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MIKHAIL L’VOVICH GOLDMAN

(to the 75th birthday)

Mikhail L’vovich Goldman was born on April 13, 1945 in Moscow.
In 1963 he graduated from school in Moscow and entered the Physical
Faculty of the M.V. Lomonosov Moscow State University (MSU) from
which he graduated in 1969 and became a PhD student (1969–1972) at
the Mathematical Department of this Faculty. In 1972 he has defended
the PhD thesis, and in 1988 his DSc thesis “The study of spaces of differ-
entiable functions of many variables with generalized smoothness” at the
S.L. Sobolev Institute of Mathematics in Novosibirsk. Scientific degree
“Professor in Mathematics” was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an assistant Profes-
sor, Full Professor, Head of the Mathematical Department at the Moscow
Institute of Radio Engineering, Electronics and Automation (technical
university). Since 2000 he is a Professor of the S.M. Nikol’skii Mathemat-

ical Institute at the Peoples Friendship University of Russia (RUDN University).
Research interests of M.L. Goldman are: the theory of function spaces, optimal embeddings, in-

tegral inequalities, spectral theory of differential operators. Main achievements: optimal embeddings
of spaces with generalized smoothness, sharp conditions of the convergence of spectral expansions,
descriptions of integral and differential properties of the generalized Bessel and Riesz-type poten-
tials, sharp estimates for operators on cones and optimal envelopes for the cones of functions with
properties of monotonicity. Professor M.L. Goldman has over 140 scientific publications in leading
mathematical journals.

Under his scientific supervision, 8 candidate theses in Russia and 1 thesis in Kazakhstan were
successfully defended. Some of his former students are now professors in Ethiopia, Columbia, Mon-
golia.

Participation in scientific and organizational activities of M.L. Goldman is well known. He is
a member of the DSc Councils at RUDN and MSU, of the PhD Council in the Lulea Technical
University (Sweden), a member of the Editorial Board of the Eurasian Mathematical Journal, an
invited lector and visiting professor at universities of Russia, Germany, Sweden, UK etc., an invited
speaker at many international conferences.

The mathematical community, friends and colleagues and the Editorial Board of the Eurasian
Mathematical Journal cordially congratulate Mikhail L’vovich Goldman on the occasions of his 75th
birthday and wish him good health, happiness, and new achievements in mathematics and mathe-
matical education.
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1 Introduction

The notion of amenability for groups was defined by Von Neumann [22] for discrete groups and by
Day [5] for locally compact groups. Amenability for Banach algebras was introduced and studied
by Johnson in [11]. He proved that a locally compact group G is amenable if and only if the group
algebra L1(G) is amenable as a Banach algebra.

After the pioneering work of Johnson, several modifications of the original concept of amenability
of Banach algebras were investigated. One of the most important modifications was suggested in
[12], where the authors introduced a notion of amenability more suitable for von Neumann algebras.
It modifies the original definition in the sense that it takes into account the dual space structure of
a von Neumann algebra. Like the amenable Banach algebras, the Connes amenable von Neumann
algebras allow for an intrinsic characterization in terms of a diagonal type elements: a von Neumann
algebra is Connes amenable if and only if it has a normal, virtual diagonal [7]. It is not true in
general. For example, if G is an amenable [SIN]-group that fails to be compact, the dual Banach
algebra WAP (G)∗ is Connes amenable, but has no normal, virtual diagonal [16], where WAP (G)
denotes the weakly almost periodic functions on G. However, the concept of Connes amenability
is different from amenability. Examples of dual Banach algebras (besides von Neumann algebras)
include the measure algebraM(G) and the Fourier-Stieltjes algebra B(G) of a locally compact group
G. In particular, Runde showed that a locally compact group G is amenable if and only if its measure
algebra M(G) is Connes amenable [19]. This result sounds more interesting, when compared to a
deep results of Dales, Ghahramani, and Helemskii, showing that M(G) is amenable if and only if G
is discrete and amenable [3].

The concept of ideal amenability of Banach algebras was introduced by Gordji and Yazdanpanah
in [8]. They related this notion to weak amenability of Banach algebras, and by means of some
examples showed that the ideal amenability is different from the amenability and weak amenability.
For example, all C∗-algebras are ideally amenable while they are amenable if and only if they are
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nuclear [6]. Approximate Connes amenability was introduced by Esslamzadeh and Shojaee in [9].
The concept of ideal Connes amenability of dual Banach algebras was introduced by Minapoor,
Bodaghi and Ebrahimi Bagh in [14]. In this paper, we define and study the notion of an approximate
ideal Connes amenability for the dual Banach algebras. We show that every approximately Connes
amenable dual Banach algebra is an approximate ideally Connes amenable dual Banach algebra and
every ideally Connes amenable dual Banach algebra is approximate ideally Connes amenable, but
the converse is not necessarily true. We also study ideal Connes amenability of weighted discrete
group algebras.

2 Main results

We first recall some definitions in the Banach algebras settings. Let A be a Banach algebra, and let
X be a Banach A-bimodule. A bounded linear map D : A −→ X is called a derivation if

D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A).

For each x ∈ X, we define the map Dx : A −→ X by

Dx(a) = a · x− x · a (a ∈ A).

It is easily seen that Dx is a derivation. Derivations of this form are called inner derivations.
Z1(A, X) is the space of all continuous derivations from A into X, N 1(A, X) is the space of all inner
derivations from A into X, and the first Hochschild cohomology group of A with coefficients in X is
the quotient space

H1(A, X) = Z1(A, X)/N 1(A, X).

Let X be a A-bimodule. In the following by 〈f, x〉 we mean f(x). The dual space X∗ of X is also a
Banach A-bimodule by the following module actions:

〈a · f, x〉 = 〈f, x · a〉, 〈f · a, x〉 = 〈f, a · x〉, (a ∈ A, x ∈ X, f ∈ X∗).

With the above notations, a Banach algebra A is called amenable if H1(A, X∗) = {0} for every
Banach A-bimodule X, and weakly amenable if H1(A,A∗) = {0}. Let n ∈ N. Then, A is called
n-weakly amenable if H1(A,A(n)) = {0}, where A(n) is n-th dual of A. A is said to be n-ideally
amenable if H1(A, I(n)) = {0} for every closed two sided ideal I in A.

A Banach algebraA is said to be dual if there is a closed submoduleA∗ ofA∗ such thatA = (A∗)∗.
One can see that a Banach algebra which is also a dual space is a dual Banach algebra if and only if
the multiplication map is separately w∗-continuous [17]. Examples of dual Banach algebras include
all von Neumann algebras, the algebra B(E) = (E⊗̂E∗)∗ of all bounded operators on a reflexive
Banach space E, the measure algebra M(G) = C0(G)∗, the Fourier-Stieljes algebra B(G) = C∗(G)∗,
and the second dual B∗∗ of an Arens regular Banach algebra B.

Let A be a Banach algebra. A dual Banach A-bimodule X is called normal if for each x ∈ X the
maps a 7→ a·x and b 7→ x·b fromA intoX are w∗-continuous, and Connes amenable if for every normal
dual Banach A-bimodule X, every w∗-continuous derivation D : A −→ X is inner [17]. We denote by
Z1
w∗(A, X∗) the w∗-continuous derivations from A intoX∗ andH1

w∗(A, X∗) = Z1
w∗(A, X∗)/B1(A, X∗).

Let A be a dual Banach algebra and I be a weak∗-closed two-sided ideal of A. A dual Banach
algebra A is I−Connes amenable if H1

w∗(A, I) = {0} and A is ideally Connes amenable if it is
I-Connes amenable for every weak∗-closed two-sided ideal I in A [14].

A derivation D : A −→ X is approximately inner if there exists a net (xα) ⊆ X such that for
every a ∈ A; D(a) = limα(a.xα − xα.a), the limit being with respect to the norm.
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Let A be a dual Banach algebra. A is approximately Connes amenable, if for each normal dual
Banach A-bimodule X, every w∗-continuous derivation D ∈ Z1(A, X) is approximately inner [9].

Let A be a dual Banach algebra and I be a weak∗-closed two-sided ideal of A. We say that
A is approximately I−Connes amenable if every weak∗-continuous derivation D ∈ Z1

w∗(A, I) is
approximately inner. We say that A is approximately ideally Connes amenable if for every weak∗-
closed two-sided ideal I of A it is approximately I−Connes amenable. Let I be an arbitrary
weak∗-closed two-sided ideal of A. If in the definition of the approximate Connes amenability we
replace X by I, then it is obvious that every approximate Connes amenable dual Banach algebra
is approximately ideally Connes amenable. Since every inner derivation is approximately inner so it
is obvious that every ideally Connes amenable dual Banach algebra is approximate ideally Connes
amenable, but not every approximately ideally Connes amenable dual Banach algebra is ideally
Connes amenable. In Example 2 we will introduce such a dual Banach algebra.

Definition 1. Let (A∗)∗ = A be a dual Banach algebra, and (I∗)∗ = I be a w∗-closed two-sided ideal
in A and Z be the centre of A. We say that I has the dual approximate trace extension property
if for each λ ∈ Z ∩ I, there is a net (τα)α ⊆ A, (α ∈ Λ), such that τα|I∗ = λ|I∗ , i.e., coincide as
functionals on I∗ and for each a ∈ A, we have a · τα − τα · a −→ 0 with respect to the net α ∈ Λ.

Let X be a Banach space, M be a subspace of X , and N be a subspace of X ∗. Then, the
annihilatorsM⊥ and ⊥N are defined as follows:

M⊥ = {f ∈ X ∗ : 〈f, x〉 = 0 for all x ∈M}

⊥N = {x ∈ X : 〈f, x〉 = 0 for all f ∈ N}

It is well-known thatM⊥ and ⊥N are weak∗-closed subspaces and the norm-closed subspaces of X ∗
and X , respectively. Moreover, ⊥(M⊥) is the norm-closure ofM and (⊥N )⊥ is the weak∗-closure of
N .

Lemma 2.1. Let A = (A∗)∗ be a dual Banach algebra and I be a weak∗-closed two-sided ideal of
A. Then, I and A/I are dual Banach algebras.

Proof. I is a dual Banach space with predual I∗ = A∗/⊥I. Indeed, I is the weak∗-closed of A and
so (I∗)∗ =

(
A∗/⊥I

)∗
= (⊥I)⊥ = I. Moreover, I∗ is a submodule of A∗/I⊥ = I∗. Thus, I is a dual

Banach algebra. Once more, ⊥I is a submodule of I⊥ = (A/I)∗ and (⊥I)∗ = (A∗)∗/(⊥I)⊥ = A/I.
Thus, A/I is a dual Banach space. On the other hand, multiplication in A and A/I is separately
weak∗-continuous and therefore A/I is a dual Banach algebra.

Theorem 2.1. Let A be an ideally Connes amenable dual Banach algebra, and I be w∗-closed two-
sided ideal in A with the dual approximate trace extension property. Then A/I is an approximate
ideally Connes amenable dual Banach algebra.

Proof. Let J /I be a w∗-closed two-sided ideal in A/I. Then J is a w∗-closed two-sided ideal in A,
so ⊥I is predual of A/I. We know that ⊥I is a closed A-submodule of J∗. Let π∗ : J∗ −→⊥ I be the
natural projection A-bimodule morphism and q : A −→ A/I be the natural quotient map and (π∗)

∗

be the adjoint of π∗. Let D : A/I −→ J /I be a w∗-continuous derivation, then d = (π∗)
∗ ◦D ◦ q :
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A −→ J is a w∗-continuous derivation, if j∗ ∈ J∗ then we have

〈j∗, d(ab)〉 = 〈j∗, (π∗)∗(D ◦ q(ab))〉
= 〈j∗, (π∗)∗(D(a+ I)(b+ I))〉
= 〈j∗, (π∗)∗((a+ I) ·D(b+ I) +D(a+ I) · (b+ I)〉
= 〈π∗(j∗), (a+ I) ·D(b+ I) +D(a+ I) · (b+ I)〉
= 〈π∗(j∗) · (a+ I), D(b+ I)〉+ 〈(b+ I) · π∗(j∗), D(a+ I)〉
= 〈π∗(j∗) · a,D(b+ I)〉+ 〈b · π∗(j∗), D(a+ I)〉
= 〈π∗(j∗ · a), D(b+ I)〉+ 〈π∗(b · j∗), D(a+ I)〉
= 〈j∗ · a, (π∗)∗(D(b+ I))〉+ 〈b · j∗, (π∗)∗(D(a+ I))〉
= 〈j∗, a · (π∗)∗(D ◦ q(b)) + (π∗)

∗(D ◦ q(a)) · b〉
= 〈j∗, a · d(b) + d(a) · b〉.

So there is an element λ ∈ J such that d(a) = a · λ− λ · a (a ∈ A). Let m be the restriction of λ on
I∗, then m ∈ I and for i∗ ∈ I∗ we have

〈i∗, a ·m−m · a〉 = 〈i∗ · a− a · i∗,m〉
= 〈i∗ · a− a · i∗, λ〉
= 〈i∗, a · λ− λ · a〉
= 〈i∗, (π∗)∗ ◦D ◦ q(a)〉
= 〈π∗(i∗), D ◦ q(a)〉
= 〈π∗(i∗), D(a+ I)〉 = 0.

The reason for the last equality is that π∗ is the projection on ⊥I, so if i∗ ∈ I∗ and since I∗ = A∗/⊥I,
i∗ is not in ⊥I so π∗(i∗) = 0. Therefore a ·m = m · a for each (a ∈ A). Hence by the assumption,
there exists a net (κα)α ⊆ A such that for any α, we have that κα|I∗ = m and limαa · κα− κα · a = 0
(a ∈ A). Let τα be the restriction of κα on J∗, for every α. Then (τα)α ⊆ J and λ− τα = 0 on I∗.
Therefore λ− τα ∈ J /I.

Now let x be in (J /I)∗. Then there is a j∗ ∈ J∗ such that π∗(j∗) = x, so we have

〈x,D(a+ I)〉 = 〈π∗(j∗), D(a+ I)〉 = 〈j∗, a · λ− limα(a · τα − τα · a)− λ · a〉
= limα〈j∗, a · λ− a · τα + τα · a− λ · a〉
= limα〈j∗, a · (λ− τα)− (λ− τα) · a〉
= 〈j∗, limαa · (λ− τα)− (λ− τα) · a〉.

If j∗ ∈⊥ I then by definition of π∗ we have π∗(j∗) = j∗, and if j∗ is not in ⊥I then π∗(j∗) = 0. In
the first case we have

〈j∗, limαa · (λ− τα)− (λ− τα) · a〉 = 〈π∗(j∗), limαa · (λ− τα)− (λ− τα) · a〉
= 〈x, limαa · (λ− τα)− (λ− τα) · a〉.

Hence

D(a+ I) = limαa · (λ− τα)− (λ− τα) · a.

This means that D is an approximate inner derivation. In the second case D is also an approximately
inner derivation. So we conclude that A/I is approximately ideally Connes amenable.
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Theorem 2.2. Let A be a dual Banach algebra and I be a w∗-closed two-sided ideal in A. If A is
an approximate I-Connes amenable then H1

w∗(I, I) = {0}.

Proof. Let D : I −→ I be a w∗-continuous derivation and J : A −→ I be natural projection A-
bimodule morphism. Then D ◦J : A −→ I is a w∗-continuous derivation. Since A is approximate I-
Connes amenable, D◦J is approximately inner, therefore D is approximately inner, thusH1

w∗(I, I) =
{0}.

Similarly to ([8] Theorem 1.6 ) we can state the following theorem for dual Banach algebras.

Theorem 2.3. Let A be dual Banach algebra and (X∗)
∗ = X be a dual Banach A-bimodule and

(Y∗)
∗ = Y be a w∗-closed submodule of X. If every derivation from A to Y , and every derivation

from A to (X∗/Y∗)
∗ are approximately inner, then every derivation from A to X is approximately

inner.

Proof. Let D : A −→ X be a w∗-continuous derivation, and i : Y∗ −→ X∗ be the natural embedding
A-bimodule morphism, then i∗ ◦D : A −→ Y is a w∗-continuous derivation. Due to the assumption
there is a net (ξα)α ⊆ Y such that i∗ ◦ D(a) = limαa · ξα − ξα · a. Set Dα(a) = a · ξα − ξα · a,
therefore i∗ ◦ D = limαDα. Without loss of generality we can suppose that (ξα) ⊆ X. Now define
d : A −→ (Y∗)

⊥ by d = D − limαDα, therefore d is a w∗-continuous derivation and so there is a
net (ηβ) ⊆ (Y∗)

⊥ = (X∗/Y∗)
∗ ⊆ X, such that d(a) = a · ηβ − ηβ · a. Set ξα,β = ξα + ηβ, such that

limαlimβξα,β = limαξα + limβηβ. Now by using suitable subnets and by using the iterated limit[13],
there is a net (ξγ)γ ⊆ X such that limγξγ = limαlimβξα,β. Since D = d+ limαDα we have

D(a) = d(a) + limαDα(a)

= limβa · ηβ − ηβ · a+ limαa · ξα − ξα · a
= limαlimβa · (ηβ + ξα)− (ηβ + ξα) · a
= limαlimβa · ξα,β − ξα,β · a
= limγa · ξγ − ξγ · a.

Corollary 2.1. Let A be a dual Banach algebra and I,J be w∗-closed two-sided ideals in A such
that J ⊆ I. If A is approximate J -Connes amenable and every derivation from A into (I∗/J∗)∗ is
approximately inner, then A is approximately I-Connes amenable.

Corollary 2.2. Let A be a dual Banach algebra and I be a w∗-closed two-sided ideal in A. If every
derivation from A into (A∗/I∗)∗ = (I∗)⊥ is approximately inner, then every w∗-continuous derivation
from A to A is approximately inner.

Theorem 2.4. Let A be Arens regular dual Banach algebra and I be a w∗-closed two-sided ideal
in A. If every derivation from I into I is approximately inner, then A is approximately I-Connes
amenable.

Proof. Let D : A −→ I be a w∗-continuous derivation and i : I −→ A be an embedding map. Then
D ◦ i : I −→ I is a w∗-continuous derivation, so there is a net (ξα)α ⊆ I such that

D ◦ i(a) = limαa · ξα − ξα · a, a ∈ A.
Since every derivation from I into I is approximately inner, therefore by [9], I has an approximate

identity. Let (eβ)β be its approximate identity, and i∗ ∈ I∗ then limβeβ · i∗ = i∗ and limβi∗ · eβ = i∗.
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So we get

〈i∗, D(a)〉 = limβ〈i∗ · eβ, D(a)〉
= limβ〈i∗, D(eβa)−D(eβ) · a〉
= limβlimα(〈i∗, eβa · ξα − ξα · eβa〉 − 〈a · i∗, eβ · ξα − ξα · eβ〉)
= limαlimβ(〈i∗eβa, ξα〉 − 〈ai∗eβ, ξα〉)
= limα(〈i∗, a · ξα − ξα · a〉).

Since A is Arens regular we can change the order of limits. Therefore D(a) = limα(a · ξα − ξα · a)
for all a ∈ A.

Hence A is approximately I-Connes amenable.

Theorem 2.5. Let A be dual Banach algebra and I be a w∗-closed two-sided ideal in A with a bounded
approximate identity. Suppose A is approximate ideally Connes amenable, then I is approximate
ideally Connes amenable.

Proof. Assume that J is a weak∗-closed two-sided ideal of I. Then, J is an ideal of A which is dual.
Let D : I −→ J be a w∗-w∗-continuous derivation. Let (eα)α be approximate identity for I. Due
to [18, Proposition 2.1.6], there exists a unique extension of D to a derivation D̃ : A −→ J ; a 7→
w∗ − limα (D(aeα)− aD(eα)). Let ak

w∗→ 0 in A. For j∗ ∈ J∗, we get

〈D̃(ak), j∗〉 = lim
α
〈D(akeα)− akD(eα), j∗〉 = lim

α
〈D(akeα), j∗〉 − lim

α
〈akD(eα), j∗〉

Since D is w∗-w∗-continuous and akD(eα)
w∗→ 0, the right-hand side of the last equality tends to zero.

Hence, D̃ is w∗-continuous. Since A is approximately ideally Connes amenable, D̃ and so D is an
approximately inner derivation. Therefore I is approximately ideally Connes amenable.

Let A be a non-unital Banach algebra. Then A# = A⊕C, the unitization of A, is a unital Banach
algebra which contains A as a closed ideal. Our next proposition is an analogue of [8, Proposition
1.14], whose proof carries over almost verbatim.

Theorem 2.6. Let A be dual Banach algebra. Then A is approximately ideally Connes amenable if
and only if A] is approximately ideally Connes amenable.

3 Ideal Connes amenability of discrete Beurling algebras

Let G be a locally compact group and ω be a Borel measurable function ω : G −→ [1,∞) such that
ω(s + t) ≤ ω(s).ω(t) and ω(e) = 1, where e is the identity element of G. Then ω is called a weight
function on G. The Beurling algebra (weighted group algebra) L1(G,ω) is defined as the set of all
(equivalence classes of) measurable functions f : G −→ C such that

‖f‖ω =

∫
G

| f(x) | ω(x)dx <∞.

Let ω be a weight on discrete group G, then M(G,ω) ∼= l1(G,ω), so l1(G,ω) is dual Banach algebra
with the predual C0(G, 1/ω). We say that ω is diagonaly bounded if sup{ω(g)ω(g−1) : g ∈ G} <∞.

Theorem 3.1. [4] Let G be a discrete group and ω be a weight on G, and let A = l1(G,ω). Then
the following are equivalent

(i) A is Connes amenable, with respect to the predual C0(G, 1/ω);
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(ii) A is amenable.

Theorem 3.2. [10] Let G be a discrete group and ω be a weight on G. Then l1(G,ω) is amenable if
and only if G is amenable group and ω is diagonally bounded.

As a result of two previous theorems l1(G,ω) is Connes amenable if and only if G is an amenable
group and ω is diagonally bounded. In this section we want to study an ideal Connes amenability of
l1(G,ω).

Theorem 3.3. Let G be a discrete group and ω be a diagonally bounded weight on G. Then every
w∗-continuous derivation from l1(G,ω) to itself is inner.

Proof. Let δg ∈ l1(G,ω) be the point mass at g ∈ G. Due to ([20], Proposition 7.4 ) we have

D(δg) = µ ∗ δg − δg ∗ µ µ ∈ l1(G,ω).

Let f ∈ l1(G,ω). Using ([20], Lemma 2.3) we can find a net {fα}α∈Λ from lin{δg : g ∈ G}, such
that fα −→ f in a strong operator topology. Then for each fα

D(fα) = µ ∗ fα − fα ∗ µ.

If we show that D(fα) −→ D(f) in w∗-topology and

µ ∗ fα − fα ∗ µ −→ µ ∗ f − f ∗ µ,

in w∗-topology, then we are done. Since fα −→ f in a strong operator topology, so for each h ∈
l1(G,ω) we have fα ∗ h −→ f ∗ h in the norm topology, so fα ∗ h −→ f ∗ h in w∗-topology. Let e
be the identity element of G. If we replace h by δe, then we have fα −→ f in w∗-topology. On the
other hand since fα −→ f in a strong operator topology, then µ ∗ fα −→ µ ∗ f in the norm topology,
hence µ ∗ fα −→ µ ∗ f in w∗-topology. In a similar manner we can show that fα ∗ µ −→ f ∗ µ in
w∗-topology. So

µ ∗ fα − fα ∗ µ −→ µ ∗ f − f ∗ µ,

in w∗-topology. Since D is w∗-continuous if fα −→ f in w∗-topology we conclude that D(fα) −→
D(f) in w∗-topology, and the proof is completed.

Lemma 3.1. Let G be a discrete group, and ω be a weight on G. Suppose that the map D from
{δx}x∈G to l1(G,ω) = (C0(G, 1/ω))∗ has the following properties

D(δxy) = D(δx) ∗ δy + δx ∗D(δy) (x, y ∈ G), (3.1)

‖D(δx)‖ ≤ Cω(x) (x ∈ G),

where C > 0 is a constant. Then D can be extended to a bounded derivation from l1(G,ω) to l1(G,ω).

Proof. We first extend D to the linear span of {δx}x∈G by linearity. The linear mapping D(f ∗ g)
satisfies the derivation relation

D(f ∗ g) = D(f) ∗ g + f ∗D(g)

for f, g from the generating set {δx}x∈G by (3.1). So the relation still holds for all f, g ∈ lin{δx}x∈G.
By Theorem 3.3 we conclude that lin{δx}x∈G is w∗-dense in l1(G,ω), so we can extend D to D on
l1(G,ω), which is still a derivation.
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Theorem 3.4. Let G be a discrete group, and ω be a weight on G. If there exist a function,
Ψ : G −→ R, and x0 ∈ G such that ω is bounded away from zero on the conjugacy class {y−1x−1

0 y}y∈G
with the following properties ∑

x,y∈G

|Ψ(yx−1)−Ψ(x−1y)| <∞ (3.2)

supy∈G|Ψ(y−1x−1
0 y)|ω(y−1x−1

0 y) =∞, (3.3)

then l1(G,ω) is not ideally Connes amenable.

Proof. As usual, to show that l1(G,ω) is not ideally Connes amenable, we construct a non-inner
w∗-continuous derivation D : l1(G,ω) −→ l1(G,ω). We first define the operator D : {δx}x∈G −→
l1(G,ω), in the following way

D(δx)(y) = Ψ(yx−1)−Ψ(x−1y) = (Ψ ∗ δx)(y)− (δx ∗Ψ)(y) (x, y ∈ G).

It is easy to see that D really ranges in l1(G,ω) because

‖ D(δx) ‖l1(G,ω) =
∑
y∈G

|D(δx)(y)|ω(y)

≤
∑
y∈G

|Ψ(yx−1)−Ψ(x−1y)|ω(y)

≤ supy∈Gω(y)
∑
y∈G

|Ψ(yx−1)−Ψ(x−1y)| <∞.

By Lemma 3.1, D can be extended to a bounded derivation from l1(G,ω) to l1(G,ω) . Let δxi
be a net in {δx}x∈G such that δxi −→ 0 in w∗-topology. Then for every g ∈ C0(G, 1/ω) we have
g(xi) −→ 0. If we show that D(δxi) −→ 0 in w∗-topology, then the proof of w∗-continuity of D
is completed. If l1(G,ω) is a dual Banach algebra and multiplication in dual Banach algebra is
separately w∗-continuous, and if δxi −→ 0 in w∗-topology, then Ψ ∗ δxi and δxi ∗ Ψ tend to zero in
w∗-topology. Thus D(δxi) −→ 0, in w∗-topology. Now we show that D has propery (3.1). Indeed
,we have

D(δxy)(t) = Ψ(ty−1x−1)−Ψ(y−1x−1t)

= (Ψ(ty−1x−1)−Ψ(x−1ty−1)) + (Ψ(x−1ty−1)−Ψ(y−1x−1t))

= D(δx)(ty
−1) +D(δy)(x

−1t)

= (D(δx) ∗ δy)(t) + (δx ∗D(δy))(t) (x, y, t ∈ G).

So D can be extended in the desired way. To finish the proof we only need to show that the
extended derivation D is not inner. Suppose the contrary, that D is inner. Then there exists a
function φ ∈ l1(G,ω) such that D(h) = φ ∗ h− h ∗ φ, for h ∈ l1(G,ω). In particular,

D(δx)(y) = (φ ∗ δx)(y)− (δx ∗φ)(y) = φ(yx−1)−φ(x−1y) (x, y ∈ G). On the other hand, by the
definition of D we have D(δx)(y) = Ψ(yx−1)−Ψ(x−1y). Taking x = x−1

0 y, we obtain

Ψ(x−1
0 )−Ψ(y−1x−1

0 y) = D(δx−1
0 y)(y) = φ(x−1

0 )− φ(y−1x−1
0 y) (y ∈ G),

which implies φ(y−1x−1
0 y) = Ψ(y−1x−1

0 y)+φ(x−1
0 )−Ψ(x−1

0 ) (y ∈ G). Then using (3.3) and the fact
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that infy∈Gω(y−1x−1
0 y) > 0, we have

‖ φ ‖l1(G,ω) =
∑
x∈G

|φ(x)|ω(x) >
∑
y∈G

|φ(y−1x−1
0 y)|ω(y−1x−1

0 y)

=
∑
y∈G

|Ψ(y−1x−1
0 y) + (φ(x−1

0 )−Ψ(x−1
0 ))|ω(y−1x−1

0 y)

>
∑
y∈G

|Ψ(y−1x−1
0 y)ω(y−1x−1

0 y) +
∑
y∈G

|φ(x−1
0 )−Ψ(x−1

0 )|ω(y−1x−1
0 y) =∞,

which contradicts to φ ∈ l1(G,ω). This proves that D is not inner, and hence l1(G,ω) is not ideally
Connes amenable.

The idea of the following theorem is similar to ([23] Theorem 3.1 ).

Theorem 3.5. Let G be a discrete Abelian group and ω be a weight on G. Then l1(G,ω) is ideally
Connes amenable if and only if there does not exist a non-zero continuous group homomorphism
φ : G −→ C such that supt∈G|φ(t)|ω(t−1) <∞.

Proof. If l1(G,ω) is not ideally Connes amenable, then there is a non-zero w∗-continuous derivation
D : l1(G,ω) −→ l1(G,ω). Define

φ(t) = 〈δt−1 , D(δt)〉

Since l1(G,ω) = (C0(G, 1/ω)∗, and δt−1 ∈ C0(G, 1/ω) , so φ(t) is well defined. Let e be the identity
element of G, then φ(e) = 0, also

φ(ab) = 〈δ(ab)−1 , D(δab)〉
= 〈δb−1a−1 , D(δa ∗ δb)〉
= 〈δb−1 ∗ δa−1 , δa ∗D(δb) +D(δa) ∗ δb〉
= 〈δb−1 ∗ δa−1 , δa ∗D(δb)〉+ 〈δb−1 ∗ δa−1 , D(δa) ∗ δb〉
= 〈δb−1 , D(δb)〉+ 〈δa−1 , D(δa)〉
= φ(b) + φ(a).

Since D is w∗-continuous, φ is a continuous group homomorphism from G to C, and

|φ(t)| = |〈δt−1 , D(δt)〉|
≤‖ D(δt) ‖l1(G,ω) . ‖ δt−1 ‖C0(G,1/ω)≤‖ D(δt) ‖l1(G,ω) .1/ω(t−1).

So we have supt∈G |φ(t)|ω(t−1) ≤‖ D(δt) ‖l1(G,ω)<∞.
To prove the converse, we assume φ : G −→ C is a continuous non-zero group homomorphism

that satisfies supt∈G |φ(t)|ω(t−1) ≤ m, for some m <∞.
Let B be a finite set containing e in G. For each h ∈ l1(G,ω), we define

D(h)(t) =
∑

ξ∈B φ(tξ)h(tξ).

The map D ranges in l1(G,ω),

‖D(h)(t)‖l1(G,ω) =
∑
t∈G

∑
ξ∈B

φ(tξ)h(tξ)ω(t)

≤
∑
t∈G

∑
ξ∈B

φ(tξ)h(tξ)ω(tξ)ω(ξ−1).
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Since supt∈G|φ(t)|ω(t−1) <∞, we get supt∈G|φ(t)| ≤ supt∈G|φ(t)|ω(t−1) < m, for some m > 0.
Let A = max{ω(s−1); s ∈ B}, then we have ‖D(h)(t)‖l1(G,ω) ≤ mA‖h‖l1(G,ω).

Let hα be a net in l1(G,ω) that tends to zero in w∗-topology of l1(G,ω). Then for every g ∈
C0(G, 1/ω), we have g(hα) −→ 0, so for every t ∈ G, δt(hα) −→ 0 and so

∑
y∈G δt(y)(hα)(y) −→ 0. It

means that hα(t) −→ 0. If we prove that D(hα) −→ 0 in w∗-topology, then it leads to w∗-continuity
of D.

Indeed, g(D(hα))(y) =
∑

y∈G g(y)D(hα)(y) =
∑

y∈G g(y)
∑

ξ∈B φ(tξ)hα(tξ) −→ 0, so D(hα) −→
0, in w∗-topology.

Let f, g ∈ l1(G,ω), then we have

D(f ∗ g)(t) =
∑
ξ∈B

φ(tξ)(f ∗ g)(tξ)

=
∑
ξ∈B

φ(tξ)(
∑
y∈G

f(y)g(y−1tξ)

=
∑
ξ∈B

∑
y∈G

f(y)(φ(y−1tξ) + φ(y))g(y−1tξ)

=
∑
y∈G

∑
ξ∈B

f(y)φ(y−1tξ)g(y−1tξ) +
∑
y∈G

∑
ξ∈B

f(y)φ(y)g(y−1tξ)

=
∑
y∈G

f(y)D(g)(y−1t) +
∑
y∈G

D(f)(y)g(y−1t)

= f ∗D(g)(t) +D(f) ∗ g(t)

= (f ∗D(g) +D(f) ∗ g)(t) (t ∈ G).

Therefore D(f ∗ g) = f ∗D(g) + D(f) ∗ g , for all f, g ∈ l1(G,ω); i.e. D : l1(G,ω) −→ l1(G,ω),
is a non-zero w∗-continuous derivation. Thus l1(G,ω) is not ideally Connes amenable.

Example 1. Let G = Z (where Z is the discrete additive group of all integers). All group homo-
morphisms from Z to C are of the form φ(n) = nc0 where c0 ∈ C, n ∈ Z. Therefore for any weight
ω on Z, l1(Z, ω) is ideally Connes amenable if and only if supn∈Nnω(−n) =∞.

For example ωα(n) = (1 + |n|)α is a weight on Z if α > 0. Then

supn∈Nnω(−n) =∞.

Thus, we conclude that l1(Z, ωα) is ideally Connes amenable if and only if α > 0.

Theorem 3.6. Let G be a discrete Abelian group and ω be a weight on G. Then l1(G,ω) is ideally
Connes amenable if and only if there does not exist a non-zero continuous group homomorphism
φ : G −→ R such that

supt∈G|φ(t)|ω(t−1) <∞. (3.4)

Proof. The necessity is trivial. For the sufficiency, suppose that l1(G,ω) is not ideally Connes
amenable. Then by theorem 3.5, there is a continuous complex-valued non-zero homomorphism φ
such that (3.4), holds. The real part φr and the imaginary part φi of φ are both still continuous
group homomorphisms, they satisfy the same inequality (3.4), and they are real-valued. If φ 6= 0,
then at least one of φr and φi is non-zero. Therefore, there exists a non-zero continuous real-valued
group homomorphism such that (3.4) holds.

Corollary 3.1. Let G be a discrete Abelian group and ω be a weight on G. If for each t ∈ G we have

supn∈Nω(t−n)n =∞, (3.5)

then l1(G,ω) is ideally Connes amenable.
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Proof. Let φ : G −→ R be a non-zero group homomorphism and let s ∈ G be such that φ(s) 6= 0.
We have φ(sn) = nφ(s), for n ∈ N . If (3.5) holds for t = s, then

supt∈G|φ(t)|ω(t−1) ≥ supn∈N |φ(sn)|ω(s−n) = supn∈N |φ(s)|nω(s−n) =∞.

So (3.4) does not hold for any non-zero homomorphism φ. By Theorem 3.6, l1(G,ω) is ideally Connes
amenable.

In this section we use notations and definitions of [1]. Let A be a Banach algebra and E be
an A-bimodule. AWAPA(E) is the set of all elements x ∈ E for which the maps RAx : A −→ E,
a 7−→ a · x and LAx : A −→ E, a 7−→ x · a, are both weakly compact. AWAPA(E) is a closed
sub-bimodule of E.

Given a Banach algebra A and an A-bimodule X, we write FA(X)∗ for the A-bimodule
AWAPA(X∗), where X∗ is equiped with the usual bimodule action induced by X. We define FA(X)
to be the dual A-bimodule (FA(X)∗)

∗. In the special case where X = A, regarded as an A-bimodule
in the canonical way, we shall usually omit the subscripts, and simply use the notation F (A).

We denote by ηX : X −→ FA(X) the map obtained by composing the canonical inclusion of X
in its second dual with the adjoint of the inclusion map AWAPA(X∗) ↪→ X∗. Observe that ηX is a
norm-continuous A-bimodule map, as it is the composition of two such maps. ηA : A −→ F (A) is a
norm-continuous homomorphism with w∗-dense range. (FA(A)∗)

∗ = F (A) is actually a dual Banach
algebra.

Let A be a dual Banach algebra and I be a w∗-closed two-sided ideal of A. Then FA(I) is a
w∗-closed two-sided ideal of F (A).

Lemma 3.2. Let A be a dual Banach algebra and I be a w∗-closed two-sided ideal of A, and
D : A −→ I be a w∗-continuous derivation. Then there exists a unique w∗-continuous derivation
D : F (A) −→ FA(I) such that DηA = ηID.

Proof. It is obvious by ([1] Theorem 4.4).

Lemma 3.3. Let A be dual Banach algebra. If A is not ideally Connes amenable, then F (A) is not
ideally Connes amenable

Proof. Assume the contrary that F (A) is ideally Connes amenable. Let I be a w∗-closed two-sided
ideal of A, and D : A −→ I be a w∗-continuous derivation. Then by lemma 3.2 there exists a unique
w∗-continuous derivation D : F (A) −→ FA(I) such that DηA = ηID. Since F (A) is ideally Connes
amenable then there exists E ∈ FA(I) such that D(ηA(a)) = ηA(a)�E −E�ηA(a). Since the range
of ηI is w∗-dense in F (I), there is a bounded net (iα)α in I such that w∗ − limηI(iα) = E.

Let t ∈ F (I)∗, then by definition of ηA we have 〈ηA(a), t〉 = 〈t, a〉 for all a ∈ A. For a, s ∈ A we
have

〈ηA(a) · t, s〉 = 〈ηA(a), t · s〉
= 〈t · s, a〉
= 〈a · t, s〉.

We get

〈t,D(a)〉 = 〈ηI(D(a), t〉 = 〈ηA(a)�E − E�ηA(a), t〉
= 〈ηA(a), E · t〉 − 〈E, ηA(a) · t〉
= 〈E · t, a〉 − 〈E, a · t〉
= w∗ − lim(〈ηI(iα) · t, a〉 − 〈ηI(iα), a · t〉)
= w∗ − lim(〈iα · t, a〉 − 〈a · t, iα〉).
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Let w∗−lim iα = i. Then we have 〈t,D(a)〉 = 〈t, a · i− i · a〉, so we conclude that D is inner, that is
contradiction, so F (A) is not ideally Connes amenable

Theorem 3.7. [15] Suppose that ω is a weight function on locally compact group G such that ω ≥ 1
and diagonally bounded. Then G is amenable if and only if L1(G,ω) is approximately amenable.

Example 2. Let ω be a diagonally bounded weight function and G be an amenable discrete group.
If there is a non-zero group homomorphism φ : G −→ R such that

supx∈G|Φ(x)|.ω(x−1) <∞,

then by Theorem 3.5, A = l1(G,ω) is not ideally Connes amenable, but it is approximate amenable
by Theorem 3.7.

Now as a corollary of ([21], Lemma 2.2), F (A) is approximately Connes amenable, so it is ap-
proximately ideally Connes amenable. Now by Lemma 3.3, F (A) is not ideally Connes amenable.
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