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1 Introduction. Formulation of the main result

In this paper we study the following infinite system of nonlinear functional equations with the
Toeplitz matrix:

ui(t) =
∞∑

j=−∞

ai−j

∞∫
0

H(τ)g(uj(t− τ))dτ, (1.1)

where ui(t), i ∈ Z represent the unknown real functions.
For our purposes we assume

H(τ) ≥ 0; τ ∈ R+ := [0,+∞);

∞∫
0

H(τ)dτ = 1, (1.2)

a−i = ai,

∞∑
i=−∞

ai = 1; ai > 0; ai ↓ by i on Z+ ≡ N ∪ {0}, i ∈ Z. (1.3)

A solution {ui(t)}i∈Z, to (1.1) has to be defined at least on the interval (−∞, T ].
Let η be the first positive root of the equation

g(u) = u. (1.4)

We assume that g is a continuous and monotonically increasing function on the interval [−η, η]. In
addition we let g be an odd function on [−η, η] as well as g(u) be convex upward on the interval [0, η].

Notice that the monotonicity of the function g implies the existence of the inverse function
Q = g−1, which increases monotonically on the interval [−η, η] and is convex downward on the
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interval [0, η].

We additionally assume that for ε =
1 + a0

2
, ε ∈ (0, 1), there exists a number ξ ∈ (0, η) such

that
Q(u) ≤ εu, u ∈ [0, ξ]. (1.5)

From the properties of the function g we have

Q(−u) = −Q(u), u ∈ [−η, η]. (1.6)

Observe that, because of g(0) = 0, system of equations (1.1) has a trivial solution. Further we aim
to construct a non-trivial bounded solution of system (1.1).

It is worth to mention that system of equations (1.1) has a direct application in mathematical
biology. It describes the geometrical propagation of epidemics (see [1]-[3]). This will be a subject
in the last section of the paper, where we consider two boundary value problems arising in
spatial-temporal spread of epidemics and in p-adic string theory.

Now let us state the main result of the present work.

Theorem 1.1. Let conditions (1.2)-(1.6) be fulfilled. Then infinite system of nonlinear functional
equations (1.1) has a non-trivial, continuous and bounded solution ui(t), i ∈ Z. Moreover,

a) u0(t) = 0 for each t ∈ (−∞, T ],

b) u−i(t) = −ui(t), i = 0, 1, 2, ...,

c) ui(t) is increasing in t on the interval (−∞, T ], i ∈ Z,

d) ui(t) is increasing in i on Z,

e) lim
i→±∞

ui(t) = ±η for any t ∈ (−∞, T ].

Before proceeding to the proof of the main result, we prove some auxiliary facts needed hereinafter.

2 Auxiliary facts

We consider the following auxiliary infinite system of nonlinear algebraic equations:

Q(xi) =
∞∑

j=−∞

ai−jxj, i ∈ Z (2.1)

with the unknown column vector x = (. . . x−2, x−1, x0, x1, x2, . . .)
T .

Together with equation (2.1) we consider the infinite system of nonlinear algebraic equations

Q(τi) =
∞∑
j=0

(ai−j − ai+j)τj, i ∈ Z+ (2.2)

with the unknown column vector
τ = (τ0, τ1, τ2, ...)

T . (2.3)
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Taking into account relation (1.6), it is easy to verify that xi and τi are related by the formula

xi =

{
τi, if i ∈ Z+

−τ−i, if i ∈ Z \ Z+ . (2.4)

The following theorem holds.

Theorem 2.1. Let conditions (1.3)-(1.5) be satisfied. Then the infinite system of nonlinear al-
gebraic equations (2.2) has a non-negative, monotonically increasing and bounded solution τ =
(τ0, τ1, τ2, ...)

T . Moreover,
lim
i→∞

τi = η. (2.5)

Proof. Let q > 1 is a fixed number. First of all we consider the following characteristic equation:

∞∑
i=−∞

aiq
−p|i| = ε, (2.6)

where ε =
1 + a0

2
, ε ∈ (0, 1).

Observe that equation (2.6) has a unique positive solution. Indeed, denoting

f(p) :=
∞∑

i=−∞

aiq
−p|i| − ε, p > 0,

we may state that

f(p) ↓ in p on R+,

f(0) =
∞∑

i=−∞

ai − ε = 1− 1 + a0

2
=

1− a0

2
> 0,

f(+∞) =
a0 − 1

2
< 0.

Using the Bolzano-Cauchy theorem, we conclude that there exists p0 > 0 such that f(p0) = 0. We
fix this number p0 and bear it in mind for our further discussions.

Now, using equation (2.2), we consider the following iterations:

Q
(
τ

(n+1)
i

)
=
∞∑
j=0

(ai−j − ai+j)τ (n)
j ,

τ
(0)
i = η; n = 0, 1, 2, . . . , i = 0, 1, 2, . . . .

(2.7)

It is obvious that τ (n)
i ≥ 0, i ∈ Z+, n ∈ Z+. We state that the sequence τ (n)

i is decreasing in n for
every fixed i. Indeed

Q
(
τ

(1)
i

)
= η

∞∑
j=0

(ai−j − ai+j) ≤ η

∞∑
j=0

ai−j ≤ η = Q(η),

i. e. τ (1)
i ≤ η = τ

(0)
i . Assume that the inequality

τ
(n)
i ≤ τ

(n−1)
i
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is satisfied for some n ∈ N. We show that the inequality holds for n+ 1 as well.
Indeed,

Q
(
τ

(n+1)
i

)
≤

∞∑
j=0

(ai−j − ai+j)τ (n−1)
j = Q

(
τ

(n)
i

)
.

Since Q ↑ on [0, η] we obtain
τ

(n+1)
i ≤ τ

(n)
i .

Next we show that the sequence τ (n)
i is bounded from below, namely

τ
(n)
i ≥ ξ(1− q−p0i), i ∈ Z+, (2.8)

where ξ is the positive root of the equation Q(u) = εu. Since ξ ∈ (0, η), we get η = τ
(0)
i ≥ ξ(1−q−p0i).

Assume that (2.8) holds for some natural n. Having in disposal the properties of the function Q, we
obtain

Q
(
τ

(n+1)
i

)
≥ ξ

∞∑
j=0

(ai−j − ai+j)(1− q−p0j) ≥ ξε(1− q−p0i) ≥ Q(ξ(1− q−p0i)), (2.9)

where we used the inequality

∞∑
j=0

(ai−j − ai+j)(1− q−p0j) ≥ ε(1− q−p0i), i ∈ Z+ (2.10)

and condition (1.5).
To prove that inequality (2.10) is true, we first show the following inequality:

m∑
i=−∞

aiq
p0 i + q2p0m

∞∑
i=m+1

aiq
−p0 i ≥ ε, m ∈ Z+. (2.11)

Denote by Rm the following difference:

Rm :=
m∑

i=−∞

aiq
p0 i + q2p0 m

∞∑
i=m+1

aiq
−p0 i − ε.

Due to (2.6) we have

R0 =
0∑

i=−∞

aiq
p0 i +

∞∑
i=1

aiq
−p0 i − ε =

∞∑
i=−∞

aiq
−p0 |i| − ε = 0,

Rm+1 −Rm =
∞∑
j=0

am+j+1q
p0(m+1−j) ·

(
1− q−2p0

)
≥ 0.

Hence Rm ↑ in m and Rm ≥ R0 = 0, m ∈ Z+ which means that inequality (2.11) holds.
Using (2.1), it can be stated by direct calculation that

∞∑
i=0

(am−i − am+i)
(
1− q−p0 i

)
= 1 + am − 2

∞∑
i=m

ai−

−q−p0m

m∑
i=−∞

aiq
p0 i + qp0 m

∞∑
i=m

aiq
−p0 i.

(2.12)
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Now employing estimate (2.11), one can prove that

1 + am − 2
∞∑
i=m

ai − q−p0 m

m∑
i=−∞

aiq
p0 i + qp0m

∞∑
i=m

aiq
−p0 i ≥ ε

(
1− q−p0 m

)
.

Denote by Lm the following difference:

Lm := 1 + am − 2
∞∑
i=m

ai − q−p0 m

m∑
i=−∞

aiq
p0 i+

+qp0m

∞∑
i=m

aiq
−p0 i − ε

(
1− q−p0m

)
, m ∈ Z+.

Observe that L0 = 0. After simple transformations we get

Lm+1 − Lm ≥ (qp0 − 1) q−p0(m+1)

(
m∑

i=−∞

aiq
p0 i + q2p0m

∞∑
i=m+1

aiq
−p0 i − ε

)
. (2.13)

Due to (2.11) and (2.13) we obtain

Lm ↑ in m on Z+.

Thus
Lm ≥ L0 = 0,

from which the validity of required inequality (2.10) follows immediately.
It should be mentioned that the continuous analogue of inequality (2.10) has been proved by one

of the authors of the present paper in [4].
Thus

lim
n→∞

τ
(n)
i = τi, i = 0, 1, 2, . . . .

Now we show that the inequality

τ
(n)
i+1 ≥ τ

(n)
i , n ∈ Z+, i ∈ Z+. (2.14)

holds for every n ∈ Z+. This inequality is obviously satisfied for n = 0. Assume that (2.14) holds for
some natural n ∈ N. We rewrite iteration (2.7) in the form

Q
(
τ

(n+1)
i

)
=

i∑
j=−∞

ajτ
(n)
i−j −

∞∑
j=0

ai+jτ
(n)
j .

In view of monotonicity of {ai}∞i=−∞ with respect to i ∈ Z+ we can write

Q
(
τ

(n+1)
i+1

)
=

i+1∑
j=−∞

ajτ
(n)
i+1−j −

∞∑
j=0

ai+1+jτ
(n)
j ≥

≥
i∑

j=−∞

ajτ
(n)
i−j −

∞∑
j=0

ai+jτ
(n)
j = Q

(
τ

(n+1)
i

)
.

(2.15)

From the last it follows that (2.14) holds. Therefore the sequence τi = lim
n→∞

τ
(n)
i is also monotonically

increasing in i. We pass to the limit as i tends to infinity on both sides of (2.2). Since η is the first
positive root of the equation Q(η) = η and ξ(1− q−p0i) ≤ τi ≤ η, we get lim

i→∞
τi = η.

Finally, using (2.4), we obtain
lim
i→±∞

xi = ±η. (2.16)
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3 Proof of the basic result

Now we prove Theorem 1.1 formulated in the previous section. To begin with, we consider the
following iteration:

Q(ψ
(n+1)
i (t)) =

∞∫
0

∞∑
j=0

H(τ)(ai−j − ai+j)ψ(n)
j (t− τ)dτ,

i = 0, 1, 2, . . . , n = 0, 1, 2, . . . ,

(3.1)

where as the first approximation we take

ψ
(0)
i (t) = τi (1− e−(T−t)), i ∈ Z+ (3.2)

with {τi}i∈Z+ representing solution of (2.2).
First we prove that

0 ≤ ψ
(n)
i (t) ≤ η (3.3)

and ψ
(n)
i (t) is monotonically increasing in n for each i ∈ Z+ and each t ∈ (−∞, T ]. Using the

inequality
0 ≤ ψ

(0)
i (t) ≤ η, i ∈ Z+

for the first approximation, the monotonicity of the function Q and the inequalities

ai−j ≥ ai+j, H(τ) ≥ 0, τ ∈ [0,+∞),

from (3.1) one can conclude that

0 ≤ ψ
(1)
i (t) ≤ η, i ∈ Z+. (3.4)

Next we show that
ψ

(1)
i (t) ≥ ψ

(0)
i (t), i ∈ Z+, t ∈ (−∞, T ].

Indeed, using (3.1), we can write

Q(ψ
(1)
i (t)) ≤ η

∞∫
0

H(τ)
∞∑
j=0

(ai−j − ai+j) dτ ≤ η

∞∑
j=0

ai−j ≤ η = Q(η),

or
ψ

(1)
i (t) ≤ η, i ∈ Z+.

On the other hand, from (3.1) and (2.2) it follows that

Q(ψ
(1)
i (t)) ≥

∞∫
0

(1− e(t−τ−T ))H(τ)dτ
∞∑
j=0

(ai−j − ai+j)τj ≥

≥ Q(τi)

∞∫
0

(1− e(t−τ−T ))H(τ)dτ = Q(τi)

1−
∞∫

0

et−T e−τH(τ)dτ

 =

= Q(τi)

1− et−T
∞∫

0

e−τH(τ)dτ

 ≥ Q(τi)(1− et−T ).
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Since τi ∈ [0, η], 0 ≤ 1 − et−T ≤ 1 and the function Q is convex on [0, η], the following inequality
follows immediately from the Thales theorem:

(1− et−T )Q(τi) ≥ Q
(
τi(1− et−T )

)
. (3.5)

Hence, in view of the monotonicity of the function Q, we have

ψ
(1)
i (t) ≥ τi(1− et−T ) = ψ

(0)
i (t), i ∈ Z+.

Now we assume that for some n ∈ N the following inequalities hold:

ψ
(n)
i (t) ≥ ψ

(n−1)
i (t) and 0 ≤ ψ

(n)
i (t) ≤ η, i ∈ Z+, t ∈ (−∞, T ].

Taking into account (3.1), the inequalities ai−j ≥ ai+j, i, j ∈ Z+, H(t) ≥ 0, t ∈ (−∞, T ], it can
be easily shown by induction on n that

0 ≤ ψ
(n)
i (t) ≤ ψ

(n+1)
i (t) ≤ η. (3.6)

Inequalities (3.3) ensure that the limit

lim
n→∞

ψ
(n)
i (t) = ψi(t)

exists, where ψi(t) satisfies the equation

Q(ψi(t)) =
∞∑
j=0

∞∫
0

H(τ)(ai−j − ai+j)ψj(t− τ)dτ, i ∈ Z+. (3.7)

It remains to show that
ψ

(n)
i (t) in ↑ i, i ∈ Z+.

Thus can be done in a similar way as for the sequence τi (see also below the proof of statement d)).
Passing to the limit in both sides of equation (3.7) as i tends to infinity, we get

Q(ψ∞(t)) =

t∫
−∞

ψ∞(τ)H(t− τ)dτ, (3.8)

where ψ∞(t) := lim
i→∞

ψi(t).

Here we used the well known convolution property (see[5])

lim
i→∞

∞∑
j=0

(ai−j − ai+j)ψj(t− τ) = lim
i→∞

∞∑
j=−∞

ai−jψj(t− τ) = ψ∞(t− τ)
∞∑

j=−∞

aj = ψ∞(t− τ).

It has been proved in [3] that equation (3.8) has only the trivial solution ψ∞(t) ≡ η, t ∈ (−∞, T ],
in the class of positive, continuous and bounded by η functions.

We construct the function Wi(t) as follows:

Wi(t) :=

{
ψi(t), if i ∈ Z+, t ∈ (−∞, T ],
−ψ−i(t), if i ∈ Z\Z+, t ∈ (−∞, T ].

(3.9)

By direct checking one can see that the sequence of functions Wi(t) is increasing in t for t ∈
(−∞, T ], i ∈ Z.
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Now we show that the sequence Q(Wi(t)), i ∈ Z, satisfies the initial infinite system of nonlinear
functional equations (1.1).

Indeed, first we verify the case, where i ∈ Z+. We have

Q(Wi(t)) = Q(ψi(t)) =

∞∫
0

H(τ)
∞∑
j=0

(ai−j − ai+j)ψj(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑
k=0

ai−kψk(t− τ) dτ −
∞∫

0

H(τ)
∞∑
j=1

ai+jψj(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑
k=0

ai−kψk(t− τ) dτ −
∞∫

0

H(τ)
−1∑

k=−∞

ai−kψ−k(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑
k=0

ai−kWk(t− τ)dτ +

∞∫
0

H(τ)
−1∑

k=−∞

ai−kWk(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑

k=−∞

ai−kWk(t− τ) dτ.

Here we bear in mind that ψ0(t) = 0.
Let i ∈ Z\Z+, t ∈ (−∞, T ], then

Q(Wi(t)) = Q(−ψ−i(t)) = −Q(ψ−i(t)) =

= −
∞∫

0

H(τ)
∞∑
j=0

(a−i−j − a−i+j)ψj(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑
j=0

(ai−j − ai+j)ψj(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑
j=0

ai−jWj(t− τ) dτ −
∞∫

0

H(τ)
∞∑
j=1

ai+jψj(t− τ) dτ =

=

∞∫
0

H(τ)
∞∑
j=0

ai−jWj(t− τ)dτ −
∞∫

0

H(τ)
−1∑

k=−∞

ai−kψ−k(t− τ)dτ =

=

∞∫
0

H(τ)
∞∑
j=0

ai−jWj(t− τ)dτ +

∞∫
0

H(τ)
−1∑

j=−∞

ai−jWj(t− τ)dτ =

=

∞∫
0

H(τ)
∞∑

j=−∞

ai−jWj(t− τ)dτ.

Since Q is the inverse function of g on [−η, η] and

−η ≤ Wi(t) ≤ η, t ∈ (−∞, T ],
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from (1.1) it follows that
ui(t) := Q(Wi(t)), i ∈ Z (3.10)

satisfy initial system (1.1).

It remains to prove statements a)–e) of Theorem 1.1.
Statement a). In virtue of a−i = ai we have

u0(t) = Q(W0(t)) =

∞∫
0

H(τ)
∞∑
j=0

(a−j − aj)ψ0(t− τ)dτ = 0. (3.11)

Statement b). Recalling that Q is an odd function, we obtain

u−i(t) = Q(W−i(t)) = Q(−Wi(t)) = −Q(Wi(t)) = −ui(t). (3.12)

Statement c). Let t1 > t2. Due to the monotonicity of Wi(t) in t we have

ui(t1) = Q(Wi(t1)) =

∞∫
0

H(τ)
∞∑

j=−∞

ai−jWj(t1 − τ)dτ ≥

≥
∞∫

0

H(τ)
∞∑

j=−∞

ai−jWj(t2 − τ)dτ = Q(Wi(t2)) = ui(t2).

(3.13)

Statement d). First of all by induction we prove that

ψ
(n)
i (t) ↑ in i, i ∈ Z+.

Since τi+1 ≥ τi, then the inequality is obviously satisfied for n = 0,

ψ
(0)
i (t) ≤ ψ

(0)
i+1(t).

We assume that it is true for some natural n. Let us verify the statement for n+ 1:

Q(ψ
(n+1)
i+1 (t)) =

∞∫
0

∞∑
j=0

H(τ)(ai+1−j − ai+1+j)ψ
(n)
j (t− τ)dτ

=

∞∫
0

H(τ)
i+1∑

k=−∞

akψ
(n)
i+1−k(t− τ)dτ −

∞∫
0

H(τ)
∞∑
j=0

ai+1+jψ
(n)
j (t− τ)dτ

≥
∞∫

0

H(τ)
i∑

k=−∞

akψ
(n)
i−k(t− τ)dτ −

∞∫
0

H(τ)
∞∑
j=0

ai+jψ
(n)
j (t− τ)dτ = Q(ψ

(n+1)
i (t)).

In view of monotonicity of the function Q it follows that

ψ
(n+1)
i+1 (t) ≥ ψ

(n+1)
i (t).

Hence the limit function as n → ∞ will be increasing in i. Since Wi(t) are the odd extensions of
ψi(t) on Z\Z+, then Wi(t) ↑ in i. Due to the monotonicity of Q we can assert that the functions
ui(t) := Q(Wi(t)) are also increasing in i.
Statement e). Using the continuity of Q and taking into account the fact

lim
i→±∞

Wi(t) = ±η,

we obtain
lim
i→+∞

ui(t) = lim
i→+∞

Q(ψi(t)) = Q( lim
i→+∞

ψi(t)) = Q(ψ∞(t)) = Q(η) = η.

Analogously, lim
i→−∞

ui(t) = −η.
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4 Application to epidemic and p-adic string theories

I) Theory of epidemics. There exist different types of infectious diseases in the world. Each year
over a million of people die from these diseases and few millions are infected. Such infectious diseases
circulate among animals and plants as well. There are various mathematical models describing the
spread of infectious diseases. Among these models the one describing the spatial-temporal propaga-
tion of epidemics is of particular importance. In 1978, O. Diekmann [1] derived a model driven by a
nonlinear integral equation. To describe the spread of epidemic several authors distingwish between
at least two groups of population: susceptible individuals S and infective individuals I (see [1]-[3]).
In the framework of continuous time many ecological systems are better modelled when one considers
discrete space coordinates in contrast to continuous ones. It is also assumed that the population size
is large and constant, i.e. S + I = const.

Let now Si(t) := S(t, xi) be the density of susceptible individuals at the time t and at the position
xi, i ∈ Z. Let further Aij(τ) := A(τ, xi, xj) be a matrix function which describes the infection of a
susceptible person at the position xi from a person being infected τ time ago and located at the point
xj. Let Bi(t) = B(t, xi) be defined as the rate at which susceptible individuals become infective,

Bi(t) =
∞∑

j=−∞

∞∫
0

Aij(τ)
∂Sj(t− τ)

∂t
dτ, i, j ∈ Z. (4.1)

Using all above notations, the basic equation describing spatial-temporal spread of epidemic can be
written as follows:

∂Si(t)

∂t
= −Si(t)Bi(t), i ∈ Z. (4.2)

We complete the last differential equation with the appropriate boundary conditions, namely

S(−∞, xi) = S0 = const, i ∈ Z. (4.3)

The solution Si(t) of system (4.1)-(4.2) is defined for t ∈ (−∞, T ]. We assume that the duration of
illness τ and space variables xi are independent,

Aij(τ) = γH(τ)bij, i, j ∈ Z. (4.4)

We assume also that the spread of epidemics depends only on the distance between two individuals,
which in turn means that

bij = ai−j, i, j ∈ Z. (4.5)

The function H(τ) in (4.4) describes the evolution of the spread of epidemics and satisfies conditions
(1.2). The constant γ is the so-called epidemic parameter. Taking into account (4.1), (4.4), (4.5) and
boundary condition (4.3) and integrating equation (4.2) with respect to t, we obtain the following
infinite system of nonlinear functional equations:

ui(t) =
∞∑

j=−∞

∞∫
0

ai−jH(τ)S0γ(1− e−uj(t−τ))dτ, i ∈ Z (4.6)

with the concrete nonlinearity
g(u) = S0γ(1− e−u). (4.7)

Here
ui(t) = −lnSi(t)

S0

, i ∈ Z. (4.8)
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It is obvious that the inverse function Q can be written as

Q(u) =


ln

γS0

γS0 − u
, if u ∈ [0, S0γ],

−ln γS0

γS0 + u
, if u ∈ [−S0γ, 0].

(4.9)

As for the number η, we have η ∈ (S0 γ − 1, S0 γ).

It can be easily verified that all conditions of Theorem 1.1 are satisfied.
Remark 1. In 1978, O. Diekmann first derived the mathematical model of epidemics driven by
the following integral equation:

u(t, x) =

∞∫
0

∫
Rn

V (x− y)H(τ)S0γ(1− e−u(t−τ,y))dτdy, t ∈ (−∞, T ], x ∈ Rn (4.10)

(see [1]). In [3] the existence theorems for equation (4.10) in the case of general nonlinearity have
been proved. Notice that equation (4.6) is a discrete analogue of integral equation (4.10), where
n = 1.
Remark 2. It is clear that the one-dimensional case for the spread of epidemics (i.e. spread along
the line) is not realistic. More realistic two-dimensional medium must be therefore considered, but
it is the scope of the present work.

II) p-adic string theory. The string theory is one of the most developing branches of mathe-
matical physics. p-adic string theory has special and important place in the general string theory. It is
based on nonlinear pseudo-differential equations. Among them an important role plays Vladimirov’s
equation [6]

u(x) =

∞∫
−∞

K(x− t) p
√
u(t) dt, x ∈ R, (4.11)

where K(x) =
1√
π
e−x

2

and p > 2 is an odd number.

It has been shown in [6] that equation (4.11) has a bounded, monotonically increasing solution.
This result of V.S. Vladimirov and Ya.I. Volovich has been generalised for a arbitrary kernel K

satisfying K(x) > 0;
∞∫
−∞

K(x)dx = 1; K(−x) = K(x) by one of the authors of the present work

(see [4], [7]).
The discrete analogue of equation (4.11) takes the form

ui =
∞∑

j=−∞

ai−j p
√
uj, (4.12)

where ai = K(xi), i ∈ Z, p > 2 is an odd number.
Notice that in the special case when H(τ) = δ(τ), where δ is the Dirac delta-function, equation

(1.1) becomes system (4.12) with the nonlinearity g(u) = p
√
u.

Observe that the inverse function Q of the function g is given by Q(u) = up, u ∈ [−η, η], where
η is the first positive root of the equation up = u, i. e. η = 1. It is easy to check that all conditions
imposed on g and Q are fulfilled.
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