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1 Introduction

Derivations of semigroup algebras have been studied in several works. M. Lashkarizadeh Bami
[11] considered first cohomology group of Clifford topological semigroups, D.E. Bagha [5] and N.D.
Gilbert [8] considered module derivations of inverse semigroups. In the present paper we will consider
semigroups which can be embedded in some groups as subsemigroups and we will show how to apply
the geometrical approach to study of their derivation algebra.

We apply the approach we studied in [3] and show that the derivations can be associated with
a category of adjoint action and the vector space of the so-called characters, i.e. mappings from
the set of morphisms of the category to complex numbers preserving the composition. Within the
framework of this paper, we will also propose a natural modification of the construction of internal
and external derivations, which significantly encapsulates the study of the space of derivations, taking
into account the geometric constructions that we introduce.

The main goal of this paper is to describe derivations in semigroup algebras, where the semigroup
satisfies the Maltsev conditions. We prove that the derivation algebra of such semigroup algebra is
embedded into the derivation algebra of some group. In addition, we describe the so-called quasi-
inner derivations as an ideal in the derivation algebra, which is useful for the further study of
differentiations in semigroup algebras.

We will use methods and ideas from papers [1], [2], [3], [4], [5].

2 Derivations of semigroup algebras

Consider a semigroup S with the identity element that can be embedded in some group G as a
subsemigroup. Necessary and sufficient conditions for the embeddability of a semigroup into a group
were found by A.I. Maltsev [14]. These conditions are represented as an infinite system of conditional
identities (quasi-identities). There are some examples of the quasi-identities:
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ap = aq → p = q,
pa = qa→ p = q,

ap = bq, ar = bs, cp = dq → cr = ds

where a, b, c, d, p, q, r, s are elements of the semigroup. The class of semigroups embeddable in
groups cannot be characterized by a finite number of conditional identities ([15]).

Let us consider a group G, a semigroup S ∈ G and its semigroup algebra C[S]. A linear map

D : C[S] −→ C[S],

satisfying the Leibniz rule

D(ab) = D(a)b+ aD(b), a, b ∈ C[S],

is called a derivation of the semigroup algebra.
Let Der(S) be the algebra of all derivations. A derivation of the following form

dx(a)
def
= xa− ax, x, a ∈ C[S],

is called an inner derivation. Let DerInn(S) be the algebra of all inner derivations. It is easy to see
that Der(S) .DerInn(S).

2.1 General definitions

Consider a semigroup S ∈ G with the identity element. We construct the category C associated with
the semigroup S.

1. A set of objects Obj(C) = G.

2. For each pair of objects a and b ∈ Obj(C) a set of maps Hom (a, b) = {(u, v) ∈ G× S|v−1u =
a, uv−1 = b}. Let Hom(C) be the set of all maps.

3. A composition of maps ϕ = (u1, v1) ∈ Hom (a, b), ψ = (u2, v2) ∈ Hom (b, c) is a map ϕ ◦ ψ ∈
Hom (a, c), such that

ϕ ◦ ψ = (u2v1, v2v1).

The composition of morphisms is associative, since the product of elements in a semigroup is
associative. The role of the identity map in Hom(a, a) is played by the map (a, e), where e is the
semigroup identity element. It is also worth to mention that two objects a, b ∈ Obj(C) are connected
if and only if there exists a semigroup element s ∈ S, such that b = sas−1. That means that the
group elements a and b belong to the same conjugated class [u], which leads us to the following
statement:

Proposition 2.1. The category C is a disjoint union of the categories C[u], where [u] is a congugated
class of the element u:

C =
⊔

[u]∈[S]

C[u].

Proof. The proof is the same as for Theorem 2 in [3].

If the considered semigroup S is a group then the corresponding category becomes a groupoid
which is studied in [3].
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2.2 Relation between semigroups and categories

Let G be a group generated by a semigroup S, then the category C, which is assosiated with S is a
subcategory of the groupoid Γ, which is associated with the group G.

In the following paragraph we are going to show that for every category C can be found a
semigroup S and a categoty CS, which is associated with S, so that the given category will be a
subcategory of the CS.

Consider a category C and its set of maps Hom(C). We associate each map with a pair of
numbers, i.e. ∀ϕi ∈ Hom(C) ϕi → (ai, bi). Consider a free semigroup SF < . . . ai, . . . , bi, . . . . >.
Compositions of maps in the category C define the relation in the semigroup, i.e. ϕi ◦ ϕj = ϕk or
(ai, bi) ◦ (aj, bj) = (ak, bk). The composition rule gives us a relation in the semigroup ak = ajbi,
bk = bjbi. Let R be the set of all relations. Consider the semigroup

S = SF < . . . , ai, . . . , bi, . . . . > /R.

Proposition 2.2. The category C is a subcategory of CS which is associated with the semigroup S.
The algebra of characters of C is a subalgebra of characters of CS.

Proof. Every map ϕ ∈ Hom(C) also exists in Hom(CS) and each pair of maps ϕ, ψ ∈ Hom(C) is
composable if and only if it is composable in Hom(CS) due to the construction.

2.3 Characters and derivations

The central definition of this paper is a definition of the character on the category C which has been
studied before in [3].

Definition 1. A map χ : Hom(C)→ C such that for every maps ϕ and ψ

χ(ϕ ◦ ψ) = χ(ϕ) + χ(ψ)

is called a 1-character on the 1-category.

Let X(C) be the space of all characters on C. It is easy to see that X(C) is an infinite-dimensional
vector space and, as we will show in Section 3, a Lie algebra.

Let G be the group generated by S. Then there is an embedding of the algebras

λ : C[S]→ C[G].

To simplify the construction we will consider the derivations d : C[S] → C[G] with the property
Im(d) ⊂ C[S]. Consider an element s ∈ S. Then for some d : C[S] → C[G] an element d(s) can be
represented as (see [1], p. 17)

d(s) =
∑
h∈G

dhsh, (2.1)

where dhs ∈ C are coefficients that depend only on the derivation d.
The linear operator d satisfies the Leibniz rule d(xy) = d(x)y+xd(y). We represent d as a matrix

and find the relationship between the coefficients:

dhs1s2 =
∑
i

dhis1 +
∑
j

dhjs2 , (2.2)

s2hi = h,
hjs1 = h.
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Suppose that the coefficients hi and hj can be taken from the group G so that the system of
equations always has a solution, but for the sake of accuracy, we set dhis1 = 0 if hi 6∈ S and dhjs2 = 0 if
hj 6∈ S.

Define the map χd : Hom(C)→ C as follows:

χd(h, g) = dhg . (2.3)

Proposition 2.3. The map χd is a character.

Proof. The maps (hi, s1) and (hj, s2) such that s2hi = hjs1 = h are composable in category C
and (hj, s2) ◦ (hi, s1) = (h, s1s2). In accordance with formulas (2.2) and (2.3) one obtains that
χ(hi, s1) + χ(hj, s2) = χ(h, s1s2)

We say that the character χ defines a derivation, if there exists a derivation d, such that χ(h, g) =
dhg . Next we formulate a criterion for the character χ to define a derivation.

Theorem 2.1. The character χ forms a derivation if and only if for any semigroup element v ∈ S
the character χ(x, v) = 0 for all x ∈ G, and also χ(u, v) = 0, if u /∈ S.

Proof. Proof is the same as for group algebras in [3].

2.4 Character algebra

The linear space Der(S) is a Lie algebra with the commutator ([10], p. 206)

[d1, d2] = d1d2 − d2d1.

Proposition 2.4. The values of the 1-character χ[d1,d2] = {χd1 , χd2} are defined by χd1 and χd2 as
follows

{χd1 , χd2}(a, g) =
∑
h∈G

χd1(a, h)χd2(h, g)− χd2(a, h)χd1(h, g). (2.4)

Proof. Let g ∈ G, then

d1(g) =
∑
h∈G

χd1(h, g)h,

d2(g) =
∑
h∈G

χd2(h, g)h,

[d1, d2](g) =
∑
h∈G
{χd1 , χd2}(a, g)a.

Represent the expression for the commutator by definition:

[d1, d2] = d1d2 − d2d1,
d1d2(g) =

∑
h∈G

χd2(h, g)(
∑
a∈G

χd1(a, h)a),

d2d1(g) =
∑
h∈G

χd1(h, g)(
∑
a∈G

χd2(a, h)a).

Change the sum order in the last expressions:

[d1, d2](h) =
∑
a∈G

(
∑
h∈G

χd2(h, g)χd1(a, h)− χd1(h, g)χd2(a, h))a.

The formula for {χd1 , χd2}(a, h) is a coefficient of a, i.e.

{χd1 , χd2}(a, g) =
∑
h∈G

χd1(a, h)χd2(h, g)− χd2(a, h)χd1(h, g).
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2.5 Quasi-inner derivations

Here is an example of a character that defines an inner derivation.
Consider an element a ∈ G. Let χa : Hom(Γ) → C be a map defined as follows. If b 6= a is an

element of the group G, then for every map φ ∈ Hom(a, b) with the source a and the target b, let
χa(φ) = 1, for every map ψ ∈ Hom(b, a) let χa(ψ) = −1. For all remaining maps let χa equals to
zero.

Proposition 2.5. The map χa is the character defined by the inner derivation

da : x→ [x, a], a ∈ S. (2.5)

Proof. Make sure that χa is a character. Consider two maps ϕ ∈ Hom(a, b), ψ ∈ Hom(b, c), then
the composition ϕ ◦ ψ ∈ Hom(a, c). Due to the definition of the χa one obtains that χ(ϕ) + χ(ψ) =
1 + 0 = χ(ϕ ◦ ψ). All other cases can be considered in the same way.

To make sure that χa is defined by the given derivation one can obtain da(s) = sa−as, λsas = 1,
λass = −1 in accordance to the formula (2.5). The map (as, s) ∈ Hom(s−1as, a) and (sa, s) ∈
Hom(a, s−1as), whence we obtain the required statement.

Note, that every element u ∈ C[S] can be represented as u =
∑
s∈S

λss, whence it follows that

character χu, which defines the inner derivation du, can be represented as χu =
∑
s∈S

λsχs, where χs

defines the inner derivation ds.
This example motivates the definition of the space of quasi-inner derivations.

Definition 2. A map p : Obj(C)→ C is called a potential on the category C.

Definition 3. A character χ, such that there exists a potential p and character’s value of the map
ϕ : a→ b equals to χ(ϕ) = p(b)− p(a), is called a potential character.

Definition 4. A derivation d which defines a potential character is called a quasi-inner derivation.
In the other words a space of the quasi-inner derivations defines as follows:

Der∗Inn(S) = {d ∈ Der(S) |χd is potential }.

Every potential derivation satisfies two following statements:

Proposition 2.6.

1. Potential derivation χ is trivial on loops, ∀a ∈ Obj(C) and ∀ϕ ∈ Hom(a, a), χ(ϕ) = 0.

2. It is constant on Hom(a, a): ∀ϕ, ψ ∈ Hom(a, a), χ(ϕ) = χ(ψ).

Proof. The proof is straightforward.

It is worth to mention here the fact that two different potentials p1 and p2 define same derivation
if and only if p1 − p2 = const.

Theorem 2.2. The space of all quasi-inner derivations Der∗Inn(S) forms an ideal in the derivation
algebra Der(S):

d0 ∈ Der∗Inn(S), d ∈ Der(S)⇒ [d0, d], [d, d0] ∈ D∗Inn.

Proof. Let us prove that Der∗Inn(S) ⊂ Der(S) is a subalgebra, i.e.

d1, d2 ∈ Der∗Inn(S)⇒ [d1, d2] ∈ Der∗Inn(S).
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A 1-character χd1 can be represented as:

χd1 =
∑
a∈G

λaχa, λa ∈ C,

since χd1 is trivial on loops, where χa is defined by formula (14).
Similarly with a 1-character χd2 :

χd2 =
∑
b∈G

µbχb, µb ∈ C.

By the bilinearity of the commutator,

{χd1 , χd2} =
∑
a∈G

∑
b∈G

λaµb{χa, χb}.

The commutator of the da Рё db can be represented as follows:

[da, db] = dab − dba.

Then we define the 1-character {χa, χb} by the following formula

{χa, χb} = χab − χba

and obtain the final expression for {χd1 , χd2}:

{χd1 , χd2} =
∑
a∈G

∑
b∈G

λaµbχab −
∑
a∈G

∑
b∈G

λaµbχba.

Note that{χd1 , χd2} ∈ Der∗Inn. To prove this consider the value of the character on loops
(uz, z), z ∈ ZG(u):

{χd1 , χd2}(uz, z) =
∑

ab=zuz−1

λaµb −
∑
ab=u

λaµb −
∑
ba=u

λaµb +
∑

ba=zuz−1

λaµb = 0.

Now we pass directly to the proof of the theorem. Represent χd0 as

χd0 =
∑
a∈G

λaχa.

Let us prove the statement of the theorem for χa and extend the result to the χd0 , using the
bilinearity of the commutator. Consider the 1-character {χd, χa}. Let us prove that it is trivial on
loops, i.e. ∀b ∈ G and for ∀z ∈ ZG(b) we have {χd, χa}(bz, z) = 0. By formula (2.4):

{χd, χa}(bz, z) =
∑
h∈G

χd(bz, h)χa(h, z)− χa(bz, h)χd(h, z).

Note that if bz 6∈ S, then by definition {χd, χa}(bz, z) = 0. If bza−1 6∈ S, then the map
(bz, bza−1) /∈ Hom(C), and χd(bza

−1, z) = 0 by Theorem 2.1. If a−1bz 6∈ S, then the map
(bz, a−1bz) /∈ Hom(C), and χd(a

−1bz, z) = 0. That means that all of the following statements
remain true. Therefore, without loss of generality, we state that all of the above elements lie in the
semigroup.

χa(h, z) 6= 0 only in 2 cases: when either h = za or h = az. χa(bz, h) 6= 0 only in 2 cases: when
either h = bza−1 or h = a−1bz. It means that

{χd, χa}(bz, z) = χd(bz, za)− χd(bz, az) + χd(a
−1bz, z)− χd(bza−1, z).

At the same time

(a−1bz, z) ◦ (bz, za) = (bz, az) ◦ (bza−1, z).

That means

χd(bz, za) + χd(a
−1bz, z) = χd(bz, az) + χd(bza

−1, z)
{χd, χa}(bz, z) = 0.
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The last statement leads us to the following definition.

Definition 5. An algebra Der∗Out(S) = Der(S)/Der∗Inn(S) is called an algebra of an quasi-outer
derivations of the semigroup algebra C[S].

2.6 Distinction between group and semigroup derivations

Let the semigroup S satisfy the Maltsev conditions and let a group G be generated by the semigroup
S. Let us show that the derivation algebra Der(S) of the semigroup algebra C[S] can be embedded
in the derivation algebra Der(G) of the group algebra C[G].

Consider a group element g ∈ G. Since the group G is generated by the semigroup S, for each
element g ∈ G there is exists a finite set of elements {si} ⊂ S such that g = si11 . . . s

in
n , where ik = ±1.

Proposition 2.7. A map λ : Der(S)→ Der(G), such that

λ(D)(s) = D(s), λ(D)(s−1) = s−1D(s)s−1, ∀s ∈ S,
λ(D)(g) =

n∑
k=1

si11 . . . λ(D)(sikk ) . . . sinn , ∀g ∈ G,

is an epimorphism.

Proof. The equation for λ(D)(g) is obtained by applying the Leibniz rule several times. Due to the
fact that λ(D)(s) = D(s), we obtain that if D1 6= D2 then λ(D1) 6= λ(D2).

The last proposition lead us to the theorem:

Theorem 2.3. Consider the map λ from the last proposition. Then

λ(Der(S)) ⊂ Der(G).

We can rewrite the last statement in the terms of characters. Consider a category C, associated
with semigroup S, a groupoig Γ, associated with the group G, and the corresponding character
algebras X(C) and X(Γ). It is easy to show, that the category C is a subcategory in Γ.

Proposition 2.8. A map λ∗ : X(C)→ X(Γ), such that

λ∗(χ)(g, s) = χ(g, s)∀g ∈ G,∀s ∈ S,

λ∗(χ)(g, s−1) = −χ(sgs, s)∀g ∈ G,∀s ∈ S,

and for such morphisms (gi, si) that

(g1, s
i1
1 ) ◦ . . . ◦ (gn, s

in
n ) = (g, si11 . . . s

in
n ), ik = ±1, (2.6)

the following condition is satisfied

λ∗(χ)(g, si11 . . . s
in
n ) =

n∑
k=1

λ∗(χ)(gk, s
ik
k ), (2.7)

then λ∗ is an epimorphism.
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Proof. The fact that λ∗(χ) ∈ X(Γ) takes place because of formula (2.7). Now we prove that λ∗ is
an epimorphism. Note that the equation λ∗(χ)(g, s) = χ(g, s) is satisfied for all maps in Hom(C).
That means that if χ1 6= χ2, namely if there exists (g, s) ∈ Hom(C) such that χ1(g, s) 6= χ2(g, s),
then λ∗(χ1) 6= λ∗(χ2).

As a conclusion we have the following theorem:

Theorem 2.4. The map λ∗ = X(C)→ X(Γ) makes the following diagram commutative:

Proof. The statement can be obtained by applying formulas (2.1) and (2.3) to Proposition 2.8.

Let us prove some properties of the given embedding using the construction of λ∗.

Corollary 2.1. The map λ maps an inner derivation to an inner derivation and an outer derivation
to an outer one. In other words

1. λ∗(Der∗Inn(S)) ⊂ Der∗Inn(G),

2. λ∗(Der∗Out(S)) ⊂ Der∗Out(G).

Proof. 1. Consider χ ∈ Der∗Inn(S), so χ is potential. Let a map (uz, z) ∈ Γ be a loop. Using the
construction of the λ∗ one obtains

λ∗(χ)(g1, g2) =
n∑
k=1

(−1)ikχ(uk, sk) =
n∑
k=1

(−1)ikpk = 0,

where each pk is the corresponding potential. Since the sum is calculated on a closed path in Γ, it
equals to zero. In other words the character λ∗(χ) is trivial on loops and λ∗(χ) ∈ Der∗Inn(G).

2. Since χ ∈ Der∗Out(S), there exist two maps ϕ, ψ ∈ Hom(a, b), such that χ(ϕ) 6= χ(ϕ). That
means there is a loop α ∈ Hom(a, a) in Γ, such that α ◦ ψ = ϕ. Using the construction of the λ∗
one obtains that λ∗(α) = χ(ϕ)− χ(ψ) 6= 0. That means λ∗(χ) /∈ Der∗Inn(G).

Example

Let a semigroup S generate a nilpotent group of rank 2 (example: the Heisenberg discrete group).
The derivation algebra of such a group has been studied in [4]. It has been shown that every derivation
in Der(G) is quasi-inner or central. We begin with some important definitions.

Definition 6. The subgroup Z = {z ∈ G | zg = gz ∀g ∈ G} is called the center of the group G.

It is easy to show that Z is a normal subgroup.

Definition 7. A derivation d ∈ Der(G) is called central if there exists a homomorphism τ : G→ C
and an element z ∈ Z, such that

d(g) = τ(g)gz.

Proposition 2.9. A central derivation d ∈ Der(G) is not quasi-inner.
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Proof. It can be shown that a corresponding character χd is not trivial on loops. Consider a central
group element z ∈ G. Its conjugated class [z] consists of only one element. Thus a character χd can
be represented as follows ([4]):

χd(gz, g) = τ(g), ∀g ∈ G.

Since (gz, g) is a loop and τ(g) 6= 0, one obtains that χd is not quasi-inner.

If a semigroup S generates the group G we can describe a derivation algebra Der(S), using the
embedding given in Corollary 2.1.

Theorem 2.5. If a semigroup S generates a nilpotent group of rank 2, then every derivation d ∈
Der(S) is either quasi-inner or central.

Proof. The proof immediately follows by Corollary 2.1.

As an example, we consider the Heisenberg discrete group G and a semigroup G+ of matrices
with positive elements. Such group in nilpotent of rank 2 and every derivation is either quasi-inner
or central. We introduce a general form of the central derivation in the semigroup G+. It can be
written as follows:

dµ,νj :

 1 a b
0 1 c
0 0 1

 7→ (µa+ νc)

 1 a b+ j
0 1 c
0 0 1


a, b, c, j ≥ 0

where the central element z ∈ Z is equal to 1 0 j
0 1 0
0 0 1


and the group homomorpism τ : G→ C is

τµ,ν :

 1 a b
0 1 c
0 0 1

 7→ µa+ νc

All required calculations can be found in [4].
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