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E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia),
M. Reissig (Germany), M. Ruzhansky (Great Britain), M.A. Sadybekov (Kazakhstan), S. Sagitov
(Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sin-
namon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia),
D. Suragan (Kazakhstan), I.A. Taimanov (Russia), J.A. Tussupov (Kazakhstan), U.U. Umirbaev
(Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhu-
magulov (Kazakhstan)

Managing Editor
A.M. Temirkhanova

c© The L.N. Gumilyov Eurasian National University



Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers
in all areas of mathematics written by mathematicians, principally from Europe and Asia. However
papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.
The EMJ publishes 4 issues in a year.
The language of the paper must be English only.
The contents of the EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews,

MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.
The EMJ is included in the list of journals recommended by the Committee for Control of

Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in
the list of journals recommended by the Higher Attestation Commission (Ministry of Education and
Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted electronically in
DVI, PostScript or PDF format to the EMJ Editorial Office through the provided web interface
(www.enu.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the
Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author.
Authors may nominate a member of the Editorial Board whom they consider appropriate for the
article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ.
Manuscripts are accepted for review on the understanding that the same work has not been already
published (except in the form of an abstract), that it is not under consideration for publication
elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors’ names (no degrees).
It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics
Subject Classification (2010) with primary (and secondary) subject classification codes), and the
Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.
References. Bibliographical references should be listed alphabetically at the end of the article.

The authors should consult the Mathematical Reviews for the standard abbreviations of journals’
names.

Authors’ data. The authors’ affiliations, addresses and e-mail addresses should be placed after
the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in the
paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.



Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see
http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published
previously (except in the form of an abstract or as part of a published lecture or academic thesis or as
an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration
for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by
the responsible authorities where the work was carried out, and that, if accepted, it will not be
published elsewhere in the same form, in English or in any other language, including electronically
without the written consent of the copyright-holder. In particular, translations into English of papers
already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent
data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code
of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts
for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/NewCode.pdf).
To verify originality, your article may be checked by the originality detection service CrossCheck
http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections,
clarifications, retractions and apologies when needed. All authors of a paper should have significantly
contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works
which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be
chosen in such a way that there is no conflict of interests with respect to the research, the authors
and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will
only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote
publication of corrections, clarifications, retractions and apologies when needed. The acceptance of
a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.



The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to

mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ

and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one
of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for
reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the
L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of
the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating
conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and
is available only for the Editorial Board and the Control Committee in the Field of Education and
Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The
author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a sufficient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially

sent to the author. A revised version of the paper in which the comments of the reviewer are taken
into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the author.
1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper

should be considered by a commission, consisting of three members of the Editorial Board.
1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded

in the minutes of the meeting of the Editorial Board.
1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor

informs the author about this and about the date of publication.
1.13. Originals reviews are stored in the Editorial Office for three years from the date of publica-

tion and are provided on request of the CCFES.
1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review
2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
2.2. A review should include a qualified analysis of the material of a paper, objective assessment

and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and

phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of

the topic, importance and actuality of the obtained results, possible applications);
- content of the paper (the originality of the material, survey of previously published studies on

the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);



- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of biblio-
graphic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding
of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for
corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the paper
and a clear recommendation on whether the paper can be published in the Eurasian Mathematical
Journal, should be sent back to the author for revision or cannot be published.



Web-page

The web-page of the EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian
Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page
contains all papers published in the EMJ (free access).

Subscription

Subscription index of the EMJ 76090 via KAZPOST.

E-mail

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Nur-Sultan Editorial Office
The L.N. Gumilyov Eurasian National University
Building no. 3
Room 306a
Tel.: +7-7172-709500 extension 33312
13 Kazhymukan St
010008 Nur-Sultan, Kazakhstan

The Moscow Editorial Office
The Peoples’ Friendship University of Russia
(RUDN University)
Room 562
Tel.: +7-495-9550968
3 Ordzonikidze St
117198 Moscow, Russia



MIKHAIL L’VOVICH GOLDMAN

(to the 75th birthday)

Mikhail L’vovich Goldman was born on April 13, 1945 in Moscow.
In 1963 he graduated from school in Moscow and entered the Physical
Faculty of the M.V. Lomonosov Moscow State University (MSU) from
which he graduated in 1969 and became a PhD student (1969–1972) at
the Mathematical Department of this Faculty. In 1972 he has defended
the PhD thesis, and in 1988 his DSc thesis “The study of spaces of differ-
entiable functions of many variables with generalized smoothness” at the
S.L. Sobolev Institute of Mathematics in Novosibirsk. Scientific degree
“Professor in Mathematics” was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an assistant Profes-
sor, Full Professor, Head of the Mathematical Department at the Moscow
Institute of Radio Engineering, Electronics and Automation (technical
university). Since 2000 he is a Professor of the S.M. Nikol’skii Mathemat-

ical Institute at the Peoples Friendship University of Russia (RUDN University).
Research interests of M.L. Goldman are: the theory of function spaces, optimal embeddings, in-

tegral inequalities, spectral theory of differential operators. Main achievements: optimal embeddings
of spaces with generalized smoothness, sharp conditions of the convergence of spectral expansions,
descriptions of integral and differential properties of the generalized Bessel and Riesz-type poten-
tials, sharp estimates for operators on cones and optimal envelopes for the cones of functions with
properties of monotonicity. Professor M.L. Goldman has over 140 scientific publications in leading
mathematical journals.

Under his scientific supervision, 8 candidate theses in Russia and 1 thesis in Kazakhstan were
successfully defended. Some of his former students are now professors in Ethiopia, Columbia, Mon-
golia.

Participation in scientific and organizational activities of M.L. Goldman is well known. He is
a member of the DSc Councils at RUDN and MSU, of the PhD Council in the Lulea Technical
University (Sweden), a member of the Editorial Board of the Eurasian Mathematical Journal, an
invited lector and visiting professor at universities of Russia, Germany, Sweden, UK etc., an invited
speaker at many international conferences.

The mathematical community, friends and colleagues and the Editorial Board of the Eurasian
Mathematical Journal cordially congratulate Mikhail L’vovich Goldman on the occasions of his 75th
birthday and wish him good health, happiness, and new achievements in mathematics and mathe-
matical education.



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 11, Number 2 (2020), 40 – 51

HYPERBOLICITY WITH WEIGHT OF POLYNOMIALS
IN TERMS OF COMPARING THEIR POWER

H.G. Ghazaryan, V.N. Margaryan

Communicated by V.I. Burenkov
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Abstract. For a given completely regular Newton polyhedron <, and a given vector N ∈ Rn,
we give conditions under which a weakly hyperbolic polynomial (with respect to the vector N)
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polynomial is s−hyperbolic.
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1 Introduction

We use the following standard notation: N denotes the set of all natural numbers, N0 = N ∪ {0},
Nn

0 = N0× ...×N0 is the set of all n- dimensional multi-indices, i.e. points α = (α1, ..., αn) : αj ∈ N0

j = 1, ..., n, Rn and En are the n-dimensional Euclidean spaces of points (vectors) ξ = (ξ1, ..., ξn)
and x = (x1, ..., xn) respectively, Rn,+ := {ξ ∈ Rn, ξj ≥ 0, j = 1, ..., n} Cn = Rn × iRn.

For ξ, η ∈ Rn , ζ ∈ Cn α ∈ Nn
0 and ν ∈ Rn,+ we put (ξ, η) := ξ1 η1 + ... + ξn ηn, |ξ| :=√

ξ2
1 + ...+ ξ2

n, |ζ| :=
√
|ζ1|2 + ...+ |ζn|2, ξα = ξα1

1 ...ξαnn , |ζν | := |ζ1|ν1 ...|ζn|νn and |ν| := ν1 + ...+
νn.

Let A := α1, ..., αM be a finite set of points in Rn,+. By the Newton polyhedron of the set A
we mean the minimal convex polyhedron < = <(A) ⊂ Rn,+ containing all points of A ∪ {0} (see,
for instance, [18], [12], [5]). A polyhedron < ⊂ Rn,+ with vertices in Rn,+ is said to be complete
(see [18]) if < has a vertex at the origin and (distinct from the origin) on each coordinate axis of Rn.
A complete polyhedron < is called regular (completely regular), if all coordinates of the outward
(relative to <) normals (futher <−normals ) to its noncoordinate (n − 1)− dimensional faces are
non - negative (postive) ([5 ] and [11 ]).

For a completely regular polyhedron < ⊂ Rn,+ we denote
1) <0− the set of its vertices,
2) Λ(<)− the set of its <− normals of (n − 1)−dimensional noncoordinate faces {λ =

(λ1, ..., λn)}, normalized so that min
1≤j≤n

λj = 1,

3) ρ(<) := max
ν∈<
|ν |,

4)d(<) := max
ν∈<, λ∈Λ(<)

(λ, ν),

5) h<(ζ) :=
∑
ν∈<0

|ζν |, ζ ∈ Cn.
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By Bn (B
′
n respectively) we denote the set of completely regular polyhedrons < ⊂ Rn,+, for

which ρ(<) < 1 (d(<) < 1 respectively). It is obvious that B
′
n ⊂ Bn.

First we give examples of polyhedrons both belonging and not belonging to the sets Bn or B
′
n.

Example 1. Let n = 2, and let < be the Newton polyhedron with vertices
{(0, 0), (2

5
, 0)( 3

10
, 1

5
), (0, 2

5
)}. Then Λ(<) = {(2, 1), (1, 3

2
)}, ρ(<) = 1

2
, d(<) = 4

5
, therefore < ∈ B

′
2

⊂ B2.
Example 2. Let n = 2, and let < be the Newton polyhedron with vertices
{(0, 0), (3

5
, 0), (1

2
, 3

10
), (0, 3

5
))}. Then Λ(<) = {(3, 1), (1, 5

3
)}, ρ(<) = 4

5
, d(<) = 9

5
, therefore < ∈ B2

and < /∈ B
′
2.

Let n ≥ 2 and let M be a completely regular polyhedron. Then for any ϑ ∈ (0, 1
d(M)

) the
polyhedron < := ϑM ∈ B

′
n. Moreover if ρ(M) < d(M), then for any ϑ ∈ ( 1

d(M
, 1
ρ(M)

) we have
that ρ(<) < 1, and d(<) > 1 therefore < := ϑ.M /∈ B

′
n, but < ∈ Bn.

For < ∈ B
′
n by <∗ we denote the Newton polyhedron of the set

{(0, ..., 0, max
ν∈<, λ∈Λ(<)

(λ, ν)

λj
, 0, ..., 0)}nj=1·

It is obvious that < ⊂ <∗ ∈ B
′
n, and ρ(<∗) = d(<∗) = d(<) for any < ∈ B

′
n Then (see [15])

there exists a number c = c(<) > 0 such that

h<(ζ + η) ≤ c [h<(ζ) + h<∗(η)] ∀ζ, η ∈ Cn· (1.1)

Since <∗ ∈ B
′
n for < ∈ B

′
n, then ρ(<∗) < 1. Therefore, from (1.1) it follows that for any ε > 0

there is a number cε > 0 such that

h<(ζ + η) ≤ cε h<(ζ) + ε |η| ∀ζ, η ∈ Cn· (1.1′)

Let P (ξ) =
∑
α

γαξ
α be a polynomial, where the sum is taken over a finite set of multi-indices

(P ) = {α ∈ Nn
0 , γα 6= 0} and m := maxα∈(P ) |α|. We represent the polynomial P as sum of

homogeneous polynomials

P (ξ) =
m∑
j=0

Pj(ξ) :=
m∑
j=0

[
∑
|α|=j

γαξ
α], ξ ∈ Rn. (1.2)

Definition 1. (see [6] or [7] Definition 12.3.3 and Theorem 12.4.1) An operator P (D) (a polynomial
P (ξ) ) is called hyperbolic (by Gȧrding), with respect to the vector N ∈ Rn, if Pm(N) 6= 0
(see representation (1.2)) and there exists a number τ0 > 0 such that P (ξ + i τ N) 6= 0 for all
(ξ, τ) ∈ Rn+1 and |τ | > τ0.

It is easy to verify that the polynomial P is hyperbolic with respect to vector N ∈ Rn if and
only if Pm(N) 6= 0, and there exists a number τ0 > 0 such that P (ξ + iτ N) 6= 0 for all ξ ∈ Rn,
τ ∈ C and |Reτ | > τ0.

A polynomial P is called weakly hyperbolic with respect to the vector N ∈ Rn (see, for
instance, [13], [19] or [9], [10]) if Pm(N) 6= 0 and zeros of the polynomial Pm(ξ + τ N)with respect
to τ are real for any point ξ ∈ Rn, while there are multiple roots among them.

A polynomial P is called s−hyperbolic (1 < s <∞) (see. [13] or [19]) with respect to vector
N ∈ Rn if Pm(N) 6= 0 and there exists a number c > 0 such that P (ξ + i τ N) 6= 0 for all
(ξ, τ) ∈ Rn+1, |τ | > c (1 + |ξ|1/s).

It was proved in [13] that the polynomial P is s - hyperbolic with respect to vector N if and
only if Pm(N) 6= 0 and there exists a number c > 0 such that P (ξ+ i τ N) 6= 0 for all ξ ∈ Rn, τ ∈ C
and |Reτ | ≥ c (1 + |ξ|1/s).
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A function g, defined on Rn, is called a weight of hyperbolicity (see [14] or [16]), if
a) g(ξ) ≥ κ0 > 0 ∀ξ ∈ Rn,
b) g(ξ)/|ξ| → 0 as |ξ| → ∞.

Definition 2. A polynomial P is called hyperbolic with weight g, (further g−hyperbolic)
with respect to the vector 0 6= N ∈ Rn if Pm(N) 6= 0 and there exists a number c > 0 such that

P (ξ + i τ N) 6= 0 ∀ξ ∈ Rn, τ ∈ C, |Re τ | ≥ c g(ξ).

In [6] (see also [7], Theorem 12.5.6) it was proved that for hyperbolic by Gȧrding (with respect
to any vector N) operators, the non - characteristic Cauchy problem has one and only one solution
from a certain class of smooth functions. Similar results (when N = (1, 0, ..., 0)) for s-hyperbolic
operators were obtained in [13] by E. Larsson, and for <−hyperbolic operators in [1] by D. Calvo. In
[14] - [16] (see also [17]), similar results were obtained for <−hyperbolic operators for more general
Newton polyhedrons < and for arbitrary vectors N.

It follows from the definition of a function h< that for any polyhedron < ∈ B
′
n the function

h< is a weight of hyperbolisity. Therefore, further, if < ∈ B
′
n and the polynomial P is hyperbolic

with weight h<, then, for brevity we call the polynomial P <-hyperbolic.

Remark 1. It is easy to see that any <- hyberbolic (< ∈ B
′
n) polynomial is s := 1/ρ(<)−hyberbolic

and any s := 1/ min
06=ν∈<0

|ν|−hyperbolic polynomial is<−hyberbolic.

It is known that
1) if the function g is bounded on Rn, then the g−hyperbolic with respect to the vector

0 6= N ∈ Rn polynomial P is hyperbolic (by Gärding) with respect to the same vector. In addition,
for an arbitrary function f ∈ C∞0 with supp f ⊂ ΩN := {x, (x,N) ≥ 0} equation P (D)u = f has
a solution u ∈ C∞ with supp u ⊂ ΩN (see [7], Theorems 12.4.5 and 12.5.4);

2) any weakly hyperbolic polynomial is s := r
r−1
− hyperbolic, where r is the maximal multi-

plicity of the zeros of the polynomial Pm(ξ + τ N) (with respect to τ) (see.[19] or [1]);
3) each s− or <−hyperbolic polynomial (if < ∈ B

′
n) is weakly hyperbolic. In addition, the

equation P (D)u = f for f ∈ G0,s with supp f ⊂ ΩN has a solution u ∈ Gs such that supp u ⊂
ΩN (see [13]), where Gs := Gs(Rn) is an isotropic Gevrey space (see [4] or [8], paragraph 8.4 ),
andG0,s := Gs ∩ C∞0 with the appropriate topology (see [13], [19], [3] or [21]);

4) for the <−hyperbolic operator P (if < ∈ B
′
n) and for any function f ∈ G0,<(ΩN) the

equation P (D)u = f has a solution u ∈ G< with supp u ⊂ ΩN , where G< is an anisotropic Gevrey
space (see [14]).

Searches for the widest possible classes of linear partial differential equations for which the Cauchy
problem can be posed correctly (necessary and sufficient conditions) led to the concept of the hyper-
bolicity of the equation (operator, polynomial). These searches continue to this day. Thus, hyperbolic
equations are distinguished from the general class of equations by the fact that the Cauchy problem
for such equations can be posed correctly.

However, the correctness of the Cauchy problem depends not only on the type of equation, but
also on the functional space where this problem is studied.

The process of finding suitable function spaces where the Cauchy problem for a weakly hyperbolic
operator is posed correctly led to the Gevrey classes (see [4]). These classes are intermediate between
classes of infinitely differentiable and real analytic functions. The condition of strict hyperbolicity is
sufficient for the correctness of the Cauchy problem in C∞, generally speaking, this problem can be
posed incorrectly for weakly hyperbolic equations. This can be easily verified even with the example
of the heat conduction operator, for which the Cauchy problem can be posed incorrectly in the
Gevrey class Gs for s > 2 as well in C∞ (see, for instance, [2] or [19], Section 4.2]).
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Searches for the widest possible classes of linear partial differential equations for which the Cauchy
problem can be posed correctly (nacessary and sufficient conditions) led to the concept of the hyper-
bolicity of the equation (operator, polynomial). These searches continue to this day. Thus, hyperbolic
equations are distinguished from the general class of equations by the fact that the Cauchy problem
for such equations can be posed correctly.

In [6] (see also [7], Theorem 12.5.6) it was proved that for hyperbolic by Gȧrding (with respect
to any vector N) operators, the non-characteristic Cauchy problem has one and only one solution
from a certain class of smooth functions. Similar results (when N = (1, 0, ..., 0)) for s-hyperbolic
operators were obtained in [13] by E. Larsson, and for <−hyperbolic operators in [1] by D. Calvo. In
[14] - [16] (see also [17]), similar results were obtained for <−hyperbolic operators for more general
Newton polyhedrons < and for arbitrary vectors N.

The present work is devoted to finding conditions under which a given polinomial is hyperbolic
and to a comparison of hyperbolic polynomials of different types. In partcular,

1) necessary and sufficient conditions are obtained for <−hyperbolicity of polynomials in n ≥ 2
variables (Theorem 2.2),

2) conditions are obtained under which a <−hyperbolic, with respect to a nonzero vector N0

polynomial is <−hyperbolic with respect to any vector N in a neighborhood of the vector N0

(Theorem 2.3),
3) for polynomials in two variables conditions are obtained under which an <−hyperbolic poly-

nomial is s−hyperbolic, where the number s is uniquely determined by the polyhedron < (Theorem
3.1).

2 Polynomials in n ≥ 2 variables

Let ζ = (ζ1, ζ
′) = (ζ1, ζ2, ..., ζn), ξ = (ξ1, ξ

′) = (ξ1, ξ2, ..., ξn), N0 = (1, 0′) and P (ξ) = P (ξ1, ξ
′
)

is a polynomial, represented in form (1.2), for which Pm(N0) 6= 0. For any ζ ′ ∈ Cn−1, we denote
D(P, ζ

′
) := {ζ1 = ζ1(ζ

′
) ∈ C, P (ζ) = 0} and by λ(ζ

′
) we denote an element in the set D(P, ζ

′
),

for which |λ(ζ
′
)| = maxζ1(ζ′ )∈D(P, ζ′ ) |ζ1| (if there are several of them, then we will take any one of

them.). Let polynomial (1.2) be represented as follows

P (ξ) =
m∑
j=0

ξj1 Qj(ξ
′) :=

m∑
j=0

ξj1
∑

(j,α′)∈(P )

γ(j,α′)(ξ
′)α
′

= γ(m,0′) ξ
m
1 +

m−1∑
j=0

ξj1 Qj(ξ
′). (1.2′)

Theorem 2.1. Let < ∈ Bn−1 and P be a polynomial of degree m of form (1.2′) such that
Pm(N0) 6= 0. Then the following conditions are equivalent:

1) there exists a number κ0 = κ0(<, P ) > 0 such that for all j = 0, 1, ...,m− 1

|Qj(ξ
′)| := |

∑
(j, α′)∈(P )

γ(j, α′) (ξ′)α
′| ≤ κ0 h

m−j
< (ξ′), ξ′ ∈ Rn−1, (2.1)

2) there exists a number κ1 > 0 such that

|λ(ζ
′
)| ≤ κ1 h<(ζ ′), ζ ′ ∈ Cn−1. (2.2)

Proof. We show that (2.1) implies (2.2). Since {α′ ∈ Nn−1
0 , (j, α′) ∈ (P )} ⊂ (m− j)<, when (2.1)

is fulfilled, hence, by the definition of the function h<, relation (2.1) is equivalent to the fact that
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there exists a constant κ′0 > 0 such that

|Qj(ζ
′)| ≤ κ

′

0 h
m−j
< (ζ ′), ζ ′ ∈ Cn−1, j = 0, 1, ...,m− 1. (2.1′).

Therefore, it suffices to prove that, under the conditions of the theorem, (2.1′) implies (2.2). Assume
the converse that if (2.1′) holds, there exists a sequence {(ζ ′)k}∞k=1 ⊂ Cn−1 such that for k →∞

|λ((ζ
′
)k)|/h<((ζ ′)k)→∞. (2.3)

Since h<(ζ ′) ≥ 1 ∀ζ ′ ∈ Cn−1, this implies that for k →∞ we get

|λ((ζ
′
)k)| → ∞. (2.4)

On the other hand, due to the fact that λ((ζ
′
)k) ∈ D(P, (ζ

′
)k) (k = 1.2....) and Pm(N0) 6= 0, by

virtue of inequality (2.1
′
) and relations (2.3) - (2.4) we have

0 = |P (λ((ζ
′
)k), (ζ

′
)k)| = |γ(m,0′)(λ((ζ

′
)k)m +

m−1∑
j=0

[λ((ζ
′
)k)]j Qj(ζ

′
)k)|

≥ |Pm(N0)| |λ(ζ
′
)k)|m −

m−1∑
j=0

|λ((ζ
′
)k)|j |Qj(ζ

′
)k)| ≥ |Pm(N0)| |λ(ζ

′
)k)|m

−κ′0
m−1∑
j=0

|λ((ζ
′
)k)|j hm−j< ((ζ

′
)k) = |Pm(N0)| | |λ(ζ

′
)k)|m[1 + o(1)]→∞

as k →∞.
The obtained contradiction proves, that under the conditions of the theorem, estimate (2.2)

follows from estimate (2.1).
Now, let us prove the converse, namely, that estimate (2.1) follows from estimate (2.2). Since

Pm(N0) 6= 0, for any fixed point ζ ′ ∈ Cn−1 the polynomial (with respect to τ ) P (τ, ζ ′) has m
roots : τ1(ζ ′), ..., τm(ζ ′). Then for all ζ ′ ∈ Cn−1 we have

P (τ, ζ ′) =
m−1∑
j=0

τ j Qj(ζ
′) + Pm(N0) τm = Pm(N0)

m∏
j=1

(τ − τj(ζ ′)).

Since, by virtue of the Vieta theorem

Qj(ζ
′) = (−1)m−j

∑
1≤rl≤m,

τr1(ζ ′)...τrm−j(ζ
′), ζ ′ ∈ Cn−1 j = 0, 1, ...,m− 1,

by virtue of the definition of λ(ζ
′
) from estimate (2.2) we have

|Qj(ζ
′)| ≤ κ1C

m−j
m hm−j< (ζ ′) ∀ζ ′ ∈ Cn−1, j = 0, 1, ...,m− 1,

where {Cm−j
m } are the binomial coefficients. Denoting by κ′0 the maximum of {κ1 C

m−j
m }m−1

j=1 , we
obtain (2.1’).

Theorem 2.2. Let 0 6= N ∈ Rn, a polynomial P of degree m, represented in form (1.2) such that
Pm(N) 6= 0 and < ∈ B

′
n. Then the polynomial P is <−hiperbolic with respect to the vector N

if and only if there exists a constand c > 0 such that

P (ξ + i τ N) 6= 0 ξ ∈ Rn, τ ∈ C, |Re τ | ≥ c g<, N(ξ), (2.5)

where g<, N(ξ) := inf
t∈R1

h<(ξ − tN).
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Remark 2. It is easy to verify that for < ∈ B
′
n the function g<, N is a weight of hyperbolicity.

Proof. Neccessity Let a polynomial P be <−hyperbolic with respect to a vector N. Let us
prove that for some constant c > 0 relation (2.5) holds. By the definition of <−hyperbolicity
of the polynomial P (with respect to N) there exists a number c1 > 0 such that for all pairs
(ξ, τ) ∈ Rn × C for which P (ξ + i τ N) = 0 the following inequaliy holds

|Re τ | ≤ c1 h<(ξ). (2.6)

Since for any t ∈ R1 for the mentioned pairs {ξ, τ} the relation P (ξ − tN + i (τ − i t)N)
= P (ξ + i τ N) holds, then, by estimate (2.6), for such pairs {ξ, τ} we have that for such pairs
P (ξ+ i τ N) = 0 and |Re τ | = |Re (τ − i t)| ≤ c1 h<(ξ− tN) for any t ∈ R. Since t is arbitrary, it
follows that for all ξ ∈ Rn and τ ∈ C such that P (ξ+ i τ N) = 0 the inequality |Re τ | ≤ c1 g<, N(ξ)
holds.

From here, in turn, it follows that P (ξ + i τ N) 6= 0 for all pairs (ξ, τ) ∈ Rn × C such that
|Re τ | > c1 g<, N(ξ). Relation (2.5) is proved.

Sufficiency. Let relation (2.5) be satisfied. Let us prove that the polynomial P is
<−hyperbolic. Since h<(ξ) ≥ g<, N(ξ) for all ξ ∈ Rn, it follows from (2.5) that P (ξ + i τ N) 6= 0
for all ξ ∈ Rn and τ ∈ C such that |Re τ | > ch<(ξ). From this and the condition Pm(N) 6= 0 of
the theorem it follows that the polynomial P is <−hyperbolic with respect to N.

We will use the following proposition in the proof of Theorem 2.3
Proposition 2.1 Let M ⊂ B

′
n−1, and < ∈ Rn,+ be the Newton polyhedron of the set {(0, ν ′) :

ν ′ ∈M0} ∪{(d(M), 0′)}. Then < ∈ B
′
n, and ρ(<) = d(<) = d(M) (= ρ(M∗).

Proof. For any λ′ ∈ Λ(M) we denote dλ′(M) := maxν′∈M(λ′, ν ′), then d(M) = maxλ′∈Λ(M)dλ′(M).
Since < = {ν ∈ Rn,+, (ν, (1, λ′)) ≤ dλ′(M) ∀λ′ ∈ Λ(M)}, then Λ(<) = {(1, λ′), λ′ ∈ Λ(M)}.
Recall that by the definition of the set Λ(M), min2≤j≤nλ

′
j = 1, ∀λ′ ∈ Λ(M), therefore < =

{ν ∈ Rn,+, (λ, ν) ≤ dλ′(M)} ∀λ = (1, λ′) ∈ Λ(<), where λ′ ∈ Λ(M)}. It immediately follows that
d(<) = maxλ′∈Λ(M) dλ′(M) = d(M).

Since M ∈ B
′
n−1, then d(M) < 1, therefore d(<) < 1.

On the other hand, by the definition of the polyhedron <, the point (d(M), 0′) ∈ <0 and
min1≤j≤nλj = 1, ∀λ ∈ Λ(<), therefore ρ(<) = d(<).

Theorem 2.3. Let M ⊂ B
′
n−1, < ∈ Rn,+ be the Newton polyhedron of the collection {(0, ν ′) : ν ′ ∈

M0} ∪ (d(M), 0′), U be a neighborhood of the vector N0, such that U ⊂ {N ; |N − N0| < 1/2}
and Pm(N) 6= 0 for any N ∈ U. Let P be a polynomial of degree m, represented in form (1.2′),
for which, with some constant c > 0, the following relation holds

|Qj(ξ
′)| = |

∑
(j,α′)∈(P )

γ(j,α′)(ξ
′)α
′ | ≤ c hm−jM (ξ′) ξ′ ∈ Rn−1, j = 1, ...,m− 1.

Then for any N ∈ U the polynomial P is <−hyperbolic with respect to the vector N.

Proof. Let N ∈ U. Since Pm(N) 6= 0, for any point ξ ∈ Rn the number of zeros of the polynomial
P (ξ+ i τ N) (with respect to τ ) is m. Let {τj(ξ)}mj=1 be the zeros of the polynomial P (ξ+ i τ N)
and ζ = (ζ1, ζ

′) : = (ξ1 + i τj(ξ)N1, ξ
′ + i τj(ξ)N

′). Then from the second statement of Theorem 2.1
(see inequality (2.2)) it follows that |ζ1(ζ ′)| ≤ κ1 hM(ζ ′), or, which is the same

| ξ1 + i τj(ξ)N1| ≤ κ1 hM(ξ′ + i τj(ξ)N
′) ξ ∈ Rn, j = 1, ...,m.
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Hence, by virtue of inequality (1.1), for some constant κ2 > 0 we have

| ξ1 + i τj(ξ)N1| ≤ κ2 [hM(ξ′) + hM∗(τj(ξ)N
′) ] ξ ∈ Rn, j = 1, ...,m.

Since ρ(M∗) = d(M) by virtue of M∗ and condition M ∈ B
′
n−1, for some constant κ3 > 0 we

obtain

| ξ1 + i τj(ξ)N1| ≤ κ3 [hM(ξ′) + |τj(ξ)|ρ(M∗)]

= κ3 [hM(ξ′) + |τj(ξ)|d(M)] ∀ξ ∈ Rn, j = 1, ...,m.

Since N1 > 1/2, for N ∈ U, for some positive constants κ4, κ5 we have

| ξ1 + i τj(ξ)N1| ≤ κ4 [hM(ξ′) + |i τj(ξ)N1|d(M)]

= κ4 [hM(ξ′) + |ξ1 + i τj(ξ)N1 − ξ1|d(M)]

≤ κ5 [hM(ξ′) + | ξ1 + i τj(ξ)N1|d(M) + |ξ1|d(M)] ∀ξ ∈ Rn, j = 1, ...,m.

Since d(M) ∈ (0, 1) for M ∈ B
′
n−1, it follows that for any ε > 0 there exists a number cε > 0

such that for all j = 1, ...,m we have

| ξ1 + i τj(ξ)N1| ≤ κ5 [hM(ξ′) + ε | ξ1 + i τj(ξ)N1|+ cε + |ξ1|d(M)] ∀ξ ∈ Rn.

Since hM(ξ′) ≥ 1 ∀ξ′ ∈ Rn−1, it follows that for κ5 ε = 1/2 and some constant κ6 > 0 we obtain

| ξ1 + i τj(ξ)N1| ≤ κ6 [hM(ξ′) + |ξ1|d(M)] ∀ξ ∈ Rn, j = 1, ...,m.

By the definition of the polyhedrons < and M we have hM(ξ′) + |ξ1|d(M) = h<(ξ) for ξ ∈ Rn.
Therefore,

| ξ1 + i τj(ξ)N1| ≤ κ6 h<(ξ) ∀ξ ∈ Rn, j = 1, ...,m.

Bearing in mind that N1 ≥ 1/2, we obtain

|Re τj(ξ)| ≤ 2κ6 h<(ξ) ∀ξ ∈ Rn, j = 1, ...,m. (2.7)

So, we have proved that for any root τ(ξ) of the polynomial P (ξ+i τ N) (in variable τ) inequality
(2.7) holds, i.e. P (ξ + i τ N) 6= 0 for ξ ∈ Rn, |Reτ | > 2κ6 h<(ξ). This means that the polynomial
P is <−hyperbolic with respect to vector N.

We give an example of a polynomial that is not hyperbolic by Gȧrding, but is <−hyperbolic for
a certain completely regular polyhedron <.
Example 3. Let n = 3, P (ξ) = ξ15

1 + ξ10
1 ξ2

2 ξ
2
3 +ξ10

1 (ξ3
2 + ξ3

3) +ξ6
2 ξ

6
3 +ξ9

2 + ξ9
3 .

Here m = 15, P (ξ) = P15(ξ) +P14(ξ) +P13(ξ) +P12(ξ) +P9(ξ), M is the Newton polyhedron of
the set {(0, 3/5, 0), (0, 0, 3/5), (0, 2/5, 2/5)}, d(M) = 4/5, < ∈ Rn,+−Newton polyhedron of the set
{(0, ν ′) : ν ′ ∈ M0} ∪ {(d(M), 0′)} = {(0, 3/5, 0), (0, 0, 3/5), (0, 2/5, 2/5), (4/5, 0, 0)}, ξ = (ξ1, ξ

′),
ξ′ = (ξ2, ξ3). Simple calculations show that hM(ξ′) = hM(ξ2, ξ3) = 1+ |ξ2|3/5 + |ξ3|3/5 + |ξ2|2/5 |ξ3|2/5
and Q0(ξ′) = ξ6

2 ξ
6
3 + ξ9

2 + ξ9
3 , Qj(ξ

′) ≡ 0 (j = 1, ..., 9), Q10(ξ′) = ξ2
2 ξ

2
3 + ξ3

2 + ξ3
3 , Qj(ξ

′) ≡ 0 (j =
11, ..., 14).

Since the polynomial P15 is not stronger (according to L. Hörmander) (see [7], Definition 10.3.4)
than (for example) polynomial P14, it follows from the Svensson theorem on the necessary conditions
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for hyperbolicity by Gȧrding (see [20]) that the polynomial P is not hyperbolic by Gȧrding with
respect to the vector N0 = (1, 0, 0).

Now we show that the polynomial P is <−hyperbolic with respect to any vector N ∈ R3 :
|N −N0| < 1/2. Obviously P15(N) 6= 0 for the indicated N. Verification of the existence of c > 0
for which the inequality

|Qj(ξ
′)| ≤ c hm−jM (ξ′) ∀ξ′ ∈ R2, j = 1, ..., 14

is satisfied, reduces to proving the following easily verified estimates for all (ξ2, ξ3) ∈ R2

|ξ3
2 + ξ3

3 + ξ2
2 ξ

2
3 | ≤ (1 + |ξ2|3/5 + |ξ3|3/5 + |ξ2|2/5 |ξ3|2/5)5,

|ξ9
2 + ξ9

3 + ξ6
2 ξ

6
3 | ≤ (1 + |ξ2|3/5 + |ξ3|3/5 + |ξ2|2/5 |ξ3|2/5)15,

Thus, by Theorem 2.3, the considered polynomial is <−hyperbolic.

3 Polynomials in n = 2 variables

In this section, we find conditions under which an <−hyperbolic polynomial of two variables is
s−hyperbolic. We preliminarly prove several propositions that we will need to prove the main
theorem of this section (Theorem 3.1). In this case, we use the notation h<,N(ξ) := inft∈R1 h<(ξ−tN).

Lemma 3.1. Let n = 2, < ∈ B
′
2, (σ1, 0) and (0, σ2) are nonzero vertices of the polyhedron <,

lying on the coordinate axes R2,+, s := 1/min{σ1, σ2}, N = (N1, N2) ∈ R2, N1N2 6= 0. Then
there exists a number c > 0 such that for all ξ ∈ R2 we have

c−1 (1 + |N2 ξ1 −N1 ξ2| 1/s ) ≤ h<,N(ξ) ≤ c (1 + |N2 ξ1 −N1 ξ2| 1/s ). (3.1)

Proof. It is obvious that for all ξ ∈ R2

h<,N(ξ) ≤ h<(ξ − ξ2

N2

N) = h<(ξ1 −
N1

N2

ξ2, 0) = 1 + | ξ1 −
N1

N2

ξ2|σ1)

and
h<,N(ξ) ≤ h<(ξ − ξ1

N1

N) = h<(0, ξ2 −
N2

N1

ξ1) = 1 + | ξ2 −
N2

N1

ξ1|σ2 ,

where the right-hand side of inequality (3.1) with any constant c > max{1, |N1|, |N2|} follows
immediately.

Let us prove the left-hand side of estimate (3.1). By the definition of the function h< and the
property h<(η) ≥ 1 ∀η ∈ R2, for arbitrary t ∈ R1 and ξ ∈ R2, we have

1 + | ξ1 −
ξ2

N2

N1| 1/s = 1 + | ξ1 −N1 t+
N1

N2

[(N2 t− ξ2) ] | 1/s ≤ 1 + |ξ1 −N1 t| 1/s

+| N1

N2

| 1/s |ξ2 −N2 t | 1/s ≤ 2 + |ξ1 −N1 t|σ1 + | N1

N2

|1/s [1 + | ξ2 −N2 t |σ2)

≤ 1 + h<(ξ1 −N1 t, 0) + | N1

N2

| 1/s h<(0, ξ2 −N2 t) ≤ 1 + (1 + |N1

N2

|1/s)h<(ξ −Nt)

≤ (2 + |N1

N2

|1/s)h<(ξ −N t).

Hence, due to the arbitrariness of the number t ∈ R1, we obtain the left hand side of estimate
(3.1).
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For a polynomial R(ξ) = R(ξ1, ..., ξn) and a number τ ∈ R1 we denote (L. Hörmander’s function):
R̃(ξ, τ) :=

∑
α |R(α)(ξ)| |τ ||α| and introduce the following comparison relation (with weight) of two

polynomials

Definition 3. Let g be a weight of hyperbolicity. We say that polynomial P is g−stronger than
a polynomial Q (a polynomial Q is g−weaker than a polynomial P ) and write : Q ≺g P if, for
some constant c > 0

Q̃(ξ, g(ξ) ) ≤ c P̃ (ξ, g(ξ) ) ∀ξ ∈ Rn.

This definition directly implies

Lemma 3.2. Let g1 and g2 be weights of hyperbolicity such that g1(ξ) ≥ c g2(ξ) ∀ξ ∈ Rn for
some constant c > 0. If Q ≺g2 P, then Q ≺g1 P.

Lemma 3.3. Let g1 and g2 be weights of hyperbolicity and g := g1 + g2. Then Q ≺g P, if and
only if Q ≺gj P (j = 1, 2).

Proof. The proof immediately follows from Lemma 3.2 and the following easily verified inequality
for any k ∈ N

gk1(ξ) + gk2(ξ) ≤ gk(ξ) ≤ 2k (gk1(ξ) + gk2(ξ)) ∀ξ ∈ Rn.

Lemma 3.4. Let N0 = (1, 0), < ∈ B
′
2, (0, σ2) be a nonzero vertex of the polyhedron <, lying

on the axis 0ξ2, ∆ ∈ (0, 1), M∆ be the Newton polyhedron of points {(∆, 0), (0, σ2)} and P
be a <−hyperbolic polynomial with respect to a vector N0. Then P is 1)M∆−hyperbolic and
2) s1 := 1/σ2−hyperbolic polynomial with respect to the vector N0.

Proof. To prove part one, it suffices to note that under the conditions of the lemma hM∆,N(ξ) =
1 + |ξ2|σ2 = inft∈R1 h<(ξ − tN) for any ∆ ∈ (0, 1). Part 2) follows directly from Part 1).

Lemma 3.5. Let < ∈ B
′
2, (σ1, 0) and (0, σ2) be vertices of the polyhedron <, lying on the coordi-

nate axes R2, s := 1/min{σ1, σ2}, N = (N1, N2) ∈ R2, N1N2 6= 0, and P be an <−hyperbolic
polynomial with respect to the vector N. Then P is s−hyperbolic with respect to the same vector.

Proof. We need to prove that there exists a number κ0 > 0 such that

P (ξ + i τ N) 6= 0 ∀(ξ, τ) ∈ R2 × C : |Reτ | ≥ κ0 (1 + |ξ|
1
s ). (3.2)

It is obvious that for any ε > 0 there exists a constant κ1 = κ1(ε) > 0 such that

1 + |ξ|ε ≥ κ1 (1 + |N2 ξ1 −N1 ξ2|ε), ξ ∈ R2.

On the other hand, by virtue of Lemma 3.1 there exists a number κ2 > 0 such that

h<, N(ξ) ≤ κ2 (1 + |N2 ξ1 −N1 ξ2|1/s) ∀ξ ∈ R2.

From the last two relations we obtain with some constant κ3 > 0

1 + |ξ|
1
s ≥ κ3 h<, N(ξ) ∀ξ ∈ R2. (3.3)

Since the polynomial P is <−hyperbolic with respect to the vector N, i.e. for some constant
κ4 > 0 we have the relation

P (ξ + i τ N) 6= 0 ∀ξ, τ ∈ R2 × C : |Re τ | ≥ κ4 h<, N(ξ),

then this and (3.3) imply relation (3,2) with the constant κ0 = κ4/κ3. This proves that the polyno-
mial P is s−hyperbolic with respect to the vector N.
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Theorem 3.1. Let N0 = (1, 0), and let U = U(N0) be a neighbourhood of the vector N0, such
that U ⊂ {N ; |N −N0| < 1/2}.

Let < ∈ B
′
2, (σ1, 0) and (0, σ2) be nonzero vertices of the polyhedron <, lying on the coordinat

axes of R2,+, s := 1/min{σ1, σ2}, Pm be a homogeneous polynomial of degree m, hyperbolic (by
Gȧrding) with respect to the vector N0, Pm(N) 6= 0 for N ∈ U(N0). and Q be a polynomial of
degree less than m.

1) If there exists a vector N1 ∈ U = U(N0) that is not collinear to the vector N0 such that
Q ≺h<,Nj Pm (j = 0, 1), then the polynomial Pm +Q is s1 := 1/σ2−hyperbolic with respect to any
vector N ∈ U(N0).

2) If there are noncollinear vectors N1 , N2 ∈ U(N0), all of which coordinates are nonzero and
such that Q ≺h<,Nj Pm (j = 1, 2), then the polynomial Pm + Q is s−hyperbolic with respect to
any vector N ∈ U(N0).

Proof. Statement 1). From the assumption of part one it follows that Q ≺h<,N0+h<,N1 Pm. Since
the vectors N0 and N1 are not collinear, then (see Lemma 3.1) there exists a number c1 > 0
such that

c−1
1 (1 + |ξ1|1/s + |ξ2|σ2) ≤ h<,N0(ξ) + h<,N1(ξ) ≤ c−1

1 (1 + |ξ1|1/s + |ξ2|σ2), ξ ∈ R2,

consequently

g(ξ) := 1 + |ξ|σ2 ≥ 1

2
c−1

1 [h<,N0(ξ) + h<,N1(ξ)], ξ ∈ R2.

Therefore, by Lemma 3.2, we obtain Q ≺ g Pm. Since the polynomial Pm is hyperbolic ( by Gȧrding
) with respect to any vector N ∈ U(N0), (see [6] or [7], theorems 12.4.4 and 12.4.2 ), by virtue of
Theorem 3.3 of [16] for any N ∈ U(N0), there exists a number c2 > 0 such that

(Pm +Q) (ξ + i τ N) 6= 0, (ξ, τ) ∈ Rn+1, |τ | ≥ c2 g(ξ),

i.e. the polynomial Pm + Q is 1/σ2−hyperbolic with respect to any vector N ∈ U(N0) (see the
definition of s - hyperbolicity).

Statement 2). From the conditions on the vectors N1 , N2 and from Lemma 3.1, we have for
some constant c3 > 0

c−1
3 (1 + |ξ|)1/s ≤ h<,N1(ξ) + h<,N2(ξ) ≤ c3 (1 + |ξ|)1/s, ξ ∈ R2.

Carrying out calculations similar to those performed in the proof of part 1, we obtain that the
polynomial Pm +Q is s−hyperbolic with respect to any vector N ∈ U(N0).
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