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1 Introduction

The stability of bases in Banach and Hilbert spaces under certain perturbations was studied in [1-10,
12, 13, 15]. It is known that if biorthogonal systems (en) and (qn) form bases in a Hilbert space H
then for a complete system (e′n) the convergence of the series

∞∑
n,k=1

(en − e′n, ek − e′k) (qn, qk) (1.1)

implies that (e′n) is also a basis in H [7].
If (en) is an almost normed unconditional basis in H, (e′n) is minimally complete and

∞∑
n=1

‖en − e′n‖ <∞, (1.2)

then (e′n) is also an almost normed unconditional basis in H [5]. Bases satifying condition (1.2)
were investigated in [2, 8]. Condition (1.2) allows introducing a compact operator T0 defined by the
equality

T0

(
∞∑
n=1

cnen

)
=
∞∑
n=1

cn (en − e′n) ;
∞∑
n=1

|cn|2 <∞. (1.3)

If the operator I − T0 is invertible the system (e′n) also forms an unconditional basis in H [5].

2 Basic notions

If L(φn)∞n=1 = H and
∑∞

n=1 cnφn = 0 implies cn = 0 for all n ∈ N we say that (φn) is a minimally
complete system in H. Here L is the closure of the linear span of corresponding elements.
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If L(φn)∞n=1 = H and every element of system (φn) is outside the closure of all other elements
of the system, we say that the system (φn) is minimal and complete in H. Note that a minimally
complete system is not necessarily minimal and complete [7].

Remark 1. Let L(ψn)∞n=1 = F ⊂ H. In order to construct a minimally complete subsystem in F one
may start with ψ1, then choose the element ψk2 of the sequences (Ψn)∞2 with the minimal number
such that ψ1 and ψk2 are linearly independent, then the first (ψk3) such that (ψ1), (ψk2) and (ψk3)
are linearly independent and so on.

A bounded linear operator A is a compact operator if it takes any sequence: xn −→
n→∞

0 to a
sequence

Axn =⇒
n→∞

0 (2.1)

Here the symbols → and ⇒ denote the weak and strong convergence respectively.
If relation (2.1) holds for a certain unconditional basis does it follows that A is a compact operator?

It will be shown that the answer to this question is positive. In connection with the posed question
we introduce the following notion.

Definition 1. An almost normed sequence (φn) is called isotropically non-compact if any infinited-
imensional orthoprojector P also generates a non-compact sequence (Pφn).

We show that the set M0 of all isotropically non-compact sequences contains any almost normed
unconditional basis. Recall that a sequence (φn) is called almost normed if

0 < essinf
n∈N

‖φn‖; sup
n∈N
‖φn‖ <∞. (2.2)

3 Preliminary results

First we prove the following statement.

Lemma 3.1. Let (en) be an almost normed unconditional basis and Q be an orthoprojector in H.
Then the condition

lim
n→0
‖Qen‖ = 0 (3.1)

implies that dimQ <∞.

Proof. Proof. Any almost normed unconditional basis (en) forms an orthonormal basis with respect
to a certain scalar product (x, y)1 [5, 14]. Moreover, the norms ‖x‖1 =

√
(x, x)1 and ‖x‖ =

√
(x, x)

are equivalent. Hence, without loss of generality we consider an orthonormal basis (en). In virtue of
(3.1) for any ε > 0 there exists a number n0 ∈ N such that for all n > n0

‖en − en,1‖ < ε, en,1 = Pen; n ≥ n0 + 1, P = 1	Q. (3.2)

Let H̃1 = L(en)∞n0+1; H1 = L(en,1)∞n0+1; H̃2 = H	H̃1; H2 = H	H1; P̃1(P1) - be the orthoprojector
on H̃1(H1); i = 1, 2.

Let L(φn)∞n=1 = F ⊂ H.
For all x ∈ H̃1 we have x =

∑∞
n0+1(x, en)en and

P1x =
∞∑

n=n0+1

(x, en)P1en =
∞∑

n=n0+1

(x, en)en,1. (3.3)
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If the system (en,1)∞n0+1 is minimally complete by (3.3) we have H2 ∩ H̃1 = {0} and dimP2 = n0.
Then from Q ⊂ P2 it follows that dimQ ≤ n0. Assuming the non-minimality of (en,1)∞n0+1 we select
a minimally complete subsystem (en,1)∞1 in H1. Then we have

P1x =
∞∑
k=1

(x, enk)enk,1. (3.4)

Denote H3 = L(enk,1)∞1 ; (nk) = N\(nk). If dimH3 = m we obtain dimQ ≤ n0 + m. Since
P1y 6= 0 for all 0 6= y ∈ H̃1 = L(enk)

∞
1 the relation (P̂1P1x, y) = (P1x, P̂1y) = (P1x, y) = (x, P1y) = 0;

x ∈ H1 implies that y = 0 and we have P̂1H1 = Ĥ1. Here P̂1H1 is the closure of P̂1H1. If
(enk,1) = (en,1)\(enk,1) is a minimally complete system we also have that P̂2H3 = Ĥ2 = L(enk)

∞
1 and

from Ĥ1 = Ĥ1 ⊕ Ĥ2 the relation

P̃1H1 = H̃1 (3.5)

follows. If (enk,1) is a non-minimally complete system we select from it a minimally complete subsys-
tem (enki ,1) in H3. The orthoprojector P̂2,1 on Ĥ2,1 = L(enki ) maps H3 on Ĥ2,1. If the complement

(enki ,1) in (enk,1) is a minimally complete subsystems, we obtain P̂2H3 = Ĥ2 and again (3.5) takes
place. The orthoprojector P̂1,1 = P̂ ⊕ P̂2,1 maps H1 on Ĥ1,1 = Ĥ1 ⊕ Ĥ2,1. As a result of the sequen-
tial selection from (en,1) of minimally complete subsystems we have (3.5). Relation (3.5) means the
completeness of the system (ẽn,1): ẽn,1 = P̃1en,1; n ≥ n0 + 1 in H̃1.

We consider (3.5) as a natural corollary of the condition ‖en − P1en‖ −→
n→∞

0 that implies ‖en −
ẽn,1‖ −→

n→∞
0. Now we show that (3.5) implies the equality dimH2 = n0. Let H̃1,0 = H̃1 ∩ H2;

H̃1,1 = H̃1 	 H̃1,0; P̃1,0(P̃1,1) - the orthoprojector on H̃1,0(H̃1,1). Because of P̃1,2P1H1 = 0 we obtain
P̃1H1 = H̃1,1. Then by (3.5) we have H̃1,0 = {0} and dimH2 = dim H̃2 = n0. Thus dimQ ≤ n0 and
the lemma is proved.

Remark 2. By same method we prove the equality H̃1,0 = {0} for in almost normed basis (φn).
Hence, dimH2 = dim H̃2 = n0. Thus dimQ ≤ n0 and the condition ‖φn − Pφn‖ −→

n→∞
0 implies

codim P <∞.

Corollary 3.1. An almost normed basis (φn) and φn −→
n→∞

{0} is an isotropically non-compact
sequence.

Proof. Let P be an infinitedimensional orthoprojector and (Pφn) be a compact sequence. Since
Pφn −→

n→∞
0 and Pφn =⇒

n→∞
0 and ‖φn − Pφn‖ −→

n→∞
0; P1 = 1 	 P . By virtue of Lemma 3.1 we have

dimP <∞ and arrive at a contradiction.

Now we state a simple criterion of compactness for linear operations in a Hilbert space.

Theorem 3.1. A densely defined closed linear operator A in a Hilbert space is compact if and only
if there exists an isotropically non-compact sequence φn −→

n→∞
0 such that

Aφn =⇒
n→∞

0. (3.6)

Proof. The operator A allows a polar representation A = UB, where B = (A∗A)1/2 and U is an
isometric operator [5, 14]. Since ‖Aφn‖ = ‖Bφn‖ condition (3.6) is equivalent to

Bφn =⇒
n→∞

0. (3.7)
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We show that the limit spectrum σc(B) of the selfadjoint operator B consists only of the number
λ = 0.

According to definition for every λ ∈ σc(B) there exists a bounded non-compact sequence (xn)
such that

(B − λI)xn =⇒
n→∞

0. (3.8)

Suppose that σc(B) contains λ0 > 0 and λ0 ∈ (λ1, λ2); λ1 > 0. Let Eλ be a spectral function of
operator B, P1 = ∆Eλ be the corresponding to [λ1, λ2) orthoprojector, and B1 be a restriction of B
on H1 = P1H. Since λ0 ∈ σc(B) we have dimP1 =∞ and by Lemma (3.1) the non-compact sequence
(φn,1) = (P1φn). Together with the relation BP1 = P1BP1 condition (3.7) implies B1φn,1 =⇒

n→∞
0 and

therefore 0 ∈ σ(B1). Since σ(B1) ⊂ [λ1, λ2] and 0 /∈ [λ1, λ2] we arrive at a contraction. Thus the
spectum σ(B) is discrete.

Let {λn(B)} is the sequence of eigenvalues of the operator B > 0. As usual it is assumed
that λ1(B) ≥ λ2(B) ≥ . . . ≥ λn(B) ≥ . . . where each eigenvalue is repeated as many times as its
multiplicity.

Now note that the complement ∆1 = R\∆0 of any interval ∆0 : 0 ∈ ∆0 contains only finite
number of eigenvalues of B. Suppose that there exists the infinitedimensional orthoprojector P1

on the closure of the linear span L1 of all eigenvectors corresponding to eigenvalues belonging to
σ1(B) = σ(B) ∩ ∆1. Then in virtue of Bφn =⇒

n→∞
{0} and P1B = BP1 we have B1φn,1 =⇒

n→∞
{0};

φn,1 = Pnφn, where B1 is the restriction of B on L1. Since (φn,1) is a non-compact sequence we
obtain 0 ∈ σ(B1) that contradicts to σ(B1) ⊂ ∆1.

Hence λ = 0 is the only point of condensation for {λn(B)} and lim
n→∞

λn(B) = 0. The operator
B = B∗ with such spectrum is a compact operator. Then in virtue of A = UB the operator A also
is the compact operator. The necessity of condition (3.6) is evident.

Remark 3. If A is a bounded operator then from the known relation [11]

B∆E ≥ λ1∆E; ∆E = Eλ2 − Eλ1 ; λ1 < λ2, (3.9)

it follows that

(BP1φn, φn) ≥ λ1(P2φn, φn), P1 = ∆E; λ1 > 0, (3.10)

(P1φn, Bφn) ≥ λ1‖P1φn‖2. (3.11)

If B is an unbounded operator then estimate (3.11) is deduced by the spectral decomposition [11,
14]:

Bx =

∫ ∞
0

λdEλx, x ∈ D(B). (3.12)

According to (3.12) and the equality EλP1 = 0; λ < λ1 we have the relations

(BP1φn, P1φn) =

∫ ∞
λ1

λd(EλP1φn, P1φn) (3.13)

(P1Bφn, P1φn) ≥ λ1

∫ ∞
λ1

d(EλP1φn, P1φn) = λ1‖φn,1‖2. (3.14)

Now according to (3.7) and (3.11) we obtain P1φn =⇒
n→∞

{0}. In virtue of Lemma dimP1 < ∞ and
any interval (α, β) : 0 < α < β <∞ contains only a finite number of eigenvalues of B = B∗. Hence
λn(B) −→

n→∞
0 and B is a compact operator.
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Remark 4. As the following example shows the condition φn → 0 as n → ∞ is essential for the
validity of the proposed criterion. Let (en) be an orthonormal basis in H. Consider the direct sum
H̃ = H + H and the system (φ̃k) in H̃ defined by the equalities: φ̃2n−1 = (en, 0); φ̃2n = (en, αnen);
where αn → 0 as n→∞. Let P2 : H1 +H2 → H2 be an orthoprojector on the second component of
H̃ = H1 +H2; H2 = H. Since P2φk =⇒

n→∞
0 the sequence (φ̃k) is not isotropically non-compact. Now,

let Ã = B + C be an operator in H̃, where Ben = βnen; βn −→
n→∞

0 and C = P2. By construction we

have Ãφ̃k =⇒
n→∞

0 however Ã is a non-compact operator in H̃.

4 Main result

Theorem 4.1. If (en) is an almost normed unconditional basis of H and (e′n) is a minimal and
complete system asymptotically close to (en), that is

lim
n→∞
‖en − e′n‖ = 0,

for which its biorthogonal system (g′n) is also complete, then the system (e′n) is an almost normed
unconditional basis of H.

Proof. We consider the linear operator T defined by the equality

T

[
∞∑
k=1

(x, gk)ek

]
=
∞∑
k=1

(x, gk)(ek − e′k) (4.1)

on H. Here (gn) is the biorthogonal to (en) basis in H. According to the relations (en − e′n, g′n) =
(en, g

′
n − gn) we have(

∞∑
k=1

(x, gk)(ek − e′k),
∞∑
k=1

(y, e′k)g
′
k

)
=

(
∞∑
k=1

(x, gk)ek,
∞∑
k=1

(y, e′k)(g
′
k − gk)

)
. (4.2)

From (4.2) it follows that the set D(T ∗) contains the dense in H linear manifold

L1 =

{
y ∈ H : y =

∞∑
k=1

(y, e′k)g
′
k

}
(4.3)

and therefore the operator T allows the closure T = (T ∗)∗ [14]. By (4.1) we obtain Ten =⇒
n→∞

0 and

in virtue of the proposed criterion T is a compact operator. The minimality of (e′n) implies that
ker(I − T )P = 0.

Taking into account that T is a compact operator in H we obtain the bounded invertibility of
the operator A = I − T . Thus, the systems (e′n) and (g′n) form unconditional bases in H.

Remark 5. From the above proof also follows that ‖gn−g′n‖ → 0 as n→∞. In fact by the relations

A−1x =
∞∑
n=1

(
A−1x, gn

)
en; x ∈ H, (4.4)

x =
∞∑
n=1

(
x, (A∗)−1gn

)
e′n; x ∈ H (4.5)

we have g′n = (A∗)−1gn, where (A∗)−1 = 1 −M and, moreover, M is a compact operator. Since
gn − g′n = Mgn and Mgn =⇒

n→∞
0 we obtain the above noted asymptotic proximity of (g′n) and (gn).
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Consider the well-known Hilbert and Bessel systems. If (en) is an orthonormal basis and A is
bounded linear operator a set (e′n) = (Aen) ((e′n) = (A−1en)) is called a Hilbert (Bessel) system.

Theorem 4.2. Let (φn) be a complete in H Hilbert or Bessel system and (en) be an almost normed
unconditional basis of H. Then the condition

lim
n→∞

‖φn − en‖ = 0

implies that (φn) forms an almost normed unconditionsl basis of H.

Proof. Representing A(A−1) in form A = I − T (A−1 = I − L) by the proposed criterion we obtain
that T and L are compact operators. Moreover, (I−T )−1 and (I−L)−1 are bounded operartors. This
means that the transformations A : H → H and A−1 : H → H are homeomorphisms. Consequently,
the statement of Theorem 4.2 is proved.
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