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SOLUTION OF THE NEUMANN PROBLEM
FOR ONE FOUR-DIMENSIONAL ELLIPTIC EQUATION
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Abstract. In this article we investigate the Neumann problem for a degenerate elliptic equation
in four variables. A fundamental solution is used to construct a solution to the problem. The
fundamental solutions are written by using the Lauricella’s hypergeometric functions. The energy-
integral method is used to prove the uniqueness of the solution to the problem under consideration.
In the course of proving the existence of the problem solution, differentiation formulas, decomposition
formulas, some adjacent relations formulas and the autotransformation formula of hypergeometric
functions are used. The Gauss-Ostrogradsky formula is used to express problem’s solution in an
explicit form.

DOI: https://doi.org/10.32523/2077-9879-2020-11-2-93-97

1 Introduction

Special functions are used for solving many problems of mathematical physics. These include the
Gauss hypergeometric series, Bessel and Hermite functions, multidimensional Lauricella hypergeo-
metric functions, etc. The Hermite functions are actively applied in algorithms and information
systems that are used in medical diagnostics [12]. The Bessel functions are used in solving a number
of problems of hydrodynamics, radiophysics, and thermal conductivity [10]. Some functions that are
used in astronomy can be arranged in hypergeometric series [13]. Multidimensional hypergeomet-
ric functions are used in the superstrings theory [5]. In works [1, 4, 6, 11, 14], applications of the
Gauss functions and hypergeometric functions of many variables to the solution of modern relevant
problems are presented. The study of boundary value problems for degenerate equations is one of
the important directions of the modern theory of partial differential equations. It is known that in
the formulation and construction of local and nonlocal boundary value problems solutions, the main
role is played by fundamental solutions. For instance, in [9], three-dimensional fundamental solutions
were obtained for the modified Helmholtz equation, which were used to construct the theory of single
layer, double layer, and volume potentials [7]; in [3], Appel’s hypergeometric functions are used to
construct the theory of double layer potential.

We consider the four-dimensional degenerate elliptic Hellerstedt equation

ymzktluxx + xnzktluyy + xnymtluzz + xnymzkutt = 0 (1.1)
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in the region R4
+ = {(x, y, z, t) : x > 0, y > 0, z > 0, t > 0}, where m,n, k, l are positive numbers.

This equation has four degeneracy hypersurfaces. For equation (1.1) sixteen fundamental solutions
were obtained [8]. Fundamental solutions are expressed in terms of the Lauricella hypergeometric
functions [2].

2 The Neumann problem

We introduce the following notation:

D = {(x, y, z, t) : x > 0, y > 0, z > 0, t > 0} ,

S1 = {(0, y, z, t) : x = 0, y > 0, z > 0, t > 0} ,

S2 = {(x, 0, z, t) : x > 0, y = 0, z > 0, t > 0} ,

S3 = {(x, y, 0, t) : x > 0, y > 0, z = 0, t > 0} ,

S4 = {(x, y, z, 0) : x > 0, y > 0, z > 0, t = 0} ,

R2 =
4

(n+ 2)2x
n+2 +

4

(m+ 2)2y
m+2 +

4

(k + 2)2 z
k+2 +

4

(l + 2)2 t
l+2.

The Neumann problem. Find a solution u (x, y, z, t) of equation (1.1) belonging to the class
C1
(
D̄
)
∩ C2 (D) and satisfying the conditions:

∂

∂x
u (x, y, z, t)

∣∣∣∣
x=0

= ν1 (y, z, t) , (y, z, t) ∈ S1, (2.1)

∂

∂y
u (x, y, z, t)

∣∣∣∣
y=0

= ν2 (x, z, t) , (x, z, t) ∈ S2, (2.2)

∂

∂z
u (x, y, z, t)

∣∣∣∣
z=0

= ν3 (x, y, t) , (x, y, t) ∈ S3, (2.3)

∂

∂t
u (x, y, z, t)

∣∣∣∣
t=0

= ν4 (x, y, z) , (x, y, z) ∈ S4, (2.4)

lim
R→∞

u (x, y, z, t) = 0, (2.5)

where ν1 (y, z, t) , ν2 (x, z, t) , ν3 (x, y, t) , ν4 (x, y, z) are given continuous functions.
We assume that the functions νi (i = 1, 4) satisfy the following:

1) ∫∫∫
S1

ymzktlν1 (y, z, t) dydzdt+

∫∫∫
S2

xnzktlν2 (x, z, t) dxdzdt

+

∫∫∫
S3

xkymtlν3 (x, y, t) dxdydt+

∫∫∫
S4

xkymtlν4 (x, y, z) dxdydz = 0;

2) νi (i = 1, 4) can tend to infinity with an order less than 1 − 2α, 1 − 2β, 1 − 2γ, 1 − 2δ,
respectively, as R→ 0;
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3) for sufficiently large values of R, the following inequalities are valid:

|ν1 (y, z, t)| ≤ c1[
1 + 4

(m+2)2ym+2 + 4
(k+2)2 zk+2 + 4

(l+2)2 tl+2
] 1−2α+ε1

2

,

|ν2 (x, z, t)| ≤ c2[
1 + 4

(n+2)2xn+2 + 4
(k+2)2 zk+2 + 4

(l+2)2 tl+2
] 1−2β+ε2

2

,

|ν3 (x, y, t)| ≤ c3[
1 + 4

(n+2)2xn+2 + 4
(m+2)2ym+2 + 4

(l+2)2 tl+2
] 1−2γ+ε3

2

,

|ν4 (x, y, z)| ≤ c4[
1 + 4

(n+2)2xn+2 + 4
(m+2)2ym+2 + 4

(k+2)2 zk+2
] 1−2δ+ε4

2

.

Here ci > 0 (i = 1, 4), α = n
2(n+2)

, β = m
2(m+2)

, γ = k
2(k+2)

, δ = l
2(l+2)

, and εi > 0 (i = 1, 4) are
sufficiently small.

Theorem 2.1. Let conditions 1)− 3) be satisfied, then Neumann problem (1.1), (2.1)− (2.5) has no
more than one solution.

Theorem 2.1 is proved by using the energy integral.

Theorem 2.2. Let conditions 1)− 3) be satisfied, then there exists a solution to Neumann problem
(1.1), (2.1)− (2.5) and it is expressed by the following formula:

u (x0, y0, z0, t0) =−
∞∫

0

∞∫
0

∞∫
0

ymzktlν1 (y, z, t) g1 (0, y, z, t;x0, y0, z0, t0) dydzdt

−
∞∫

0

∞∫
0

∞∫
0

xnzktlν2 (x, z, t) g1 (x, 0, z, t;x0, y0, z0, t0) dxdzdt

−
∞∫

0

∞∫
0

∞∫
0

xnymtlν3 (x, y, t) g1 (x, y, 0, t;x0, y0, z0, t0) dxdydt

−
∞∫

0

∞∫
0

∞∫
0

xnymzkν4 (x, y, z) g1 (x, y, z, 0;x0, y0, z0, t0) dxdydz.

(2.6)

Here
g1 (x, y, z, t;x0, y0, z0, t0)

= k1

(
r2
)−α−β−γ−δ−1

F
(4)
A (α + β + γ + δ + 1;α, β, γ, δ; 2α, 2β, 2γ, 2δ; ξ, η, ζ, ς)

is one of the fundamental solutions to equation (1.1), F (4)
A is the Lauricella hypergeometric function,

and ξ =
r2−r2

1

r2 , η =
r2−r2

2

r2 , ζ =
r2−r2

3

r2 , ς =
r2−r2

4

r2 ,

k1 =
1

4π2

(
4

n+ 2

)2α(
4

m+ 2

)2β(
4

k + 2

)2γ(
4

l + 2

)2δ

× Γ (α + β + γ + δ + 1) Γ (α) Γ (β) Γ (γ) Γ (δ)

Γ (2α) Γ (2β) Γ (2γ) Γ (2δ)
,
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r2 =
(

2
n+2

x
n+2

2 − 2
n+2

x
n+2

2
0

)2

+
(

2
m+2

y
m+2

2 − 2
m+2

y
m+2

2
0

)2

+
(

2
k+2

z
k+2

2 − 2
k+2

z
k+2

2
0

)2

+
(

2
l+2
t
l+2
2 − 2

l+2
t
l+2
2

0

)2

,

r2
1 =

(
2

n+2
x
n+2

2 + 2
n+2

x
n+2

2
0

)2

+
(

2
m+2

y
m+2

2 − 2
m+2

y
m+2

2
0

)2

+
(

2
k+2

z
k+2

2 − 2
k+2

z
k+2

2
0

)2

+
(

2
l+2
t
l+2
2 − 2

l+2
t
l+2
2

0

)2

,

r2
2 =

(
2

n+2
x
n+2

2 − 2
n+2

x
n+2

2
0

)2

+
(

2
m+2

y
m+2

2 + 2
m+2

y
m+2

2
0

)2

+
(

2
k+2

z
k+2

2 − 2
k+2

z
k+2

2
0

)2

+
(

2
l+2
t
l+2
2 − 2

l+2
t
l+2
2

0

)2

,

r2
3 =

(
2

n+2
x
n+2

2 − 2
n+2

x
n+2

2
0

)2

+
(

2
m+2

y
m+2

2 − 2
m+2

y
m+2

2
0

)2

+
(

2
k+2

z
k+2

2 + 2
k+2

z
k+2

2
0

)2

+
(

2
l+2
t
l+2
2 − 2

l+2
t
l+2
2

0

)2

,

r2
4 =

(
2

n+2
x
n+2

2 − 2
n+2

x
n+2

2
0

)2

+
(

2
m+2

y
m+2

2 − 2
m+2

y
m+2

2
0

)2

+
(

2
k+2

z
k+2

2 − 2
k+2

z
k+2

2
0

)2

+
(

2
l+2
t
l+2
2 + 2

l+2
t
l+2
2

0

)2

.

Theorem 2.2 is proved by using the fundamental solution g1 of equation (1.1), the Gauss-
Ostrogradsky formula, and various properties of multidimensional hypergeometric functions, such
as autotransformation, decomposition, differentiation formulas and adjacent relations. Thus, it was
established that the solution of the Neumann problem for equation (1.1) exists, is unique and can be
expressed in explicit form (2.6) if conditions 1) – 3) are satisfied.
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