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1 Introduction

Let H = L2[0, ω] be the complex Hilbert space of all (equivalence classes of) square integrable
functions on the closed interval [0, ω]. The inner product in the space L2[0, ω] is defined, as usually,
by

〈x, y〉 =
1

ω

∫ ω

0

x(s)y(s) ds

and the L2[0, ω] norm is induced by this inner product. We denote by W 1
2 [0, ω] the Sobolev space

of all absolutely continuous functions from [0, ω] whose derivatives (existing almost everywhere on
[0, ω]) belong to also in L2[0, ω].

We consider a differential operator L : D(L) ⊂ L2[0, ω] → L2[0, ω] generated by the differential
expression with an involution:

(lx)(s) =
dx

ds
(s)− q0(s)x(s)− q1(s)x(ω − s), s ∈ [0, ω], (1.1)

where x ∈ L2[0, ω] and q0, q1 ∈ L2[0, ω].
The domain D(L) of the operator L is defined by the general boundary conditions

D(L) = {x ∈ W 1
2 [0, ω] : x(0) = γx(ω)}, γ ∈ C, γ 6= 0. (1.2)

In this paper, we explore the spectral properties of the differential operator L. We employ the
method of similar operators (see [1, 3, 4, 5, 8, 9] and references therein).

The operators with an involution arise in various applications, such as the filtering and predic-
tion theory [22] and the study of subharmonic oscillations [26, 27]. In addition, operators with an
involution are interesting because of their relation to the Dirac operators [5, 13, 15, 20, 28].

First-order differential operators with periodic boundary conditions, an involution, and a smooth
potential were studied in a series of papers by A.P. Khromov and M.Sh. Burlutskaya (see [13, 14, 15,
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16, 17]). Second-order differential operators with an involution were investigated by A.M. Sarsenbi
and L.V. Kritskov (see [24] and references therein). In this paper, we shall study the spectral
properties of differential operators with an involution defined by differential expression (1.1) and
general boundary conditions (1.2). Other authors considered similar problems in [18, 19, 23, 25, 29,
30].

The authors of this paper studied first-order differential operators with an involution and periodic
boundary conditions in a series of papers [6, 7, 10, 11, 12]. The method of similar operators was also
used there. In [6] and [10], operators with a matrix potential were studied. In [6], estimates for the
weighted averages of eigenvalues and the equiconvergence of spectral decompositions were proved. In
[10], a differential operator was transformed into an orthogonal direct sum of finite rank operators
(see Definition 2). An operator group was then constructed to describe mild solutions of a mixed
problem. In this paper, we introduce a similarity transform which allows us to reduce the operator L
defined by (1.1) and (1.2) to the operator L1 with periodic boundary conditions and q0(s) ≡ const,
s ∈ [0, ω]. For the operator L1, the results from [6, 7, 10, 11, 12] can be applied.

The main result of this paper is Theorem 5.1, where we establish the similarity of the operator L
and an operator given by a direct sum of a single finite-rank operator and countably many rank-one
operators. This theorem allows us to obtain structural results about L and the group generated by it.
In particular, asymptotic estimates of the eigenvalues and eigenvectors of L appear in Theorems 5.2,
5.3, and the group generated by the operator L is exhibited in Theorem 5.4.

2 Notation and the first similarity transform

In this section, we introduce the necessary notation following [7, 10, 11, 12].
For a function v ∈ L2[0, ω], its Fourier series is given by

v(s) ∼
∑
n∈Z

v̂(n)ei
2πn
ω
s, s ∈ [0, ω],

where the Fourier coefficients are

v̂(n) =
1

ω

∫ ω

0

v(s)e−i
2πn
ω
s ds = 〈v, en〉, n ∈ Z.

Throughout this section, by H we denote an abstract Hilbert space and by EndH the Banach
algebra of all bounded linear operators in H. We shall also make use of the ideal of Hilbert-Schmidt
operators in H denoted by S2(H). The norm in S2(H) is ‖X‖2 = (trXX∗)1/2 =

(∑∞
n=1 |sn|2

)1/2,
where (sn) is the sequence of singular values of the operator X. We refer to [21] for the standard
properties of S2(H) used in this paper.

Let `p(Z), p > 1, be the complex Banach space of all p-summable sequences. If p = 2, then `2(Z)

is the Hilbert space with the inner product and the norm defined by 〈x, y〉 =
∑

n∈Z x(n)y(n) and
‖x‖2 =

(∑
n∈Z |x(n)|2

)1/2, x, y ∈ `2(Z), respectively.
We begin with the following definitions.

Definition 1 ([3]). Two linear operators Ai : D(Ai) ⊂ H → H, i = 1, 2, are called similar, if there
exists a continuously invertible operator U ∈ EndH such that

A1Ux = UA2x, x ∈ D(A2), UD(A2) = D(A1).

The operator U is called the similarity transform of A1 into A2.

Directly from Definition 1, we have the following result on spectral properties of similar operators.
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Lemma 2.1 ([9]). Let Ai : D(Ai) ⊂ H → H, i = 1, 2, be two similar operators with the similarity
transform U . Then the following properties hold.

(1) We have σ(A1) = σ(A2), σp(A1) = σp(A2), and σc(A1) = σc(A2), where σp denotes the point
spectrum and σc denotes the continuous spectrum.

(2) Assume that the operator A2 admits a decomposition A2 = A21 ⊕ A22 with respect to a direct
sum H = H1 ⊕H2, where A21 = A2|H1 and A22 = A2|H2 are the restrictions of A2 to the respective
subspaces. Then the operator A1 admits a decomposition A1 = A11 + A12 with respect to the direct
sum H = H̃1 ⊕ H̃2, where A11 = A1|H̃1 and A12 = A1|H̃2 are the restrictions of A1 to the respective
invariant subspaces. Moreover, if P is the projection onto H1 parallel to H2, then P̃ = UPU−1 is
the projection onto H̃1 parallel to H̃2.

(3) If λ0 is an eigenvalue of the operator A2 and x is a corresponding eigenvector, then y = Ux
is an eigenvector of the operator A1 corresponding to the same eigenvalue λ0.

(4) If A2 is a generator of a C0-semigroup (group) T2 : J→ EndH, J = {R,R+}, then the operator
A1 generates the C0-semigroup (group) T1(t) = UT2(t)U−1, t ∈ J, T1 : J→ EndH, J = {R,R+}.

We begin the study of the operator L defined by (1.1) and (1.2) with a similarity transform of L
into the operator L̃ with

D(L̃) = {x ∈ W 1
2 [0, ω] : x(0) = x(ω)}. (2.1)

By ln γ, γ 6= 0, we denote the complex number z0 satisfying ez0 = γ and 0 6 arg z0 6 arg z for all
z ∈ C with ez = γ. We then let

g0(s) = q0(s) +
ln γ

ω
, g1(s) = q1(s)γ

2s
ω
−1, s ∈ [0, ω], (2.2)

and define W ∈ EndL2[0, ω] by

(Wz)(s) = γ−
s
ω z(s), s ∈ [0, ω]. (2.3)

The main result of this section is

Theorem 2.1. The operator L is similar to the operator L̃ : D(L̃) ⊂ L2[0, ω]→ L2[0, ω] defined by

(L̃y)(s) = y′(s)− g0(s)y(s)− g1(s)y(ω − s), (2.4)

and domain (2.1). The functions g0, g1 ∈ L2[0, ω] in (2.4) are defined by (2.2). The similarity
transform W of L into L̃ is given by (2.3).

Proof. We have

(LWz)(s) = γ−
s
ω z′(s)− ln γ

ω
γ−

s
ω z(s)− q0(s)γ−

s
ω z(s)− q1(s)γ

s−ω
ω z(ω − s)

and

L̃ = (W−1LWz)(s) = z′(s)−
(

ln γ

ω
+ q0(s)

)
z(s)− q1(s)γ

2s
ω
−1z(ω − s).

The assertion about the domains is straightforward.
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3 Direct sums

We need to extend Property (2) in Lemma 2.1 to the case of countable direct sums [7, 10, 11, 12].
To do this, we assume that the abstract Hilbert space H can be written as

H =
⊕
l∈Z

Hl,

where each Hl, l ∈ Z, is a closed nonzero subspace of H, Hj is orthogonal to Hl for l 6= j ∈ Z, and
each x ∈ H satisfies x =

∑
l∈Z xl, where xl ∈ Hl and ‖x‖2 =

∑
l∈Z ‖xl‖2. In other words, we have a

disjunctive resolution of the identity
P = {Pl, l ∈ Z},

that is a system of idempotents with the following properties:
1) P ∗l = Pl, l ∈ Z;
2) PjPl = δjlPl, j, l ∈ Z, where δjl is the Kronecker delta;
3) the series

∑
l∈Z Plx converges unconditionally to x ∈ H and ‖x‖2 =

∑
l∈Z ‖Plx‖2;

4) equalities Plx = 0, l ∈ Z, imply x = 0 ∈ H;
5) Hl = ImPl, xl = Plx, l ∈ Z.

Definition 2 ([7, 11]). We say that a closed linear operator A : D(A) ⊂ H → H is represented as
an orthogonal direct sum of bounded operators Al ∈ EndHl, l ∈ Z, that is

A =
⊕
l∈Z

Al,

if the following three properties hold.
1. D(A) = {x ∈ H :

∑
l∈Z ‖Alxl‖2 <∞, xl = Plx, l ∈ Z} and Hl ⊂ D(A) for all l ∈ Z.

2. For each l ∈ Z, the subspace Hl is an invariant subspace of the operator A and Al is the
restriction of A to Hl. The operators Al, l ∈ Z, are called the parts of the operator A.

3. Ax =
∑

l∈ZAlxl, x ∈ D(A), where xl = Plx, l ∈ Z, and the series converges unconditionally
in H.

Definition 3 ([7, 11]). Given a continuously invertible operator U ∈ EndH and an orthogonal
decomposition of H, a U-orthogonal decomposition of H is the orthogonal direct sum

H =
⊕
l∈Z

UHl.

Definition 4 ([7, 11]). Given a continuously invertible operator U ∈ EndH, we say that a closed
linear operator A : D(A) ⊂ H → H is a U -orthogonal direct sum of bounded linear operators Ãl,
l ∈ Z, if Ãl = UAlU

−1, l ∈ Z, and
U−1AU =

⊕
l∈Z

Al.

We remark that U -orthogonal decompositions and direct sums can be viewed as orthogonal with
respect to the inner product

〈x, y〉U = 〈Ux, Uy〉, x, y ∈ H.

We write L̃ = L0−V , where L0 : D(L0) = D(L̃) ⊂ L2[0, ω]→ L2[0, ω] is the differential operator
L0 = d/ds with periodic boundary conditions (2.1) and

(V y)(s) = g0(s)y(s) + g1(s)y(ω − s), s ∈ [0, ω].
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The operator V is well defined because D(L0) ⊂ D(V ). We shall treat the operator L̃ as a
perturbation of L0 by V .

We shall illustrate the notion of direct sums of operators with the help of an operator L0. We shall
call this operator unperturbed or free. The operator L0 possesses simple eigenvalues λn = i2πn/ω,
n ∈ Z, and its spectrum satisfies σ(L0) = ∪n∈Zσn, where σn = {λn}, n ∈ Z. An eigenvector that
corresponds to an eigenvalue λn, n ∈ Z, is given by en(s) = ei

2πn
ω
s, s ∈ [0, ω]. The spectral projections

Pn = P (σn, L0), n ∈ Z, are defined by

(Pny)(s) = ŷ(n)ei
2πn
ω
s, y ∈ L2[0, ω], n ∈ Z, s ∈ [0, ω].

We let Hn = ImPn, n ∈ Z. Then L0 is an orthogonal direct sum of the operators L0l = L0|Hl = λlIl,
where Il is the identity operator on Hl = ImPl, l ∈ Z. In other words, L0 =

⊕
l∈Z

λlIl. This

representation is with respect to the orthogonal decomposition of L2[0, ω] given by L2[0, ω] =
⊕
l∈Z
Hl.

Given m ∈ Z+, consider a new resolution of the identity

P(m) = {P(m)} ∪ {Pl, |l| > m, l ∈ Z},

where P(m) =
∑
|l|≤m Pl. Then the operator L0 may also be represented as an orthogonal direct sum

L0 = L0(m) ⊕
( ⊕
|l|>m,l∈Z

L0l

)
= L0(m) ⊕

( ⊕
|l|>m,l∈Z

i
2πl

ω
Il

)
, (3.1)

where L0(m) is the restriction of L0 to H(m) = ImP(m). Representation (2.1) is with respect to the
orthogonal decomposition L2[0, ω] = H(m) ⊕

( ⊕
|l|>m,l∈Z

Hl

)
. Observe that L0(m) =

⊕
|l|6m,l∈Z

i2πl
ω
Il with

respect to the decomposition H(m) =
⊕

|l|6m,l∈Z
Hj.

4 The second similarity transform

Theorem 4.1. We have L1 = W̃−1L̃W̃ , where

(W̃y)(s) = (exp

∫ s

0

(g0(τ)− ĝ0(0)) dτ)y(s), s ∈ [0, ω], (4.1)

(L1y)(s) =
dy

ds
−
( ln γ

ω
− q̂0(0)

)
y(s)− v(s)y(ω − s),

v(s) = g1(s)exp
( ∫ ω−s

s

(g0(τ)− ĝ0(0)) dτ
)

=
∑
l∈Z

v̂(l)ei
2πl
ω
s, (4.2)

and D(L1) = D(L).
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Proof. Firstly, (W̃−1y)(s) = exp (−
∫ s

0
(g0(τ)− ĝ0(0)) dτ)y(s) and

(L̃W̃x)(s) = L̃
(

exp
( ∫ s

0

(g0(τ)− ĝ0(0)) dτ
)
x(s)

)
=

= (g0(s)− ĝ0(0))exp
( ∫ s

0

(g0(τ)− ĝ0(0)) dτ
)
x(s)+

+ exp
( ∫ s

0

(g0(τ)− ĝ0(0)) dτ
)dx
ds
− g1(s)exp

( ∫ ω−s

0

(g0(τ)−

− ĝ0(0)) dτ
)
x(ω − s)− g0(s)exp

( ∫ s

0

(g0(τ)− ĝ0(0)) dτ
)
x(s) =

= exp
( ∫ s

0

(g0(τ)− ĝ0(0)) dτ
)dx
ds
− g1(s)exp

( ∫ ω−s

0

(g0(τ)−

− ĝ0(0)) dτ
)
x(ω − s)−

( ln γ

ω
+ q̂0(0)

)
exp

( ∫ s

0

(g0(τ)− ĝ0(0)) dτ
)
x(s).

Secondly,

L1 = (W̃−1L̃W̃x)(s) =
dx

ds
− g1(s)exp

(
−
∫ s

0

(g0(τ)−

− ĝ0(0)) dτ
)
exp

( ∫ ω−s

0

(g0(τ)− ĝ0(0)) dτ
)
x(ω − s)−

−
( ln γ

ω
+ q̂0(0)

)
x(s) =

dx

ds
− g1(s)exp

( ∫ ω−s

s

(g0(τ)−

− ĝ0(0)) dτ
)
x(ω − s)−

( ln γ

ω
− q̂0(0)

)
x(s) =

=
dx

ds
− v(s)x(ω − s)−

( ln γ

ω
+ q̂0(0)

)
x(s),

where v was defined by (4.2).
Let z(s) = (W̃y)(s), where y(0) = y(ω) and W̃ is defined by (4.1). Then

z(0) = exp
( ∫ 0

0

(g0(τ)− ĝ0(0)) dτ
)
y(0) = y(0),

z(ω) = exp
( ∫ ω

0

(g0(τ)− ĝ0(0)) dτ
)
y(ω) =

= exp (ω(ĝ0(0)− ĝ0(0)))y(ω) = y(ω),

and the result is proved.

5 Main results

Our main Theorem 5.1 exhibits several spectral properties of the operator L. It follows by Lemma 2.1
and an application of [7, Theorem 2.6], [10, Theorem 1], [11, Theorem 3], and [12, Theorem 1] to
the operator L1. In the formulation of the theorem, we use the notation introduced in the previous
sections.

Theorem 5.1. There exists a number n ∈ Z+, such that the operator L is similar to the operator
L0 −

(
ln γ
ω

+ q̂0(0)
)
I − B, where the operator B belongs to the space S2(L2[0, ω]), and the subspaces
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H(m) = ImP(m), Hl = ImPl, |l| > m, l ∈ Z+, are invariant subspaces of the operator B. The
operator L0 −B is the orthogonal direct sum:

L0 −B =
(

(L0(m) −B(m))⊕
(⊕
|l|>m

(
i
2πl

ω
Il −Bl

)))
with respect to the orthogonal decomposition L2[0, ω] = H(m) ⊕

(⊕
|l|>mHl

)
; the dimension of H(m)

is 2m + 1 and the dimension of each Hl, |l| > m, is one. Moreover, there exists U ∈ S2(L2[0, ω]),
such that with Ũ = (I + U)W̃W , the operator L is the Ũ-orthogonal direct sum:

L = Ũ
((

(L0(m) −B(m))⊕
(⊕
|l|>m

(
i
2πl

ω
Il −Bl

)))
−

−
( ln γ

ω
+ q̂0(0)

)
I
)
Ũ−1

with respect to the Ũ-orthogonal decomposition L2[0, ω] = ŨH(m) ⊕
(⊕

l>m ŨHl

)
.

The operator U in Theorem 5.1 can be effectively calculated as the limit of a sequence of operators
that emerge when applying the method of simple iterations to a Riccati-type equation (see [1, 3, 4,
5, 6, 7, 8, 9, 11] for details).

A result similar to Theorem 5.1 for the operator L0 − V , where (V y)(s) = v(s)y(ω − s), was
proved in [6] using the approach from [5]. Theorem 1 from [10] and Theorem 1 from [12] are a
reformulation of Theorems 3.3 and 3.4 from [6] that takes into account the terminology introduced
above. Theorem 5.1 follows from [11, Theorem 3] or [7, Theorem 2.6], and Theorems 1 and 2 in this
paper.

It follows from Theorem 5.1, Lemma 2.1, and an argument in [5, Remark 2] that the spectrum
σ(L) of the operator L coincides with the union of the spectra of its parts. Therefore, we have the
following assertion.

Theorem 5.2. The spectrum σ(L) of the operator L can be represented in the form

σ(L) = σ(m) ∪
( ⋃
|l|>m

σl

)
,

where σ(m) consists of no more than 2m + 1 eigenvalues. The sets σl, |l| > m, are singletons:
σl = {λ̃l} with

λ̃l = i
2πl

ω
− q̂0(0)− ln γ

ω
− µl,

where the sequence {µl, |l| > m} belongs to `2. More precisely,

µl = v̂(2l) +
ω

2πi

∑
n 6=−j

v̂(n+ j)2

n+ j
+ ηl,

where the sequence {ηl, |l| > m} belongs to `1.
The normalized eigenvectors ul, |l| > m, of the operator L form a Riesz basis in the space L2[0, ω].

They satisfy the asymptotic estimate ‖ul − ũl‖2 6 αl, |l| > m,

ũl(s) = γ−
s
ω
se

s∫
0

(g0(τ)−ĝ0(0)) dτ
ei

2πl
ω
s, s ∈ [0, ω],

where the sequence {αl, |l| > m} belongs to `2.
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Let P̃m = P (σ(m), L) and P̃l = P ({λl}, L), |l| > m, be the spectral projections corresponding to
the sets σ(m) and σl = {i2πl

ω
− q̂0(0)− ln γ

ω
− µl}, |l| > m, respectively.

Theorem 5.3. We have

lim
n→∞

‖P̃(m) +
∑
|l|>m

P̃l −
n∑

l=−n

ŨPlŨ
−1‖2 = 0.

Definition 5. Two families of idempotents {Pn, n ∈ Z} and {P̃n, n ∈ Z} are called equiconvergent
with respect to the U -orthogonal decomposition of H or U -equiconvergent, if

lim
N→∞

∥∥∥∥∥∥
∑
|n|6N

(P̃n − ŨPnŨ−1)

∥∥∥∥∥∥ = 0.

Thus, Theorem 5.3 can be stated as a result on U -equiconvergence.

Theorem 5.4. The differential operator L is a generator of a C0-group T : R→ EndL2[0, ω]. This
group is similar to the group T̃ : R→ EndL2[0, ω] that admits the orthogonal decomposition

T̃ (t) = et(L0(m)−B(m)) ⊕
(⊕
|l|>m

e(i 2πl
ω
− ln γ

ω
−q̂0(0)+µl)tIl

)
, t ∈ R,

with respect to the decomposition L2[0, ω] = H(m) ⊕
(⊕

|l|>mHl

)
of the space L2[0, ω] with T (t) =

Ũ T̃ (t)Ũ−1, t ∈ R. The operator group T̃ can also be written as

T̃ (t) = e(L0(m)−B(m))tP(m) +
( ∑
|l|>m

e(i 2πl
ω
− ln γ

ω
−q̂0(0)+µl)tPl

)
, t ∈ R,

The above result motivates the terminology in the following definition.

Definition 6. A strongly continuous operator (semi)group T0 : J → EndH, J = {R,R+}, is called
a basic (semi)group for a strongly continuous operator (semi)group T : J → EndH if there exists
a strongly continuous operator-valued function V : J → EndH such that T (t) = T0(t)V (t) and
lim
t→∞
‖V (t)‖ = 0. If ‖V (t)‖ 6 e−βt, t > 0, for some β > 0, then we call T an exponentially basic

(semi)group.

If Re ln γ
ω
> 0 and Re q̂0(0) > 0, we have T̃ (t) = T0(t)V (t), where

T̃0(t) = e(L0(m)−B(m))t ⊕
(⊕
|l|>m

e−i
2πl
ω
tIl

)
, t ∈ R, (5.1)

V (t) =
⊕
|l|>m

e

(
− ln γ

ω
−q̂0(0)+µl

)
t
Il, t ∈ R.

It follows that the group T0 : R→ EndH is exponentially basic for the group T̃ : R→ EndH.
The existence of the operator group T , guaranteed by Theorem 5.4, is important because it allows

one to use the results, for example, from [2] on exponential dichotomy and the estimates for Green’s
function.
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