, x)v.
In its proof the following particular case of the Grönwall -Bellman inequality will be used.

Let α, β ∈ R, β ≥ 0 and w be a continuous function defined on [0, ω].
If w satisfies the integral inequality

w(x) ≤ α + β

∫ x

0

w(s)ds, ∀x ∈ [0, ω],

then
w(x) ≤ αeβx, ∀x ∈ [0, ω].

Theorem 1. Problem (2.7), (2.8) is uniquely solvable and for its solution v∗(t, x) we have the

estimate
max
t∈[0,T ]

||v∗(t, x)|| ≤ C̃ max
{

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
}

for all x ∈ [0, ω], for some C̃ > 0 independent of x, v∗, F and Φ, if the n× n matrix

Q(x) =
m∑
j=0

M3,j(x)X(tj, x) is invertible for every x ∈ [0, ω], where X is a solution to the Cauchy

problem
∂X

∂t
= A1(t, x)X, X(0, x) = I,

and I is the identity matrix.

Proof. To find a solution to problem (2.7), (2.8) we use an iterative method.
Suppose that ∂v(t,ξ)

∂t
= v(t, ξ) = 0 for all (t, ξ) ∈ Ω̄ in integral terms of the right-hand side of system

(2.7) and condition (2.8). Then, we get the following problem:

∂v

∂t
= A1(t, x)v + F (t, x), (2.9)

m∑
j=0

M3,j(x)v(tj, x) = Φ(x), (2.10)

Let X be a solution to the Cauchy problem

∂X

∂t
= A1(t, x)X, X(0, x) = I.

By the Cauchy formula [7, p. 48], the vector function

v(t, x) = X(t, x)c(x) +X(t, x)

∫ t

0

X−1(τ, x)F (τ, x)dτ (2.11)
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is a solution to system (2.9) for each c(x) ∈ C([0, ω],Rn). Conversely, for each solution of this system
there exists c(x) ∈ C([0, ω],Rn) such that representation (2.11) holds.

Substituting representation (2.11) into (2.10), we have:

m∑
j=0

M3,j(x)X(tj, x)c(x) +
m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (τ, x)dτ = Φ(x),

where x ∈ [0, ω]. This implies

Q(x)c(x) = Φ(x)−
m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (τ, x)dτ, x ∈ [0, ω]. (2.12)

If the n×n matrix Q(x) is invertible for all x ∈ [0, ω], then the system of functional equations (2.12)
has a unique solution

c(0)(x) = Q−1(x)

{
Φ(x)−

m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (τ, x)dτ

}
, x ∈ [0, ω]. (2.13)

Replacing c(x) by c∗(x) in (2.11), we obtain the following representation of the unique solution to
the family of problems (2.9), (2.10)

v(0)(t, x) = X(t, x)Q−1(x)

{
Φ(x)−

m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (τ, x)dτ

}

+X(t, x)

t∫
0

X−1(τ, x)F (τ, x)dτ. (2.14)

The solution v(0) satisfies the following estimate

max
t∈[0,T ]

||v(0)(t, x)|| ≤ C0 max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)
, (2.15)

where the constant C0 does not depend on F , Φ and x ∈ [0, ω].
The following estimate is also valid:

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(0)(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(0)(t, x)||
)

≤ max(α1C0 + 1, C0) max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)
, (2.16)

where α1 = max
(t,x)∈Ω̄

||A1(t, x)||.

Therefore, provided that the matrix Q(x) is invertible for all x ∈ [0, ω], the family of problems
(2.9), (2.10) is uniquely solvable and for its solution v(0) the estimate (2.14) holds, i.e. problem (2.9),
(2.10) is well-posed.

Further, we assume that ∂v(t,ξ)
∂t

= ∂v(0)(t,ξ)
∂t

, v(t, ξ) = v(0)(t, ξ) for all (t, ξ) ∈ Ω̄ in integral terms of
the right-hand side of system (2.7) and condition (2.8). We have:

∂v

∂t
= A1(t, x)v + F (0)(t, x), (2.17)
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m∑
j=0

M3,j(x)v(tj, x) = Φ(0)(x), (2.18)

where F (0)(t, x) =

∫ x

0

{
K1(t, x, ξ)

∂v(0)(t, ξ)

∂t
+K2(t, x, ξ)v(0)(t, ξ)

}
dξ + F (t, x),

Φ(0)(x) = Φ(x)−
m∑
j=0

∫ x

0

Lj(x, ξ)v
(0)(tj, ξ)dξ.

From the family of multipoint problems (2.17), (2.18) we find v(1)(t, x) ∈ C(Ω̄,Rn) and its deriva-
tive ∂v(1)(t,x)

∂t
∈ C(Ω̄,Rn). Similarly to (2.12), we obtain

Q(x)c(x) = Φ(0)(x)−
m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (0)(τ, x)dτ, x ∈ [0, ω]. (2.19)

If the n×n matrix Q(x) is invertible for all x ∈ [0, ω], then the system of functional equations (2.19)
has a unique solution

c(1)(x) = Q−1(x)

{
Φ(0)(x)−

m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (0)(τ, x)dτ

}
, x ∈ [0, ω]. (2.20)

Thus, we obtain the following representation of the unique solution to the family of problems (2.17),
(2.18)

v(1)(t, x) = X(t, x)Q−1(x)

{
Φ(0)(x)−

m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (0)(τ, x)dτ

}

+X(t, x)

∫ t

0

X−1(τ, x)F (0)(τ, x)dτ. (2.21)

Solution v(1)(t, x) and its derivative ∂v(1)(t,x)
∂t

satisfy the following estimates:

max
t∈[0,T ]

||v(1)(t, x)|| ≤ C0 max
(

max
t∈[0,T ]

||F (0)(t, x)||, ||Φ(0)(x)||
)
, (2.22)

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(1)(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(1)(t, x)||
)

≤ max(α1C0 + 1, C0) max
(

max
t∈[0,T ]

||F (0)(t, x)||, ||Φ(0)(x)||
)
. (2.23)

From this, taking into account the representations F (0)(t, x) and Φ(0)(x), and estimate (2.16), we
obtain:

max
t∈[0,T ]

||v(1)(t, x)|| ≤ C0

{
C1

∫ x

0

max
(

max
t∈[0,T ]

||F (t, ξ)||, ||Φ(ξ)||
)
dξ

+ max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)}

, (2.24)

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(1)(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(1)(t, x)||
)

≤ max(α1C0 + 1, C0)

{
C1

∫ x

0

max
(

max
t∈[0,T ]

||F (t, ξ)||, ||Φ(ξ)||
)
dξ
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+ max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)}

, (2.25)

where C1 = max
(

[k1 + k2] max(α1C0 + 1, C0),
m∑
j=0

ljC0

)
,

ki = max
(t,x,ξ)∈Ω̄×[0,ω]

||Ki(t, x, ξ)||, i = 1, 2, lj = max
x∈[0,ω]

||Lj(x)||, j = 0,m.

Continuing this process, at the kth step, k = 1, 2, ..., to find the function v(k)(t, x), we get the
following problem

∂v

∂t
= A1(t, x)v + F (k−1)(t, x), (2.26)

m∑
j=0

M3,j(x)v(tj, x) = Φ(k−1)(x), (2.27)

where F (k−1)(t, x) =

∫ x

0

{
K1(t, x, ξ)

∂v(k−1)(t, ξ)

∂t
+K2(t, x, ξ)v(k−1)(t, ξ)

}
dξ + F (t, x),

Φ(k−1)(x) = Φ(x)−
m∑
j=0

∫ x

0

Lj(x, ξ)v
(k−1)(tj, ξ)dξ.

The unique solution to the family of problems (2.26), (2.27) has the following form:

v(k)(t, x) = X(t, x)Q−1(x)Φ(k−1)(x)

−X(t, x)Q−1(x)
m∑
j=0

M3,j(x)X(tj, x)

∫ tj

0

X−1(τ, x)F (k−1)(τ, x)dτ

+X(t, x)

∫ t

0

X−1(τ, x)F (k−1)(τ, x)dτ. (2.28)

For v(k)(t, x) the following estimates hold:

max
t∈[0,T ]

||v(k)(t, x)|| ≤ C0 max
(

max
t∈[0,T ]

||F (k−1)(t, x)||, ||Φ(k−1)(x)||
)
, (2.29)

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(k)(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(k)(t, x)||
)

≤ max(α1C0 + 1, C0) max
(

max
t∈[0,T ]

||F (k−1)(t, x)||, ||Φ(k−1)(x)||
)
. (2.30)

Hence, we obtain:

max
t∈[0,T ]

||v(k)(t, x)|| ≤ C0 ·
{
C1

∫ x

0

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(k−1)(t, ξ)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(k−1)(t, ξ)||
)
dξ

+ max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)}

, (2.31)

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(k)(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(k)(t, x)||
)

≤ max(α1C0 + 1, C0)

{
C1

∫ x

0

max
(

max
t∈[0,T ]

∣∣∣∣∣∣∂v(k−1)(t, ξ)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v(k−1)(t, ξ)||
)
dξ
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+ max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)}

. (2.32)

Consider the following problem:

∂v

∂t
= A1(t, x)v + F (k)(t, x), (2.33)

m∑
j=0

M3,j(x)v(tj, x) = Φ(k)(x). (2.34)

From problem (2.33), (2.34) we find the function v(k+1)(t, x) and its derivative ∂v(k+1)(t,x)
∂t

for all
(t, x) ∈ Ω̄. Using the solutions v(k)(t, x) and v(k+1)(t, x) of problems (2.26), (2.27) and (2.33), (2.34),
respectively, we compose the differences ∆z(k+1)(t, x) = ∂v(k+1)(t,x)

∂t
− ∂v(k)(t,x)

∂t
and ∆v(k+1)(t, x) =

v(k+1)(t, x)− v(k)(t, x) for all (t, x) ∈ Ω̄. Then the function ∆v(k+1)(t, x) is a solution to the following
problem

∂∆v

∂t
= A1(t, x)∆v + F (k)(t, x)− F (k−1)(t, x), (2.35)

m∑
j=0

M3,j(x)∆v(tj, x) = Φ(k)(x)− Φ(k−1)(x). (2.36)

Taking into account inequalities (2.29)–(2.32) and the representations of the functions F (k)(t, x),
Φ(k)(x) for k = 1, 2, 3, ..., we have the following estimates:

max
t∈[0,T ]

||∆v(k+1)(t, x)|| ≤ C0C1

∫ x

0

max
{

max
t∈[0,T ]

||∆z(k)(t, ξ)||, max
t∈[0,T ]

||∆v(k)(t, ξ)||
}
dξ, (2.37)

max
{

max
t∈[0,T ]

||∆z(k+1)(t, x)||, max
t∈[0,T ]

||∆v(k+1)(t, x)||
}

≤ max(α1C0 + 1, C0)C1

∫ x

0

max
{

max
t∈[0,T ]

||∆z(k)(t, ξ)||, max
t∈[0,T ]

||∆v(k)(t, ξ)||
}
dξ. (2.38)

It follows from (2.38) that the sequences {v(k)(t, x)} and {z(k)(t, x)} converge to v∗(t, x) and z∗(t, x),
respectively, as k → ∞ for all (t, x) ∈ Ω̄. In this case, the limit functions v∗(t, x) and z∗(t, x) are
continuous on Ω̄. Moreover, we have the equality z∗(t, x) = ∂v∗(t,x)

∂t
for all (t, x) ∈ Ω̄.

Passing to the limit in relations (2.32), (2.31) as k → ∞ and using the Grönwall - Bellman
inequality, we obtain the following estimates:

max
{

max
t∈[0,T ]

∣∣∣∣∣∣∂v∗(t, x)

∂t

∣∣∣∣∣∣, max
t∈[0,T ]

||v∗(t, x)||
}
≤ C2e

C2x max
{

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
}
. (2.39)

max
t∈[0,T ]

||v∗(t, x)|| ≤ C0

(
C1C2e

C2x + 1
)

max
{

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
}
, (2.40)

where C2 = max(α1C0 + 1, C0)C1.
So, we found a solution to the family of problems (2.7), (2.8).
Let us show the uniqueness of the solution to problem (2.7), (2.8). Let the functions v∗(t, x) and

v∗∗(t, x) be solutions to problem (2.7), (2.8).
Suppose that z∗(t, x) = ∂v∗(t,x)

∂t
and z∗∗(t, x) = ∂v∗∗(t,x)

∂t
.

Using inequalities (2.31), (2.32) for the differences v∗(t, x)− v∗∗(t, x), z∗(t, x)− z∗∗(t, x), we obtain

max
{

max
t∈[0,T ]

||z∗(t, x)− z∗∗(t, x)||, max
t∈[0,T ]

||v∗(t, x)− v∗∗(t, x)||
}
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≤ C2

∫ x

0

max
{

max
t∈[0,T ]

||z∗(t, ξ)− z∗∗(t, ξ)||, max
t∈[0,T ]

||v∗(t, ξ)− v∗∗(t, ξ)||
}
dξ. (2.41)

Using again the Grönwall - Bellman inequality, get that for any 0 ≤ x ≤ ω

max
{

max
t∈[0,T ]

||z∗(t, x)− z∗∗(t, x)||, max
t∈[0,T ]

||v∗(t, x)− v∗∗(t, x)||
}
≤ 0 · eC2x = 0. (2.42)

From (2.42) it follows that z∗(t, x) ≡ z∗∗(t, x) and v∗(t, x) ≡ v∗∗(t, x) for all (t, x) ∈ Ω. This
contradicts our assumption that problem (2.7), (2.8) has two solutions, the functions v∗(t, x), z∗(t, x)
and v∗∗(t, x), z∗∗(t, x). Therefore, the solution to problem (2.7), (2.8) is unique. Finally, inequality
(2.40) implies the inequality stated in the theorem with C̃ = C0

(
C1C2e

C2ω + 1
)
.

3 Unique solvability of problem (1.1)–(1.3). Main result

We consider problem (2.7), (2.8), which is equivalent to problem (1.1)–(1.3).
If we know v(t, x), the solution to problem (2.7), (2.8), then from the integral relation

u(t, x) = ψ0(t) + ψ1(t)x+ ψ2(t)
x2

2!
+

∫ x

0

(x− ξ)2

2!
v(t, ξ)dξ (3.1)

we find u(t, x).
The following statement provides sufficient conditions for the unique solvability of problem (1.1)–

(1.3).

Theorem 2. Assume that the n×n matrix Q(x) =
m∑
j=0

M3,j(x)X(tj, x) is invertible for all x ∈ [0, ω],

where X is the solution to the Cauchy problem

∂X

∂t
= A1(t, x)X, X(0, x) = I,

and I is the identity matrix.
Then problem (1.1)–(1.3) has a unique classical solution and for its solution u∗(t, x) the following

estimate holds:

max

{∣∣∣∣∣∣ ∂4u∗

∂x3∂t

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂3u∗

∂x3

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣ ∂3u∗

∂x2∂t

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂2u∗

∂x2

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣ ∂2u∗

∂x∂t

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂u∗
∂x

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂u∗
∂t

∣∣∣∣∣∣
0
, ||u∗||0

}
≤ Ĉ max

{
||ψ0||1, ||ψ1||1, ||ψ2||1, ||ϕ||0, ||f ||0

}
for some Ĉ > 0 independent of u∗, ψ0, ψ1, ψ2, ϕ and f .

Proof. Let the assumptions of the theorem be satisfied. Then, by Theorem 1, the family of multipoint
boundary value problems (2.7), (2.8) with the integral condition is uniquely solvable, and inequalities
(2.39), (2.40) hold for its solution v∗(t, x). Using the integral relation (3.1) we define the function
u∗(t, x):

u∗(t, x) = ψ0(t) + ψ1(t)x+ ψ2(t)
x2

2!
+

∫ x

0

(x− ξ)2

2!
v∗(t, ξ)dξ. (3.2)

This implies the following relations:

∂u∗(t, x)

∂x
= ψ1(t) + ψ2(t)x+

∫ x

0

(x− ξ)v∗(t, ξ)dξ, (3.3)
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∂u∗(t, x)

∂t
= ψ̇0(t) + ψ̇1(t)x+ ψ̇2(t)

x2

2!
+

∫ x

0

(x− ξ)2

2!

∂v∗(t, ξ)

∂t
dξ, (3.4)

∂2u∗(t, x)

∂x2
= ψ2(t) +

∫ x

0

v∗(t, ξ)dξ, (3.5)

∂2u∗(t, x)

∂x∂t
= ψ̇1(t) + ψ̇2(t)x+

∫ x

0

(x− ξ)∂v
∗(t, ξ)

∂t
dξ, (3.6)

∂3u∗(t, x)

∂x2∂t
= ψ̇2(t) +

∫ x

0

∂v∗(t, ξ)

∂t
dξ, (3.7)

∂3u∗(t, x)

∂x3
= v∗(t, x), (3.8)

∂4u∗(t, x)

∂x3∂t
=
∂v∗(t, x)

∂t
. (3.9)

In problem (2.7), (2.8) instead of the matrices K1(t, x, ξ), K2(t, x, ξ), Lj(x, ξ), j = 0,m, and vectors
F (t, x), Φ(x) substituting the corresponding expressions, we obtain

∂v∗

∂t
= A1(t, x)v∗ +B1(t, x)

[
ψ̇2(t) +

∫ x

0

∂v∗(t, ξ)

∂t
dξ

]
+ A2(t, x)

[
ψ2(t) +

∫ x

0

v∗(t, ξ)dξ

]

+B2(t, x)

[
ψ̇1(t) + ψ̇2(t)x+

∫ x

0

(x− ξ)∂v
∗(t, ξ)

∂t
dξ

]
+ A3(t, x)

[
ψ1(t) + ψ2(t)x

+

∫ x

0

(x− ξ)v∗(t, ξ)dξ
]

+B3(t, x)

[
ψ̇0(t) + ψ̇1(t)x+ ψ̇2(t)

x2

2!
+

∫ x

0

(x− ξ)2

2!

∂v∗(t, ξ)

∂t
dξ

]
+C(t, x)

[
ψ0(t) + ψ1(t)x+ ψ2(t)

x2

2!
+

∫ x

0

(x− ξ)2

2!
v∗(t, ξ)dξ

]
+ f(t, x), (3.10)

m∑
j=0

{
M3,j(x)v∗(tj, x) +M2,j(x)

[
ψ2(tj) +

∫ x

0

v∗(tj, ξ)dξ

]

+M1,j(x)

[
ψ1(tj) + ψ2(tj)x+

∫ x

0

(x− ξ)v∗(tj, ξ)dξ
]

+M0,j(x)

[
ψ0(tj) + ψ1(tj)x+ ψ2(tj)

x2

2!
+

∫ x

0

(x− ξ)2

2!
v∗(tj, ξ)dξ

]}
= ϕ(x). (3.11)

In (3.10), (3.11), replacing the expressions in square brackets by the corresponding expressions from
(3.2)–(3.9), we obtain

∂4u∗

∂x3∂t
=

3∑
i=1

{
Ai(t, x)

∂4−iu∗

∂x4−i +Bi(t, x)
∂4−iu∗

∂x3−i∂t

}
+ C(t, x)u∗ + f(t, x), (3.12)

m∑
j=0

3∑
i=0

Mi,j(x)
∂iu∗(tj, x)

∂xi
= ϕ(x), x ∈ [0, ω]. (3.13)

From (3.2), (3.3), and (3.5) for x = 0 we set

u∗(t, 0) = ψ0(t),
∂u∗(t, x)

∂x

∣∣∣
x=0

= ψ1(t),
∂2u∗(t, x)

∂x2

∣∣∣
x=0

= ψ2(t), t ∈ [0, T ]. (3.14)
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It follows that the function u∗(t, x) is a classical solution to problem (1.1)–(1.3).
Taking into account inequality (2.39) and relations (3.3)–(3.9), we obtain the following estimate:

max

{∣∣∣∣∣∣ ∂4u∗

∂x3∂t

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂3u∗

∂x3

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣ ∂3u∗

∂x2∂t

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂2u∗

∂x2

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣ ∂2u∗

∂x∂t

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂u∗
∂x

∣∣∣∣∣∣
0
,
∣∣∣∣∣∣∂u∗
∂t

∣∣∣∣∣∣
0
, ||u∗||0

}
≤ C3 max

{
||ψ0||1, ||ψ1||1, ||ψ2||1, ||ϕ||0, ||f ||0

}
, (3.15)

where C3 = 1 + max(1, ω) + max
(
1, ω, ω

2

2

)
+ C2

[
1 + ωmax

(
1, ω, ω

2

2

)]
eC2ω.

The unique solvability of problem (2.7), (2.8) implies the uniqueness of a solution to problem
(1.1)–(1.3). Therefore, the classical solution u∗(t, x) of problem (1.1)–(1.3) is unique, and it satisfies
estimate (3.2) for Ĉ = C3.
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