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1 Introduction

This article is not on algebra, as someone might think, rather on the model theory, which is located at
the junction of logic and algebra. Recall that an infinite model M is called minimal if any first-order
formula over M defines either a finite or cofinite subset in it. This concept of minimality played a
major role in the development of the model theory, starting a model-theoretic generalization of the
important algebraic concepts such as dependence, exchange principle, basis and dimension.

The study of minimal rings was undertaken in [2]. Later in [3], the concept of linear minimality
was introduced for rings, as a weakened version of the minimality, and it was shown that it can be
naturally extended to algebras. The motivation of this research was the following hypothesis.

Hypothesis. An infinite field is interpreted in any non-trivial minimal ring.
In [2] this hypothesis was confirmed for Jordan rings of characteristic different from 2, furthermore

it has been proved that the minimality can be replaced by the linear minimality [1]. With regard to
the characteristic 2, in this case, Jordan rings do not allow classical linear axiomatization in which
all previous studies were fulfilled. There are many different approaches, and in this paper we choose
the quadratic axiomatization.

Quadratic Jordan algebras are defined as vector spaces with additional operators U and σ, where
U is a binary operator that is quadratic in the first variable and linear in the second one; σ is a
quadratic unary operator. Here, as it is customary to the theory of quadratic Jordan algebras, we
write Uxy and x2 instead of U(x, y) and σ(x) respectively. We also denote by Ux a linear operator
U(x, ·). The following multilinear operators are defined in the standard way:

{x, y, z} := Vx,yz := Ux,zy := Ux+zy − Uxy − Uzy;

Vxy := (x+ y)2 − x2 − y2.

In this signature quadratic Jordan algebras distinguished by the following axioms:

(QJ1) Vx,x = Vx2

(QJ2) UxVx = VxUx
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(QJ3) Uxx
2 = (x2)2

(QJ4) Ux2 = U2
x

(QJ5) UxUyx
2 = (Uxy)2

(QJ6) UUxy = UxUyUx.

In addition, it is required that these axioms hold not only in the algebra, but that they also
continue to hold in all scalar extensions of it. This turns out to be equivalent to the condition that
all formal linearizations of these identities (QJ1)-(QJ6) remain valid on the algebra itself.

2 Surjectivity of quadratic Jordan algebras

Initially, the linear minimality and the surjectivity properties were introduced for rings and algebras
in a general linear axiomatization context [3], [4]. Here we adapt them for quadratic Jordan algebras.

First of all it is necessary to clarify the definition of the multiplication algebra.

Definition 1. LetQ = 〈Q; +, U, σ, 0〉 be a quadratic Jordan algebra over a field F . Themultiplication
algebra T(Q) of the algebra Q is generated by the identity mapping idQ : x 7→ x together with maps
of the form Ua, Ua,b, Va, Va,b, a, b ∈ Q, in the algebra E(Q) of all linear transformations of the vector
space 〈Q; +, 0〉. So, T(Q) is a unital associative algebra over F with the unit idQ.

Note that when charF 6= 2 this definition of the multiplication algebra coincides with the classical
one [5].

Definition 2. An infinite quadratic Jordan algebraQ is surjective provided that every nonzero linear
mapping from the multiplication algebra T(Q) is a surjective mapping; it is linearly minimal (briefly,
l-minimal) if it is surjective and every nonzero linear mapping from T(Q) has a finite kernel.

Now let us recall some definitions from [7].

Definition 3. An element a of a quadratic Jordan algebra is weakly trivial if Ua ≡ 0. An element b
is trivial if it is weakly trivial and b2 = 0. An algebra is (weakly) trivial if each element is (weakly)
trivial.

In a weakly trivial algebra Q we have Ua ≡ Ua,b ≡ Va,b ≡ 0 for all a, b ∈ Q. In such an algebra
(QJ2), (QJ4)-(QJ6) hold trivially; (QJ1) becomes

(QJ1)′ Vx2 ≡ 0

and (QJ3) takes the form
(QJ3)′ (x2)2 ≡ 0.
The following is Surjective Unit Lemma 18.1.4 from [7]. We present it here with a proof for an

arbitrary characteristic (to provide a completeness).

Proposition 2.1. If a surjective quadratic Jordan algebra contains an element which is not weakly
trivial, then the algebra is unital.

Proof. So, assume that Q = 〈Q; +, U, σ, 0〉 is a surjective quadratic Jordan algebra and there exists
a ∈ Q with nonzero Ua. Then the operator Ua is surjective. Let the element b ∈ Q be such that
Uab = a. Then by (QJ6) we have

Ua = UaUbUa. (2.1)
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Hence, the operators Ub, UbUa are also nonzero, therefore they are both surjective too. Now from
(2.1) we get Ker Ua =Ker Ub = {0}: if Ker Ua \ {0} is non-empty, then for some c ∈ Q we have
UbUac ∈ Ker Ua \ {0}, so

Uac 6= 0 = UaUbUac

which contradicts (2.1); similarly, if Ker Ub \ {0} is non-empty, then an element c ∈ Q such that

Uac ∈ KerUb \ {0}

leads to a contradiction. Thus, both operators Ua, Ub are invertible. From (2.1) we get also UaUb =
idQ or Ub = U−1

a .
Let us denote e = Uab

2, then by (QJ6) and (QJ4) we obtain

Ue = UaUb2Ua = UaU
2
bUa = idQ.

Let E := {x ∈ Q : Ux = idQ}. This set is non-empty, since e ∈ E. Moreover, from (QJ4) it follows
that e2 ∈ E. Furthermore, e2 is an idempotent, since, by virtue of (QJ3), we have

(e2)2 = Uee
2 = e2.

Hence, by Proposition 5.2.4 from [7], e2 is the unit element of algebra Q.

Remark 1. (a) The proof of Proposition 2.1 shows that in a surjective quadratic Jordan algebra
each element is either weakly trivial or invertible. If Ua 6≡ 0 then the unique b such that Uab = a is
called the inverse of a and can be denoted by b = a−1; for this b we have Ub = U−1

a .
(b) In a unital algebra the operator σ can be defined via U : σx = Ux1, where 1 stands for the unit
element. Therefore there is no need to consider it separately (it is sufficient to work only with U).
In particular, in a unital Jordan algebra the notions of triviality and weakly triviality coincide, since
Ux ≡ 0 implies x2 = Ux1 = 0.

Lemma 2.1. The identity

Ux+y(x+ y) = Ux(x+ y) + Uy(x+ y) + Vx2y + Vy2x

holds in any quadratic Jordan algebra.

Proof. By the definition of multilinear functions and (QJ1) we have

Ux+y(x+ y) = Ux(x+ y) + Uy(x+ y) + {x, x+ y, y} = Ux(x+ y) + Uy(x+ y) + {x, x, y}+ {x, y, y}

= Ux(x+ y) + Uy(x+ y) + Vx,xy + Vy,yx = Ux(x+ y) + Uy(x+ y) + Vx2y + Vy2x.

Lemma 2.2. In a surjective quadratic Jordan algebra weakly trivial elements form a subspace.

Proof. There is no problem if the algebra itself is weakly trivial, otherwise by Proposition 2.1 the
algebra is unital and each weakly trivial element is trivial (see Remark 1.(b) above). Let a, b be any
trivial elements and λ ∈ F . We have to show that λa and a+ b are trivial. For λa we have

Uλa = λ2Ua = λ20 ≡ 0.

There is no problem if a+ b = 0. Let a+ b 6= 0. By Lemma 2.1 we have

Ua+b(a+ b) = Ua(a+ b) + Ub(a+ b) + Va2b+ Vb2a = 0 + 0 + 0 + 0 = 0.

So, 0 6= a+ b ∈ Ker Ua+b and the operator Ua+b is not invertible. Then by Remark 1.(a) above a+ b
is (weakly) trivial.
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Notation. From now on we fix a surjective (non-trivial) quadratic Jordan algebraQ = 〈Q; +, U, σ, 0〉
over F and denote by A its subspace of weakly trivial elements. If Q is unital we denote its unit by
1 and, identifying each λ ∈ F by λ1 ∈ Q, we can assume that F ⊆ Q. Since U1 = idQ, obviously
1 6∈ A.

We notice that the subspace A is U -invariant, that is if a ∈ A then Uxa ∈ A for any x ∈ Q.
Indeed, Ua ≡ 0 implies UUxa = UxUaUx ≡ 0 by (QJ6).

Lemma 2.3. For any a ∈ A and for all x, y ∈ Q we have

{x, a, y} = Ux+ya− Uxa− Uya ≡ 0.

Proof. If {b, a, c} 6= 0 for some a ∈ A and b, c ∈ Q then A 6= Q and by the surjectivity property the
map x ϕ7→ {b, a, x} will be surjective, giving Q = Im ϕ ⊆ A+A+A = A, which is a contradiction.

Lemma 2.4. A = {0} or A is an infinite subspace.

Proof. Let 0 6= a ∈ A. By Lemma 2.3, the mapping x ϕa7→ Uxa is an endomorphism with Ker ϕa = A
and Im ϕa ⊆ A. Thus, Q+/A ∼= Im ϕa implies the infinity of A.

The following proposition is true in a more general context. We use the surjectivity just to get a
shorter proof (see 1.8.3 in [7] for the definition of ideals).

Proposition 2.2. A is an (inner) ideal in Q, so the quotient algebra Q = Q/A is well-defined.

Proof. If A = {0} or A = Q then the statement of the proposition is obvious. Let A 6= {0} and
A 6= Q. By Proposition 2.1, Q is unital. We have already seen that if a ∈ A then Ua ≡ 0,
a2 = Ua1 = 0, Uxa ∈ A and {x, a, y} = 0 for any x, y ∈ Q. So, it remains to show that Ux,ay ∈ A for
any x, y ∈ Q (no need to check Vxa ∈ A because of Vxa = Ux,a1 ).

Let a ∈ A. The identity (see the identity (QJ7) on the page 22 of [6])

UxUyUa + UaUyUx + Ux,aUyUx,a = UUay,Uxy + UUx,ay

gives Ux,aUyUx,a = UUx,ay. Since A ⊆ Ker(Ux,aUyUx,a), the map UUx,ay is not invertible. So, Ux,ay ∈ A
(in fact, we have Ux,a ≡ 0: from Ux,a1 ∈ A it follows (Ux,a)

2 = Ux,aU1Ux,a = UUx,a1 ≡ 0 and then the
surjectivity implies Ux,a ≡ 0).

Definition 4. We say that the algebra Q has a trivial linear part if {x, y, z} ≡ 0 and Vxy ≡ 0 for
all x, y, z ∈ Q

Remark 2. If Vxy ≡ 0, in particular, if the algebra Q has a trivial linear part, then σ is an
endomorphism of the abelian group 〈Q; +, 0〉. Moreover, if charF 6= 2 then σ ≡ 0. Indeed, on one
hand, σ is an endomorphism and σ(2x) = σ(x + x) = σx + σx = 2(σx) for each x ∈ Q. On the
other hand, since σ is quadratic, σ(2x) = 4(σx). Then the equality 2(σx) = 4(σx) together with
charF 6= 2 implies σx = 0.

Lemma 2.5. If the algebra Q is weakly trivial then Va ≡ 0 for all a ∈ Q; that is Q has a trivial
linear part.

Proof. Suppose to the contrary that Va 6≡ 0 for some a ∈ Q. By the surjectivity property, Va
is surjective and Ker Va is a proper subspace of Q. For any b ∈ Q, σb = b2 ∈ Im σ we have
Vab

2 = Vb2a = 0 by (QJ1)′. So Im σ ⊆ Ker Va. Then from the identity Vax = (x + a)2 − a2 − x2 we
get that

Im Va ⊆ Im σ − Im σ − Im σ ⊆ Ker Va,

contradicting the surjectivity of Va.
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Proposition 2.3. If charF 6= 2 then Q is a division algebra.

Proof. Assume the contrary, let A 6= {0}. If A = Q then, by Lemma 2.5, Q has trivial linear part;
and by Remark 2 the algebra Q is trivial, a contradiction.

So, let A 6= Q. Then Q is unital. Since charF 6= 2, for any 0 6= a ∈ A we have {1, a, 1} =
U1+1a− U1a− U1a = 4a− a− a = 2a 6= 0. This contradicts Lemma 2.3.

Proposition 2.3 improves the result of [1]; there the division property was proved under the
stronger assumption of the linear minimality.

3 Triviality of linear part

From here point to the end of the article, we will assume that charF = 2.

Definition 5. In a unital quadratic Jordan algebra the powers of elements can be defined as usual:
x0 = 1, x1 = x and x2n = Uxn1, x2n+1 = Uxnx for positive integer n (see page 26 of [6]). If xn = 1 for
some positive integer n, then the smallest n with this property is called the order of x and we write
|x| = n; otherwise, we say that x is of infinite order and write |x| =∞.

First we recall some basic properties of orders.
Claim 1. (1) If there is an element of even order then there is an element of order 2; in particular,
σ is not injective.
(2) If |x| = 2n− 1 then x2n = x, so x ∈ Im σ.

Proof. (1) If |x| = 2n then by definition x2n = Uxn1 = 1 and xn 6= 1. So for y = xn we have y 6= 1
and y2 = Uy = 1. This means that |y| = 2.
(2) Let |x| = 2n−1 then U2n−1

x = Ux2n−1 = U1 = idQ, so there is the inverse mapping U−1
x = U2n−2

x =
Ux2n−2 = Uy for y = x2n−2. We have

Uyx = Ux2n−2x = Uxn−1(Uxn−1x) = Uxn−1x2n−1 = Uxn−11 = x2n−2 = y,

so x = U−1
y y = Uxy = Ux(Uxn−11) = Uxn1 = x2n.

Proposition 3.1. If Q is l-minimal, then Vx ≡ 0 for any x ∈ Q.

Proof. Assume the contrary: Vx 6≡ 0 for some x ∈ Q. Then, by the minimality, Vx is a surjective
map with a finite kernel Ker Vx. Since char(F ) = 2, we notice that

Vxx = (x+ x)2 + x2 + x2 = 0.

So, {0, x} ⊆ KerVx, whence |KerVx| > 1.
Now, by Lemma 2.5 the algebra Q is not weakly trivial, hence by Proposition 2.1 it is unital.

Since char(F ) = 2, as a consequence of the following identity (see the identity (QJ20) on the page
24 of [6])

Va2 = V 2
a − 2Ua ,

we get Va2 = V 2
a for each a ∈ Q. We can proceed further by induction and show that the identity

Vak = V k
a

holds for each k = 2n, where n is positive integer. Hence for such k we have

Vxx
k = Vxkx = V k

x x = V k−1
x (Vxx) = V k−1

x 0 = 0 .

This means that
{
x, x2, x4, . . . , x2n , . . .

}
⊆ KerVx. But KerVx is finite, so for some m 6= n we have

x2m = x2n . This is a contradiction, as on one hand, we have Vx2m = Vx2n , and on the other hand
|KerVx2m | = |KerV 2m

x | = |KerVx|2
m 6= |KerVx|2

n
= |KerV 2n

x | = |KerVx2n |.
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Now let us give a conclusion on the structure of the algebraQ when it is weakly trivial. By Lemma
2.5 (see also Remark 2), σ is an endomorphism of the abelian group 〈Q; +, 0〉 and (QJ3)′ provides
that Im σ ⊆ Ker σ. Vice versa, it is easy to check that any vector space together with a quadratic
endomorphism σ of 〈Q; +, 0〉 such that Im σ ⊆ Ker σ, provides a weakly trivial, linearly minimal
quadratic Jordan algebra, since its multiplication algebra consists of only scalar multiplications.
Example. Let F be an infinite field of characteristic 2 and Q = F ×F = F 2. If we define U ≡ (0, 0)
and a quadratic function σ : Q → Q so that σ(x, y) = (0, x2), then Im σ ⊂ Ker σ, and we get a
weakly trivial, linearly minimal quadratic Jordan algebra.

We will not classify linearly minimal weakly trivial quadratic Jordan algebras: firstly, they are
not so interesting, since the presence of U -operators is fictitious; secondly, the linear minimality
condition does not have a structural impact on them. They exist, as shown above, and we leave
them at that.

In what follows we assume that our algebra contains a non weakly trivial element. By Proposition
1, it is equivalent to the following assumption.
Assumption 1. A 6= Q and Q is unital.

So, from now on A is the subspace of trivial elements (see Remark 1.(b)).

Lemma 3.1. If Q is l-minimal then UxUy1 = UyUx1 for any x, y ∈ Q.

Proof. We use the identity (QJ30) from [6] : (Vxy)2 = Uxy
2 + Uyx

2 + VyUxy . Since by Proposition
3.1 (Vxy)2 = VyUxy = 0, we have UxUy1 = Uxy

2 = Uyx
2 = UyUx1.

Proposition 3.2. If Q is l-minimal then it has a trivial linear part.

Proof. Assume the contrary: {a, b, c} 6= 0 for a, b, c ∈ Q. The l-minimality, Lemmas 2.3 and 2.4
imply A = {0}. Also, by Proposition 3.1 and Remark 2, the map σ is an endomorphism. Moreover,
it is a monomorphism, since Ker σ = A = {0} (we note that by Remark 1.(a) we have Ua1 = a2 =
0 ⇔ Ua ≡ 0 ⇔ a ∈ A ⇔ a = 0). Let x, y ∈ Q be arbitrary elements and z ∈ Im σ. Let z = w2 for
w ∈ Q. Then by Lemma 3.1, we get Ux+yz = Ux+yUw1 = UwUx+y1 = Uw(x + y)2 = Uwx

2 + Uwy
2 =

Uxw
2 + Uyw

2 = Uxz + Uyz , which exactly means that

{x, z, y} = Ux,yz = Ux+yz − Uxz − Uyz = 0.

Since Im σ is infinite, the linear minimality implies {x, z, y} ≡ 0 for all x, y, z ∈ Q. This contradicts
{a, b, c} 6= 0.

Let us note that if Q has a trivial linear part, then the multiplication algebra T(Q) is generated
by the operators of the form Ux.

4 Linearly minimal division Jordan algebras

Let Q be a unital quadratic Jordan algebra with a trivial linear part. We will use the following
corollaries of the triviality: Ux+y = Ux + Uy and (x+ y)2 = x2 + y2 for all x, y ∈ Q.

Remark 3. Until Assumption 2, neither an infinity nor the l-minimality of algebra Q will be used.

Lemma 4.1. The algebra T(Q) is commutative.

Proof. We use the identity UxUyUz + UzUyUx + Ux,zUyUx,z = UUzy,Uxy + UUx,zy again (see the proof
of Propostion 2.2). Since the algebra has a trivial linear part, this identity gives UxUyUz = UzUyUx.
Putting z = 1 we get UxUy = UyUx for arbitrary x, y ∈ Q. So, since the generators commute, the
algebra T(Q) is commutative.
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Definition 6. We say that an element c ∈ Q is normal if Ucb2 ∈ Im σ for all b ∈ Q. Let N be a set
of normal elements in Q.

Proposition 4.1. N is a subspace of Q and Imσ ⊆ N .

Proof. Let c, d ∈ N , b ∈ Q and λ ∈ F . Assume that Ucb2 = x2, Udb2 = y2 ∈ Im σ. Then
Uλcb

2 = λ2Ucb
2 = (λx)2 ∈ Im σ. Moreover, by the triviality of the linear part

Uc+db
2 = Ucb

2 + Udb
2 = x2 + y2 = (x+ y)2 ∈ Imσ .

Hence, N is a subspace. Also, by (QJ4), Lemma 4.1 and (QJ6), we have for any a ∈ Q

Ua2b2 = UaUaUb1 = UaUbUa1 = (Uab)
2 ∈ Imσ .

Thus Im σ ⊆ N .

Let Φ = 〈{a2 : a ∈ F}; +, ·, 0, 1〉. Then Φ is a subfield of F and it is isomorphic to F via σ. Now
Q can be considered as an algebra QΦ over Φ. If so, ΣΦ = 〈Imσ; +, U, 0, 1〉 becomes its subalgebra,
since Im σ is obviously closed under multiplications by scalars from Φ.

Lemma 4.2. The mapping σ : QF → ΣΦ is a homomorphism, hence QF/A ∼= ΣΦ.

Proof. Let x, y ∈ Q and λ ∈ F . Then since σ is quadratic, by definition we have

σ(λx) = λ2σx = σλ · σx .

Since the algebra has a trivial linear part

σ(x+ y) = σx+ σy .

By (QJ5), Lemma 4.1 and (QJ4), we have

σ(Uxy) = (Uxy)2 = UxUyx
2 = UxUyUx1 = UxUxUy1 = UxUxy

2 = Ux2y2 = Uσxσy .

We know that Ker σ = A. Thus σ is a homomorphism indicating that QF/A and ΣΦ are isomorphic
algebras.

The remaining of the section is devoted to complete characterization of linearly minimal division
Jordan algebras. So from now we continue using the following assumption.
Assumption 2. Q is a linearly minimal division Jordan algebra, that is A = {0}.

First let us discuss some immediate corollaries of this assumption.
Observations 1. The map σ : QF → ΣΦ is an isomorphism. So the inverse mapping ρ := σ−1 :

ΣΦ → QF is well-defined.
2. If all elements have finite order, then σ is an automorphism of Q+, since each element must

have odd order (by Claim 1 in Section 3). In this case N = Im σ = Q.

Lemma 4.3. If c ∈ N then
(1) Uac ∈ N for any a ∈ Q;
(2) ρ(Ucd

2) ∈ N for any d ∈ N ;
(3) c−1 ∈ N .



26 Ye. Baissalov, A. Aljouiee

Proof. The commutativity of the algebra T(Q) is used in the proof of each item. Let b ∈ Q be an
arbitrary element.

(1) If Ucb2 = x2, then by (QJ6) we have UUacb2 = UaUcUab
2 = UaUaUcb

2 = UaUax
2 = UaUaUx1 =

UaUxUa1 = UUax1 = (Uax)2. This means that Uac ∈ N .
(2) Ucd2 ∈ Imσ ⊆ N , so Uρ(Ucd2)b

2 = Uρ(Ucd2)Ub1 = UbUρ(Ucd2)1 = Ub(Ucd
2) ∈ Imσ by (1). Thus,

ρ(Ucd
2) ∈ N .

(3) By (QJ6) Uc−1b2 = Uc−1Ub1 = UcUc−1UbUc−11 = UcUUc−1b1 = Uc(Uc−1b)2 ∈ Imσ. So, c−1 ∈
N .

Definition 7. We define the symmetric bilinear form on N as follows: for x, y ∈ N

x · y := ρ(UxUy1) = ρ(Uxy
2) .

Proposition 4.2. N = 〈N ; +, ·, 0, 1〉 is a field and the subalgebra N = 〈N ; +, U, 0, 1〉 is a special
algebra N (+).

Proof. In order to prove that N is a field, the only identity we need to check is the associativity
law for · . We know that · is a commutative operation and T(Q) is commutative too. So, for any
a, b, c ∈ N we have

UaUbc
2 = UbUac

2,

which is equivalent to
a · (b · c) = b · (a · c) .

So, for any a, b, c ∈ N
a · (b · c) = a · (c · b) = c · (a · b) = (a · b) · c .

Thus, · is associative.
It is easy to verify the second statement of the proposition: x ·y ·x = x2 ·y = ρ(Ux2y2) = Uxy .

Definition 8. Let K = 〈K; +, ·, 0, 1〉 be a field with charK = 2 and let P be a quadratic Jordan
algebra over a subfield of K. We say that the special algebra P lives in the field K if P is a subalgebra
of K(+), where K(+) = 〈K; +, U, 0, 1〉 with Uxy = x2 · y .

By Proposition 4.1 ΣΦ lives in the field N. This leads to an important conclusion.

Corollary 4.1. The algebra Q lives in a field.

This corollary and the next lemma give a complete classification of l-minimal quadratic division
Jordan algebras.

Lemma 4.4. Any infinite quadratic Jordan division algebra living in a field is linearly minimal.

Proof. Let P = 〈P ; +, U, 0, 1〉 be an infinite quadratic Jordan division algebra living in a field Ψ. Let
f ∈ T(P) be a non-zero linear function. Then f(x) = ax for some a ∈ Ψ∗ and obviously Ker f = {0}.
First, we notice that a = f(1) ∈ P , hence a−1 ∈ P , since P is a division algebra. Now let b ∈ P be
any element. Then Ua−1b = a−2b ∈ P . Next, f(a−2b) = a−1b ∈ P , then f(a−1b) = b ∈ P . So, f is
surjective and P is linearly minimal.

Example. Let N = Z2(x, y), i.e. N is the field of all rational functions over Z2 in two variables x,
y. Let Φ = Z2(x2, y2) be the subfield of squares in N . Of course, any subfield of N containing Φ

would be a subalgebra of N (+)
Φ . Let P denote the subspace of N generated (over Φ) by the set of

vectors {1, x, y}. Then P = 〈P ; +, U, 0, 1〉 is a subalgebra of N (+)
Φ . So, P lives in the field N and it

is not a subfield, since xy 6∈ P .
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5 Main theorems

Now we are ready to prove the main results of the paper.

Theorem 5.1. Let Q be a l-minimal, unital quadratic Jordan algebra and charF = 2. Then
(1) if A = {0} then the algebra Q lives in a field;
(2) if A 6= {0} then the quotient algebra Q = Q/A lives in a field.

Proof. (1) just repeats Corollary 4.1.
(2) The quotient algebraQ inherits all properties of the algebraQ such as unitality, triviality of the

linear part and commutativity of the multiplication algebra. Moreover, it is a division algebra. So, if
Q is infinite, then all the results of the previous section, where we nowhere relied on the l-minimality
of algebra, are applicable toQ. Therefore, repeating the same reasoning that we conducted in Section
4, we prove that Q lives in a field.

Now let Q be a finite division algebra. All the results of the previous section, where we nowhere
relied on the infinity of algebra, remain valid for Q, since Q inherits from Q all the properties
necessary for them. According to Observation 2, all elements of Q are normal. Finally, Proposition
4.2 implies that Q = Ψ(+) for some field Ψ.

Example. Let F be a field of characteristic 2 (it may be finite) and let A be an infinite vector space
over F . We define operations over F × A as follows: for (f, a), (g, b) ∈ F × A we put

(f, a) + (g, b) := (f + g, a+ b)

and
(f, a)2 := (f 2, 0); U(f,a)(g, b) := (f 2g, f 2b) .

Then we obtain the quadratic Jordan algebra QF,A on F ×A, which is indeed the algebra F ·1+A of
trivial bilinear form [7]. It is easy to see that QF,A is a linearly minimal, unital algebra with a trivial
linear part; A = {0} × A is the inner ideal of trivial elements and the quotient algebra QF,A/A is
isomorphic to F (+).
Question. Let Q be a linearly minimal, unital quadratic Jordan algebra with the infinite ideal of
trivial elements, charF = 2. Is Q always special?

Theorem 5.2. Any minimal non-trivial quadratic Jordan algebra lives in a field with the same set
of elements.

Proof. Let Q = 〈Q; +, U, σ, 0〉 be a minimal quadratic Jordan algebra. Since each element of T(Q)
is definable by a first-order formula, Q is linearly minimal. By [2] (see also [1]) we can assume
charF = 2.

If Q is weakly minimal, then σ is an endomorphism of Q+ with Im σ ⊆ Ker σ (see the discussion
after Proposition 3.1). Since Q+/Ker σ ∼= Im σ, the subgroup Ker σ is infinite. But Ker σ is
definable by the formula σx = 0, so by minimality Ker σ = Q, i.e. Q is trivial.

Now, assume that Q is not weakly minimal, then it is unital by Proposition 2.1. The subspace
A ⊂ Q is definable by the formula ∀y(Uxy = 0), so it must be finite. Further, we get A = {0} by
Lemma 2.4.

Finally, let us note that the subspace N of normal elements is definable by the formula
∀y∃z(Uxσy = σz) and, by Proposition 4.1, it is an infinite subspace containing Im σ. So,
N = Q, again by the minimality of Q. Thus, by Proposition 4.2, Q = 〈Q; +, ·, 0, 1〉 is a field
and Q = Q(+).
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