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Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers
in all areas of mathematics written by mathematicians, principally from Europe and Asia. However
papers by mathematicians from other continents are also welcome.
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Authors may nominate a member of the Editorial Board whom they consider appropriate for the
article. However, assignment to that particular editor is not guaranteed.
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The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to
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1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ
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At the end of year 2019 there is 10th anniversary of the
activities of the Eurasian Mathematical Journal. Volumes

EMJ 10-4 and EMJ 11-1 are dedicated to this event.



VLADIMIR DMITRIEVICH STEPANOV

(to the 70th birthday)

Vladimir Dmitrievich Stepanov was born on December 13, 1949 in a
small town Belovo, Kemerovo region. In 1966 he finished the Lavrentiev
school of physics and mathematics at Novosibirsk academic town-ship and
the same year he entered the Faculty of Mathematics of the Novosibirsk
State University (NSU) from which he has graduated in 1971 and started
to teach mathematics at the Khabarovsk Technical University till 1981
with interruption for postgraduate studies (1973-1976) in the NSU.

In 1977 he has defended the PhD dissertation and in 1985 his doctoral
thesis "Integral convolution operators in Lebesgue spaces" in the S.L.

Sobolev Institute of Mathematics. Scientific degree "Professor of Mathematics" was awarded to him
in 1989. In 2000 V.D. Stepanov was elected a corresponding member of the Russian Academy of
Sciences (RAS).

Since 1985 till 2005 V.D. Stepanov was the Head of Laboratory of Functional Analysis at the
Computing Center of the Far Easten Branch of the Russian Academy of Science.

In 2005 V.D. Stepanov moved from Khabarovsk to Moscow with appointment at the Peoples
Friendship University of Russia as the Head of the Department of Mathematical Analysis (retired
in 2018). Also, he was hired at the V.A. Steklov Mathematical Institute of RAS at the Function
Theory Department.

Research interests of V.D. Stepanov are: the theory of integral and differential operators, har-
monic analysis in Euclidean spaces, weighted inequalities, duality in function spaces, approximation
theory, asymptotic estimates of singular, approximation and entropy numbers of integral transfor-
mations, and estimates of the Schatten-Neumann type. Main achievements: the theory of integral
convolution operators is constructed, the criteria for the boundedness and compactness of integral
operators in function spaces are obtained, weighted inequalities and the behaviour of approximation
numbers of the Volterra, Riemann-Liouville, Hardy integral operators are studied, etc.

Under his scientific supervision 15 candidate theses in Russia and 5 PhD theses in Sweden were
successfully defended. Professor V.D. Stepanov has over 100 scientific publications including 3 mono-
graphs. Participation in scientific and organizational activities of V.D. Stepanov is well known. He
is a member of the American Mathematical Society (since 1987) and a member of the London Math-
ematical Society (since 1996), Deputy Editor of the Analysis Mathematica, member of the Editorial
Board of the Eurasian Mathematical Journal, invited speaker at many international conferences and
visiting professor of universities in USA, Canada, UK, Spain, Sweden, South Korea, Kazakhstan,
etc.

The mathematical community, many his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal cordially congratulate Vladimir Dmitrievich on the occasion of his
70th birthday and wish him good health, happiness and new achievements in mathematics and
mathematical education.
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INTERNATIONAL CONFERENCE "ACTUAL PROBLEMS OF
ANALYSIS, DIFFERENTIAL EQUATIONS AND ALGEBRA" (EMJ-2019),

DEDICATED TO THE 10TH ANNIVERSARY OF
THE EURASIAN MATHEMATICAL JOURNAL

From October 16 to October 19, 2019 at the L.N. Gumilyov Eurasian National University (ENU)
the International Conference "Actual Problems of Analysis, Differential Equations and Algebra"
(EMJ-2019) was held. The conference was dedicated to the 10th anniversary of the Eurasian Math-
ematical Journal (EMJ).

The purposes of the conference were to discuss the current state of development of mathematical
scientific directions, expand the number of potential authors of the Eurasian Mathematical Journal
and further strengthen the scientific cooperation between the Faculty of Mechanics and Mathematics
of the ENU and scientists from other cities of Kazakhstan and abroad.

The partner universities for the organization of the conference were the M.V. Lomonosov Moscow
State University, the Peoples’ Friendship University of Russia (the RUDN University, Moscow) and
the University of Padua (Italy).

The conference was attended by more than 80 mathematicians from the cities of Almaty, Aktobe,
Karaganda, Nur-Sultan, Shymkent, Taraz, Turkestan, as well as from several foreign countries: from
Azerbaijan, Germany, Greece, Italy, Japan, Kyrgyzstan, Russia, Tajikistan and Uzbekistan.

The chairman of the International Programme Committee of the conference was Ye.B. Sydykov,
rector of the ENU, co-chairmen were Chief editors of the EMJ: V.I. Burenkov, professor of the
RUDN University, M. Otelbaev, academician of the National Academy of Sciences of the Republic of
Kazakhstan (NAS RK), V.A. Sadovnichy, academician of the Russian Academy of Sciences (RAS),
rector of the M.V. Lomonosov Moscow State University (MSU).

There were three sections at the conference: "Function Theory and Functional Analysis", "Dif-
ferential Equations and Equations of Mathematical Physics" and "Algebra and Model Theory". 16
plenary presentations of 30 minutes each and more than 60 sectional presentations of 20 minutes
each, devoted to contemporary areas of mathematics, were given.

It was decided to recommend selected reports of the participants for publication in the Eurasian
Mathematical Journal and the Bulletin of the Karaganda State University (series "Mathematics").

Before the conference, a collection of abstracts of the participants’ talks was published.

PROGRAMME OF THE INTERNATIONAL CONFERENCE EMJ-2019

INTERNATIONAL PROGRAMME COMMITTEE

Chairman: Ye.B. Sydykov, rector of the ENU;
Co-chairs: V.I. Burenkov, professor of the RUDN University (Russia);

M. Otelbayev, academician of the NAS RK (Kazakhstan);
V.A. Sadovnichy, rector of the MSU, academician of the RAS (Russia).

Members: Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), O.V. Besov (Russia), A.A.
Borubaev (Kyrgyzstan), G. Bourdaud (France), V.N. Chubarikov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), S.N. Kharin (Kazakhstan),
E. Kissin (Great Britain), M. Lanza de Cristoforis (Italy), R. Oinarov (Kazakhstan), S.A. Plaksa
(Ukraine), L.-E. Persson (Sweden), M.D. Ramazanov(Russia), M.A. Ragusa (Italy), M. Reissig (Ger-
many), M. Ruzhansky (Great Britain), S.M. Sagitov (Sweden), A.A. Shkalikov(Russia), G. Sinnamon
(Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov, Ya.T. Sultanaev (Russia), I.A. Taimanov,
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(Russia), D. Yang (China), B.T. Zhumagulov (Kazakhstan), A.S. Zhumadildaev (Kazakhstan).

ORGANIZING COMMITTEE

Chair: A.A. Moldazhanova, first vice-rector, vice-rector for academic works of the ENU.
Co-chairs: G.T. Merzadinova, vice-rector for research work of the ENU; A.N. Zholdasbekova,

vice-rector for international cooperation and innovations of the ENU; D. Kamzabekuly, vice-rector for
welfare development of the ENU, academician of the NAS RK; N.G. Aydargalieva, acting vice-rector
for financial and economic affairs of the ENU; D.Kh. Kozybayev, dean of the Faculty of Mechanics and
Mathematics of the ENU; K.N. Ospanov, professor of the Department of Fundamental Mathematics
of the ENU.

Members: A.M. Abylayeva (Kazakhstan), A. Alday (Kazakhstan), T. Bekjan (China), N.A.
Bokayev (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhebaev (Kazakhstan), L.K. Kus-
sainova (Kazakhstan), P.D. Lamberti (Italy), M.B. Muratbekov (Kazakhstan), E.E. Nurmoldin
(Kazakhstan), E.D. Nursultanov (Kazakhstan), I.N. Parasidis (Greece), M.I. Ramazanov (Kaza-
khstan), M.A. Sadybekov (Kazakhstan), A.M. Sarsenbi (Kazakhstan), D. Suragan (Kazakhstan),
T.V. Tararykova (Russia), B.Kh. Turmetov (Kazakhstan), J.A. Tussupov (Kazakhstan), U.U. Umir-
baev (Kazakhstan), D.B. Zhakebayev (Kazakhstan), A.Zh. Zhubanysheva (Kazakhstan).

Executive secretary: A.M. Temirkhanova.
Secretariat: R.D. Akhmetkaliyeva, A. Beszhanova, A.A. Dzhumabayeva, Zh.B. Yeskabylova,

D.S. Karatayeva, A.N. Kopezhanova, D. Matin, Zh.B. Mukanov, B.S. Nurimov, M. Raikhan, B.
Seilbek, S. Shaimardan, N. Tokmaganbetov, A. Hairkulova.

Conference Schedule:

16.10.2019
09.00 – 10.00 Registration
10.00 – 10.30 Opening of the conference
10.30 – 12.50 Plenary talks
12.50 – 14.00 Lunch
14.00 – 18.00 Session talks

17.10.2019
09.30 – 12.20 Plenary talks
12.20 – 14.00 Lunch
14.00 – 18.00 Session talks
18.00 – Dinner for participants of the conference

18.10.2019
09.30 – 13.00 Plenary talks
12.20 – 14.00 Lunch
14.00 – 17.00 Excursion around the city

19.10.2019
09.30 – 12.30 Plenary talks
12.30 – 13.00 Closing of the conference

At the opening ceremony welcome speeches were given by Ye.B. Sydykov, rector of the ENU,
chairman of the Program Committee of the conference; V.I. Burenkov, professor of the RUDN Uni-
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versity, editor-in-chief of the EMJ; L. Mukasheva, official representative of the international company
Clarivate Analytics in the Central Asian region; A. Ospanova, official representative of Scopus.

Plenary talks were given by
T.Sh. Kalmenov (Kazakhstan), M. Otelbaev and B.D. Koshanov (Kazakhstan), P.D. Lamberti

and V. Vespri (Italy) – on 16.10.2019;
V.I. Burenkov (Russia), T. Ozawa (Japan), H. Begehr (Germany), M.A. Sadybekov and A.A.

Dukenbaeva (Kazakhstan), D. Suragan (Kazakhstan) – on 17.10.2019;
M.L. Goldman (Russia), A. Bountis (Greece), A.K. Kerimbekov (Kyrgyzstan), S.N. Kharin

(Kazakhstan), M.I. Dyachenko (Russia) – on 18.10.2019;
E.D. Nursultanov (Kazakhstan), M.A. Ragusa (Italy), P.D. Lamberti and V. Vespri (Italy), M.G.

Gadoev (Russia) and F.S. Iskhokov (Tajikistan) – on 19.10.2019.
At the closing ceremony all participants unanimously congratulated the staff of the L.N. Gumilyov

Eurasian National University and the Editorial Board of the Eurasian Mathematical Journal with
the 10th anniversary of the journal and wished further creative successes.

They expressed hope that the journal will continue to play an important role in the development
of mathematical science and education in Kazakhstan in the future.

V.I. Burenkov, K.N. Ospanov, A.M. Temirkhanova
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Abstract. In this paper, it is shown that certain Hausdorff operator and its adjoint are connected
by linear canonical sine as well as linear canonical cosine transforms. The results have been proved
in one as well as in two dimensions.
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1 Introduction

The Fourier cosine transform of a suitable function f is defined by

Fcf(y) =

√
2

π

∫ ∞
0

f(t) cos yt dt.

According to a well known result of Titchmarsh ([16], Theorem 69), if f ∈ L2(R+) and g = Fcf ,
then the Fourier cosine transform of the Hardy averaging operator

Hf(x) =
1

x

∫ x

0

f(y) dy

is the adjoint operator of the Fourier cosine transform of g

H∗g(y) =

∫ ∞
y

g(x)

x
dx,

i.e., FcHf = H∗Fcf . By the same way one can prove that HFcf = FcH
∗f.

Goldberg [4] extended this result by considering more general operators replacing H and H∗ by,
respectively,

Gψg(x) =
1

x

∫ ∞
0

ψ
(y
x

)
g(y) dy

and
G∗ψf(y) =

∫ ∞
0

ψ
(y
x

) f(x)

x
dx,

with some restrictions on the function ψ. It is obvious that for ψ = χ(0,1), the operators Gψ and G∗ψ
become H and H∗, respectively. The above results of Titchmarsh and Goldberg are also true for the
Fourier sine transform

Fsf(y) =

√
2

π

∫ ∞
0

f(t) sin yt dt.
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Let us mention that the operator Gψ is related with the Hausdorff operator. It was proved in [4]
that Gψ is a bounded operator from L2(R+) to L2(R+) and

‖Gψ‖2 ≤ K =:

∫ ∞
0

|ψ(y)|
√
y
dy.

In this paper, we prove that the operator Gψ is bounded from Lp(R+) to Lp(R+), 1 < p < ∞.
Moreover, we provide the precise value of ‖Gψ‖ with a new proof of the lower bound. This is done
in Section 2.

Next, during the recent past, people have worked with more general transforms such as fractional
Fourier transform and linear canonical transform (LCT). The LCT was first studied in [3], [11] and
is connected with the 2× 2 matrix M given by

M =

(
a b
c d

)
, with ad− bc = 1.

The LCT is defined by

LMf(x) =

∫
R
KM(x, y)f(y) dy,

where the kernel KM is defined by

KM(x, y) =

{
1√
2πbi

exp i
2

(
a
b
y2 − 2

b
xy + d

b
x2
)
, if b 6= 0

1√
a
ei(

c
2a)y2δ

(
x− y

a

)
, if b = 0.

In our case, we shall be dealing with the situation when b 6= 0.
In the modern time, “Fourier Analysis” is usually termed as “Time Frequency Analysis”. In this

context, the Fourier transform rotates the signals from the time axis to the frequency axis by 90
degrees. It has been observed that certain optical systems rotated the signals by an arbitrary an-
gle which requires the notion of fractional Fourier transforms, which is a one parameter family of
transforms. The linear canonical transforms (LCT) form a class of three parameter family of trans-
forms which include many known transforms. For notational convenience, if we write the matrix
M as (a, b; c, d), then the matrixes (0, 1;−1, 0) and (cosα, sinα;− sinα, cosα) corresponds, respec-
tively, to the Fourier and fractional Fourier transforms. More special matrices lead to some other
known integral transforms, e.g., Fresnel transform, chirp functions etc. Various applications of LCT
have been realized in the field of electromagnatic, acoustic and other wave propagation problems.
As mentioned in [9], LCT is known by other terminolgy as well such as quadractic phase integral
[1], generalized Huygens integral [14], generalized Fresnel transform [7], [12] etc. Recently, in [13],
the authors have studied certain mapping properties of LCT and the associated pseudo-differential
operators in a variant of Schwartz space.

The next aim of the paper is to extend Goldberg’s result in the framework of linear canonical
cosine and sine transforms with respect to a generalized Hausdorff operator

(Tψg)(x) =
1

x

∫ ∞
0

ψ
(y
x

)
g(y)e

ia
2b(x2−y2)dy.

In fact, we shall prove that under certain condition on ψ, if g is the linear cosine (sine) transform of
f , then Tψg is the linear cosine (sine) transform of T ∗ψg, where T ∗ψ is the adjoint of Tψ. This is done
in Section 3.

We study and discuss the two-dimensional Hausdorff operator in Section 4 giving a sharp value
of the Lp-Lp norm of it with a new proof of the lower bound. Finally, in Section 5, the two-
dimensional Hausdorff operator is discussed in respect of the two-dimensional linear canonical cosine
(sine) transform.
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2 The Hausdorff operator

In this section, we consider the following operator:

Gψg(x) =
1

x

∫ ∞
0

ψ
(y
x

)
g(y)dy.

By the replacement ψ(s) = 1
s
φ
(

1
s

)
, s > 0 it can be seen that the operator Gψ becomes the Hausdorff

operator

Hφg(x) =

∫ ∞
0

φ(y)

y
f

(
x

y

)
dy.

The Hausdorff operator Hφ and its multidimensional extensions are well known in the literature,
see for instance recent survey [10] and references given therein.

Remark 1. The operator Hφ (and consequently Gψ) includes several well known integral operators
as follows:

(i) For φ(t) = 1
t
χ(1,∞)(t), the operator Hφ reduces to the standard Hardy averaging operator

Hg(x) =
1

x

∫ x

0

g(y)dy

while for φ(t) = χ[0,1](t), it reduces to the adjoint of Hardy averaging operator

H∗g(x) =

∫ ∞
x

g(y)

y
dy.

(ii) For φ(t) = 1
max(1,t)

, the operator Hφ gives rise to the Calderon operator ([2], Definition 5.1)

Hφg(x) = H +H∗.

(iii) For φ(t) = γ(1− t)γ−1χ(0,1)(t), γ > 0, the operator Hφ becomes the Cesáro operator

Hφg(x) = γ

∫ ∞
x

(y − x)γ−1

yγ
g(y)dy.

(iv) For φ(t) = 1
t

(
1− 1

t

)β−1
χ(1,∞)(t), β > 0, the operator Hφ becomes the fractional Riemann

Liouville operator

Hφg(x) = x−β
∫ x

0

(x− y)β−1g(y)dy.

In ([4], Theorem 1), Goldberg proved the following

Theorem A. Let ψ ≥ 0 on R+ be such that
∫ ∞

0

ψ(y)
√
y
dy =: K < ∞. Then the operator Gψ is a

bounded operator on L2(R+) and ‖Gψ‖ ≤ K.

Theorem A has Lp-Lp version ([5], Theorem 319) and many other extensions with sharp constants
(see [8], Theorem 6.4 and bibliographic notes to Chapter 2 therein).

In the following, we extend Theorem A by proving it for Lp(R+) and moreover, the precise value
of ‖Gψ‖ will be obtained.
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Theorem 2.1. Let ψ ≥ 0 on R+ be such that
∫ ∞

0

ψ(y)

y1/p
dy =: Kp < ∞. Then the operator Gψ is a

bounded operator on Lp(R+), 1 < p <∞. Moreover, ‖Gψ‖ = Kp.

Proof. Let f ∈ Lp(R+) and g ∈ Lp′(R+), where p′ =
p

p− 1
. We have by change of variables, Fubini’s

Theorem and Hölder’s inequality∫ ∞
0

|Gψf(x)||g(x)|dx ≤
∫ ∞

0

(
1

x

∫ ∞
0

ψ
(y
x

)
|f(y)|dy

)
|g(x)|dx

=

∫ ∞
0

(∫ ∞
0

ψ(y)|f(xy)|dy
)
|g(x)|dx

=

∫ ∞
0

ψ(y)

(∫ ∞
0

|g(x)||f(xy)|dx
)
dy

≤
∫ ∞

0

ψ(y)

(∫ ∞
0

|f(xy)|pdx
)1/p(∫ ∞

0

|g(x)|p′dx
)1/p′

dy

≤ Kp‖f‖p‖g‖p′ .

It now follows by duality principle that Gψ : Lp(R+)→ Lp(R+) is bounded and ‖Gψ‖ ≤ Kp.
To prove the reverse inequality, we use an idea of [15]. Let 0 ≤ f ∈ Lp(R+) and 0 ≤ g ∈ Lp′(R+).

We have

J :=

∫ ∞
0

ψ(y)

(∫ ∞
0

f(xy)g(x)dx

)
dy (2.1)

=
1

x

∫ ∞
0

ψ
(y
x

)(∫ ∞
0

f(y)g(x)dx

)
dy

=

∫ ∞
0

g(x)

(
1

x

∫ ∞
0

ψ
(y
x

)
f(y)dy

)
dx

=

∫ ∞
0

g(x) (Gψf) (x)dx.

Since Gψ : Lp(R+)→ Lp(R+) is bounded, by applying Hölder’s inequality in the last expression, we
get

J ≤ ‖Gψ‖‖f‖p‖g‖p′ . (2.2)

Now, for t ∈ (0, 1), we define the test functions

ft(x) =
1

x1/p
χ(t,1/t)(x), gt(x) =

1

x1/p′
χ(t,1/t)(x).

Then it can be calculated that
‖f‖pp = ‖g‖p

′

p′ = 2 log(1/t). (2.3)

Also, we have

ht(y) :=

∫ ∞
0

ft(xy)gt(x)dx = y−1/p

∫ ∞
0

χ(t,1/t)(xy)χ(t,1/t)(x)
dx

x
= y−1/p

∫
(t, 1t )∩(

t
y
, 1
ty )

dx

x
.

We divide (0,∞) as

(0,∞) = (0, t2) ∪ [t2, 1] ∪
(

1,
1

t2

]
∪
(

1

t2
,∞
)
.
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If y ∈ (0, t2) ∪
(

1
t2
,∞
)
, then

(
t, 1

t

)
∩
(
t
y
, 1
ty

)
= ∅. So that in this case

ht(y) = 0. (2.4)

If y ∈ [t2, 1], then
(
t, 1

t

)
∩
(
t
y
, 1
ty

)
=
(
t
y
, 1
t

)
and

ht(y) = y−1/p

(
2 log

1

t
+ log y

)
. (2.5)

If y ∈
(
1, 1

t2

]
, then

(
t, 1

t

)
∩
(
t
y
, 1
ty

)
=
(
t, 1
ty

)
and we have

ht(y) = y−1/p

(
2 log

1

t
− log y

)
. (2.6)

Thus, taking f and g as ft and gt in (2.1) and using (2.4), (2.5), (2.6), we obtain

J =

(∫ t2

0

+

∫ 1

t2
+

∫ 1/t2

1

+

∫ ∞
1/t2

)
ψ(y)ht(y)dy

= 2 log
1

t

∫ 1/t2

t2

ψ(y)

y1/p

(
1− ξ(y)

2 log 1
t

)
dy, (2.7)

where

ξ(y) =

{
log 1/y, if 0 < y < 1

log y, if y > 1.

Now, using (2.7) and (2.3), (2.2) gives for f = ft and g = gt∫ 1/t2

t2

ψ(y)

y1/p

(
1− ξ(y)

2 log 1
t

)
dy ≤ ‖Gψ‖.

By the Monotone Convergence Theorem the LHS ↑ Kp as t→ 0 and we conclude thatKp ≤ ‖Gψ‖.

Example 1. In view of Theorem 2.1, the precise norm of the integral operators mentioned in Remark
1 can be calculated given as follows:

(i) ‖H‖ =

∫ 1

0

dt

t1/p
=

p

p− 1

(ii) ‖H∗‖ =

∫ ∞
1

dt

t1+1/p
= p

(iii) ‖H +H∗‖ =
p2

p− 1

(iv) ‖Gψ‖ = γ

∫ ∞
1

(t− 1)γ−1

tγ+1/p
dt

(v) ‖Gψ‖ =

∫ 1

0

(1− t)β−1

t1/p
dt
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3 LCT

Given a function f , define fe by

fe(x) =

{
f(x), if x ≥ 0
f(−x), if x < 0.

Clearly, if f ∈ L1(R), then fe ∈ L1(R). The Fourier transform of fe is given by

Ffe(x) =
1√
2π

∫ ∞
−∞

fe(y)e−ιxydy =

√
2

π

∫ ∞
0

f(y) cosxydy.

This is one of the motivations to define and study the Fourier cosine transform. Motivated by this,
we apply the definition of LCT and obtain the so-called linear canonical cosine transform. On the
similar lines, the linear canonical sine transform can be defined. Precisely we give the following

Definition 1. For a function f ∈ L1(R+), the linear canonical cosine transform is defined by

Lcf(x) =

√
2

πbi

∫ ∞
0

f(y)e
i
2b(ay2+dx2) cos

(xy
b

)
dy

and the linear canonical sine transform is defined by

Lsf(x) =

√
2

πbi

∫ ∞
0

f(y)e
i
2b(ay2+dx2) sin

(xy
b

)
dy

where (a, b; c, d) represents a real matrix. Throughout in this section, we assume that a = d. In that
sense, the linear canonical cosine transform reduces to

Lcf(x) =

√
2

πbi

∫ ∞
0

f(y)e
ia
2b(y2+x2) cos

(xy
b

)
dy.

In this section, we are concerned with the generalized Hausdorff type operator

(Tψg)(x) =
1

x

∫ ∞
0

ψ
(y
x

)
g(y)e

ia
2b(x2−y2)dy (3.1)

and its adjoint

(T ∗ψf)(y) =

∫ ∞
0

f(x)

x
ψ
(y
x

)
e
ia
2b(x2−y2)dx. (3.2)

In the following theorem, we prove the boundedness of the operator Tψ.

Theorem 3.1. Let ψ ∈ L1
loc(R+) be such that

∫ ∞
0

|ψ(y)|
√
y
dy =: K <∞. The operator Tψ in (3.1) is

a bounded operator on L2(R+) and ‖Tψ‖ ≤ K.

Proof. For any h, g ∈ L2(R+), by applying Schwartz’s inequality, we obtain∫ ∞
0

|(Tψg(x))h(x)|dx =

∫ ∞
0

|h(x)|
x

∣∣∣∣∫ ∞
0

ψ
(y
x

)
g(y)e

ia
2b(x2−y2)dy

∣∣∣∣ dx
≤
∫ ∞

0

|h(x)|
x

∫ ∞
0

|ψ
(y
x

)
||g(y)|dydx
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=

∫ ∞
0

|h(x)|
∫ ∞

0

|ψ(y)||g(xy)|dydx

=

∫ ∞
0

|ψ(y)|
∫ ∞

0

|h(x)g(xy)|dxdy

≤ K‖h‖2‖g‖2.

Thus, by the converse of Schwartz’s inequality, we get

‖(Tψg)‖2 ≤ K‖g‖2,

so that Tψg ∈ L2(R+). Hence, Tψ is a bounded linear operator on L2(R+) and ‖Tψ‖ ≤ K.

Remark 2. It is clear that the adjoint operator T ∗ψ in (3.2) is also a bounded linear operator with

‖T ∗ψ‖ = ‖Tψ‖ ≤ K.

Now, we prove the main result of this section.

Theorem 3.2. Let ψ ∈ L1
loc(R+) be such that

∫ ∞
0

|ψ(y)|
√
y
dy =: K <∞. If g is the linear canonical

cosine transform of f , then Tψg is the linear canonical cosine transform of T ∗ψf .

Proof. Let f ∈ L1(R+) ∩ L2(R+). Using g(x) = (Lcf)(x), we get

(Tψg)(x) =

√
2

πbi

1

x

∫ ∞
0

ψ
(y
x

)
e
ia
2b(x2−y2)

(∫ ∞
0

f(t)e
ia
2b(t2+y2) cos

(
ty

b

)
dt

)
dy

=

√
2

πbi

1

x

∫ ∞
0

ψ
(y
x

)(∫ ∞
0

f(t)e
ia
2b(x2+t2) cos

(
ty

b

)
dt

)
dy.

Since the above integral is absolutely convergent, we change the order of integration and obtain

(Tψg)(x) =

√
2

πbi

1

x

∫ ∞
0

f(t)

(∫ ∞
0

ψ
(y
x

)
e
ia
2b(x2+t2) cos

(
ty

b

)
dy

)
dt

=

√
2

πbi

∫ ∞
0

f(t)

t

(∫ ∞
0

ψ
(y
t

)
e
ia
2b(x2+t2) cos

(xy
b

)
dy

)
dt

=

√
2

πbi

∫ ∞
0

e
ia
2b(x2+y2) cos

(xy
b

)(∫ ∞
0

f(t)

t
ψ
(y
t

)
e
ia
2b(t2−y2)dt

)
dy

=

√
2

πbi

∫ ∞
0

e
ia
2b(x2+y2) cos

(xy
b

)
T ∗ψf(y)dy

= (Lc(T
∗
ψf))(x)

and we are done.

Theorem 3.2 is also true if the linear canonical cosine transform is replaced by the linear canonical
sine transform. Since the proof is similar, we only state it below.

Theorem 3.3. Let ψ ∈ L1
loc(R+) be such that

∫ ∞
0

|ψ(y)|
√
y
dy =: K < ∞ If g is the linear canonical

sine transform of f , then Tψg is the linear canonical sine transform of T ∗ψf .
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Remark 3. (i) If we take the matrix (a, b; c, a) as (cosα, sinα;− sinα, cosα), then the linear
canonical cosine transform reduces to the fractional cosine transform which is still a general-
ization of Goldberg’s result [4] which can be obtained by taking α = π/2.

(ii) According to Theorem 3.2, TψLc = LcT
∗
ψ.

(iii) Working on the similar lines as in ([4], § 5)) the condition ψ ∈ L1
loc(R+) in Theorem 3.2 can be

dropped.

4 Two-dimensional Hausdorff operator

The two-dimensional Hausdorff operator is given by

Gψ2f(x1, x2) =
1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
f(y1, y2)dy1dy2

and by taking

ψ2(s1, s2) =
1

s1s2

φ2

(
1

s1

,
1

s2

)
, s1, s2 > 0

it can be written in the equivalent form as

Hφ2f(x1, x2) =

∫ ∞
0

∫ ∞
0

φ2(y1, y2)

y1y2

f

(
x1

y1

,
x2

y2

)
dy1dy2.

Remark 4. As mentioned in Remark 1 for one-dimensional case, in two-dimensional also, the oper-
ator Hφ2 generalizes many of the known integral operators such as the following:

(i) The two-dimensional Hardy averaging operator

H2f(x1, x2) =
1

x1x2

∫ x1

0

∫ x2

0

f(y1, y2)dy1dy2

and its dual
H∗2f(x1, x2) =

∫ ∞
x1

∫ ∞
x2

f(y1, y2)

y1y2

dy1dy2,

when φ2 is taken, respectively, as

φ2(t1, t2) =
1

t1t2
χ(1,∞)×(1,∞)(t1, t2)

and
φ2(t1, t2) = χ[0,1]×[0,1](t1, t2).

(ii) For φ2(t1, t2) = γ(1 − t1)γ−1(1 − t2)γ−1χ(0,1)×(0,1)(t1, t2), γ > 0, the operator Hφ2 becomes the
two dimensional Cesáro operator

Hφ2f(x1, x2) = γ

∫ ∞
x1

∫ ∞
x2

(y1 − x1)γ−1(y2 − x2)γ−1

(y1y2)γ
f(y1, y2)dy1dy2.

(iii) φ2(t1, t2) = 1
t1t2

(
1− 1

t1

)β−1 (
1− 1

t2

)β−1

χ(1,∞)×(1,∞)(t1, t2), β > 0, the operator Hφ2 becomes
the two-dimensional fractional Riemann Liouville operator

Hφ2f(x1, x2) = (x1x2)−β
∫ x1

0

∫ x2

0

(x1 − y1)β−1(x2 − y2)β−1f(y1, y2)dy1dy2.



LCT based integral transforms and Hausdorff operators 65

Below we prove two-dimensional version of Theorem 2.1.

Theorem 4.1. Let ψ2 ≥ 0, on R2
+ be such that

Kp :=

∫ ∞
0

∫ ∞
0

ψ2(y1, y2)

(y1y2)1/p
dy1dy2 <∞.

Then the operator Gψ2 is a bounded operator on Lp(R2
+), 1 < p <∞. Moreover

‖Gψ2‖ = Kp.

Proof. The fact that Gψ2 is bounded and that ‖Gψ2‖ ≤ Kp can be proved similarly as in Theorem
2.1 by using change of variables, Fubini’s Theorem and Hölder’s inequality in two dimensions. We
prove ‖Gψ2‖ ≥ Kp.

Let 0 ≤ f ∈ Lp(R2
+) and 0 ≤ g ∈ Lp′(R2

+). We have

J :=

∫ ∞
0

∫ ∞
0

ψ2(y1, y2)

(∫ ∞
0

∫ ∞
0

f(x1y1, x2y2)g(x1, x2)dx1dx2

)
dy1dy2

=
1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)(∫ ∞
0

∫ ∞
0

f(y1, y2)g(x1, x2)dx1dx2

)
dy1dy2

=

∫ ∞
0

∫ ∞
0

g(x1, x2)

(
1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
f(y1, y2)dy1dy2

)
dx1dx2

=

∫ ∞
0

∫ ∞
0

g(x1, x2) (Gψ2f) (x1, x2)dx1dx2.

Since Gψ2 : Lp(R2
+)→ Lp(R2

+) is bounded, by applying Hölder’s inequality, we obtain

J ≤ ‖Gψ2‖‖f‖p‖g‖p′ . (4.1)

Now, for t ∈ (0, 1), define the test functions

ft(x1, x2) =
1

(x1x2)1/p
χ(t,1/t)×(t,1/t)(x1, x2)

and
gt(x1, x2) =

1

(x1x2)1/p′
χ(t,1/t)×(t,1/t)(x1, x2).

It is easy to calculate that
‖ft‖pp = ‖gt‖p

′

p′ = 4(log(1/t))2. (4.2)

Next, we find that

ht(y1, y2) :=

∫ ∞
0

∫ ∞
0

ft(x1y1, x2y2)gt(x1, x2)dx1dx2

=
1

(y1y2)1/p

∫ ∞
0

∫ ∞
0

χ(t,1/t)×(t,1/t)(x1y1, x2y2)χ(t,1/t)×(t,1/t)(x1, x2)
dx1dx2

x1x2

=
1

(y1y2)1/p

∫
I1

∫
I2

dx1dx2

x1x2

,

where
I1 =

(
t,

1

t

)
∩
(
t

y1

,
1

ty1

)
, I2 =

(
t,

1

t

)
∩
(
t

y2

,
1

ty2

)
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It is observed that if y1 ∈ (0, t2) ∪
(

1
t2
,∞
)
, then I1 = ∅ and therefore, in this case ht(y1, y2) = 0.

The same is the situation if y2 ∈ (0, t2) ∪
(

1
t2
,∞
)
, since then I2 = ∅. We deal with the remaining

cases as follows.
Case 1 : y1, y2 ∈ [t2, 1]. In this case, it can be worked out that

Ii =

(
t

yi
,
1

t

)
, i = 1, 2

and therefore,

ht(y1, y2) =
1

(y1y2)1/p
(2 log

1

t
+ log y1)(2 log

1

t
+ log y2).

Case 2 : y1 ∈ (1, 1
t2

], y2 ∈ [t2, 1]. In this case

I1 =

(
t,

1

ty1

)
, I2 =

(
t

y2

,
1

t

)
so that

ht(y1, y2) =
1

(y1y2)1/p
(2 log

1

t
− log y1)(2 log

1

t
+ log y2).

Case 3 : y1 ∈ [t2, 1], y2 ∈ (1, 1
t2

]. In this case

I1 =

(
t

y1

,
1

t

)
, I2 =

(
t,

1

ty2

)
so that

ht(y1, y2) =
1

(y1y2)1/p
(2 log

1

t
+ log y1)(2 log

1

t
− log y2).

Case 4 : y1, y2 ∈ (1, 1
t2

]. In this case

Ii =

(
t,

1

tyi

)
, i = 1, 2

so that
ht(y1, y2) =

1

(y1y2)1/p
(2 log

1

t
− log y1)(2 log

1

t
− log y2).

Combining the above information, we obtain that∫ ∞
0

∫ ∞
0

ψ2(y1, y2)ht(y1, y2)dy1dy2

= 4

(
log

1

t

)2 ∫ 1/t2

t2

∫ 1/t2

t2

ψ2(y1, y2)

(y1y2)1/p

(
1− ξ(y1)

2 log 1
t

)(
1− ξ(y2)

2 log 1
t

)
dy1dy2, (4.3)

where for i = 1, 2

ξ(yi) =

{
log 1/yi, if 0 < yi < 1

log yi, if yi > 1.

Now, by using the test functions ft, gt in (4.1) and using (4.2), (4.3), we get∫ 1/t2

t2

∫ 1/t2

t2

ψ2(y1, y2)

(y1y2)1/p

(
1− ξ(y1)

2 log 1
t

)(
1− ξ(y2)

2 log 1
t

)
dy1dy2 ≤ ‖Gψ2‖

which on taking t→ 0 gives that
Kp ≤ ‖Gψ2‖

and we are done.
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5 Two-dimensional linear canonical transform

In this section, we consider two-dimensional LCT. The setting is the following. We shall consider
the matrix

M =

(
A B
C D

)
,

with |M | 6= 0, where A,B,C,D are real diagonal matrices

A =

(
a11 0

0 a22

)
, B =

(
b11 0

0 b22

)
, C =

(
c11 0

0 c22

)
, D =

(
d11 0

0 d22

)
and |B| 6= 0. The two-dimensional LCT of a function f ∈ L1(R2) is defined by

L f(x1, x2) =
1

2π
√
i|B|

∫ ∞
−∞

∫ ∞
−∞

f(y1, y2) exp

[
i

2|B|
{

(k1x
2
1 + k2x

2
2)

−2(b22x1y1 + b11x2y2) + (p1y
2
1 + p2y

2
2)
} ]
dy1dy2,

where k1 = d11b22, k2 = b11d22, p1 = a11b22 and p2 = a22b11. For construction, properties and further
results on two-dimensional LCT, one may refer to [17]. We use the same motivation as for defining
the linear canonical cosine (sine) transforms in one dimension and define these notations in two
dimensions as follows.

Definition 2. The two-dimensional linear canonical cosine transform of a function f ∈ L1(R2
+) is

defined by

Lcf(x1, x2) =
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

f(y1, y2) exp

[
i

2|B|
{

(k1x
2
1 + k2x

2
2) + (p1y

2
1 + p2y

2
2)
}]

× cos

(
b22x1y1 + b11x2y2

|B|

)
dy1dy2 (5.1)

and the two-dimensional linear canonical sine transform of a function f ∈ L1(R2
+) is defined by

Lsf(x1, x2) =
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

f(y1, y2) exp

[
i

2|B|
{

(k1x
2
1 + k2x

2
2) + (p1y

2
1 + p2y

2
2)
}]

× sin

(
b22x1y1 + b11x2y2

|B|

)
dy1dy2.

We assume that the matrices A and D are same., i.e. a11 = d11 and a22 = d22 so that k1 = p1

and k2 = p2. Therefore, (5.1) reduces to

Lcf(x1, x2) =
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

f(y1, y2) exp

[
i

2|B|
{
k1(x2

1 + y2
1) + k2(x2

2 + y2
2)
}]

× cos

(
b22x1y1 + b11x2y2

|B|

)
dy1dy2.

On the same line of the proof of Theorem 3.2, we can prove the following theorem.

Theorem 5.1. Let
∫ ∞

0

∫ ∞
0

|ψ2(y1, y2)|
√
y1y2

dy1dy2 = K < ∞. Then a linear operator Tψ2 on L2(R2
+)

defined as

(Tψ2g)(x1, x2) =
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=
1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
g(y1, y2) exp

[
i

2|B|
{
k1(x2

1 − y2
1) + k2(x2

2 − y2
2)
}]

dy1dy2,

and its adjoint

(T ∗ψ2
f)(y1, y2) =

=

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
f(x1, x2)

x1x2

exp

[
i

2|B|
{
k1(x2

1 − y2
1) + k2(x2

2 − y2
2)
}]

dx1dx2,

are bounded operator and ‖Tψ2‖ = ‖T ∗ψ2
‖ ≤ K.

The main result of this section is the following.

Theorem 5.2. Let ψ2 ∈ L1(R2
+) and

∫ ∞
0

∫ ∞
0

|ψ2(y1, y2)|
√
y1y2

dy1dy2 = K < ∞. Let g be the two-

dimensional linear canonical cosine transform of f . Then Tψ2g is the two-dimensional linear canon-
ical cosine transform of T ∗ψ2

f .

Proof. Let f ∈ L1(R2
+)∩L2(R2

+) be any function and g(x) = (Lcf)(x). Now, by changing the order
of variables and replacing yi by xiyi

ti
, i = 1, 2, we have

(Tψ2g)(x1, x2) =

=
1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
exp

[
i

2|B|
{
k1(x2

1 − y2
1) + k2(x2

2 − y2
2)
}]

g(y1, y2)dy1dy2

=
2

π
√
i|B|

1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
exp

[
i

2|B|
{
k1(x2

1 − y2
1) + k2(x2

2 − y2
2)
}] ∫ ∞

0

∫ ∞
0

f(t1, t2)

× exp

[
i

2|B|
{
k1(y2

1 + t21) + k2(y2
2 + t22)

}]
cos

(
b22t1y1 + b11t2y2

|B|

)
dt1dt2dy1dy2

=
2

π
√
i|B|

1

x1x2

∫ ∞
0

∫ ∞
0

f(t1, t2)

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
exp

[
i

2|B|
{
k1(x2

1 + t21) + k2(x2
2 + t22)

}]
× cos

(
b22t1y1 + b11t2y2

|B|

)
dy1dy2dt1dt2

=
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

f(t1, t2)

t1t2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

t1
,
y2

t2

)
exp

[
i

2|B|
{
k1(x2

1 + t21) + k2(x2
2 + t22)

}]
× cos

(
b22x1y1 + b11x2y2

|B|

)
dy1dy2dt1dt2

=
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

exp

[
i

2|B|
{
k1(x2

1 + y2
1) + k2(x2

2 + y2
2)
}]

cos

(
b22x1y1 + b11x2y2

|B|

)
×
∫ ∞

0

∫ ∞
0

f(t1, t2)

t1t2
ψ2

(
y1

t1
,
y2

t2

)
exp

[
i

2|B|
{
k1(t21 − y2

1) + k2(t22 − y2
2)
}]

dt1dt2dy1dy2

=
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

exp

[
i

2|B|
{
k1(x2

1 + y2
1) + k2(x2

2 + y2
2)
}]

cos

(
b22x1y1 + b11x2y2

|B|

)
× T ∗ψ2

f(y1, y2)dy1dy2

=
2

π
√
i|B|

∫ ∞
0

∫ ∞
0

T ∗ψ2
f(y1, y2) exp

[
i

2|B|
{
k1(x2

1 + y2
1) + k2(x2

2 + y2
2)
}]

× cos

(
b22x1y1 + b11x2y2

|B|

)
dy1dy2
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= Lc(T
∗
ψ2
f)(x1, x2).

Remark 5. (i) The result in Theorem 5.2 is also true for two-dimensional linear sine transform.
The proof follows on the same lines.

(ii) On taking the matrix parameters (A,B;C,A) as A = (cosα1, 0; 0, cosα2), B =
(sinα1, 0; 0, sinα2) and C = (− sinα1, 0; 0,− sinα2), the two-dimensional linear canonical co-
sine transform reduces to the two-dimensional fractional cosine transform. So that the result
proved in Theorem 5.2 comes true in the framework of two-dimensional fractional cosine trans-
form.

(iii) If we take α1 = π/2 and α2 = π/2, the two-dimensional fractional cosine transform reduces to
two-dimensional Fourier cosine transform, so that Theorem 5.2 is multifold generalization of
the result given by Goldberg [4].

(iv) In view of Theorem 5.2, we have that Tψ2Lc = LcT
∗
ψ2

On taking A = (0, 0; 0, 0), B = (1, 0; 0, 1), C = (−1, 0; 0,−1), the two-dimensional linear canonical
cosine transform reduces to

Fcf(x1, x2) =
2

π
√
ι

∫ ∞
0

∫ ∞
0

f(y1, y2) cos(x1y1 + x2y2)dy1dy2

while the operators Tψ2 and T ∗ψ2
become the two-dimensional Hausdorff operators

Gψ2g(x1, x2) =
1

x1x2

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
g(y1, y2)dy1dy2

and its adjoint

G∗ψ2
f(y1, y2) =

∫ ∞
0

∫ ∞
0

ψ2

(
y1

x1

,
y2

x2

)
f(x1, x2)

x1x2

dx1dx2.

We immediately have the following corollary of Theorem 5.2 which is two-dimensional version of
Goldberg’s result [4].

Corollary 5.1. Let ψ2 ∈ L1(R2
+) and

∫ ∞
0

∫ ∞
0

|ψ2(y1, y2)|
√
y1y2

dy1dy2 <∞. Let g be the two-dimensional

Fourier cosine transform of f . Then Gψ2g is the two-dimensional Fourier cosine transform of G∗ψ2
f .

Note that the operator Gψ2 is a special case of the operator Tψ2 . According to Remark 5.4(iv),
Tψ2Lc = LcT

∗
ψ2
. However for Gψ2 , extending [4], we prove the following.

Theorem 5.3. Let ψ2 be defined on (0, 1]× (0, 1] with∫ 1

0

∫ 1

0

|ψ2(y1, y2)|
√
y1y2

dy1dy2 <∞. (5.2)

We define

ψ2(y1, y2) =
1

y1y2

ψ2

(
1

y1

,
1

y2

)
for y1, y2 > 1. (5.3)

Then the operator Gψ2 commutes with the two-dimensional Fourier cosine(sine) transform.
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Proof. It is enough to prove that Gψ2 is a self adjoint operator. That is, for 0 < x1, x2, y1, y2 < ∞,
we must have

1

x1x2

ψ2

(
y1

x1

,
y2

x2

)
=

1

y1y2

ψ2

(
x1

y1

,
x2

y2

)
i.e.

ψ2

(
y1

x1

,
y2

x2

)
=
x1x2

y1y2

ψ2

(
x1

y1

,
x2

y2

)
i.e.

ψ2 (y1, y2) =
1

y1y2

ψ2

(
1

y1

,
1

y2

)
for all 0 < y1, y2 <∞.

By assumption ψ2 is defined for 1 < y1, y2 <∞ and is of the form

ψ2 (y1, y2) =
1

y1y2

ψ2

(
1

y1

,
1

y2

)
.

If 0 < y1, y2 < 1 then 1
y1
, 1
y2
> 1 so that

ψ2

(
1

y1

,
1

y2

)
= y1y2ψ2 (y1, y2)

or
ψ2 (y1, y2) =

1

y1y2

ψ2

(
1

y1

,
1

y2

)
.

Consequently, the form (5.3) of ψ2 can be extended for all y1, y2 ∈ (0,∞). Next, we have by using
(5.2) ∫ ∞

1

∫ ∞
1

|ψ2(y1, y2)|
√
y1y2

dy1dy2 =

∫ ∞
1

∫ ∞
1

∣∣∣∣ 1

y1y2

ψ2

(
1

y1

,
1

y2

)∣∣∣∣ 1
√
y1y2

dy1dy2

=

∫ 1

0

∫ 1

0

|ψ2(y1, y2)|
√
y1y2

dy1dy2 <∞. (5.4)

Combining (5.2) and (5.4), we get∫ ∞
0

∫ ∞
0

|ψ2(y1, y2)|
√
y1y2

dy1dy2 <∞.

The assertion now follows from Corollary 5.1.

Acknowledgments

The research of the first and the second authors was supported by the Department of Sci-
ence & Technology of the Ministry of Science and Technology of the Republic of India (project
DST/INT/RUS/RSF/P-01) and the work of the third author — by the Russian Foundation for
Basic Researches (project 19-01-00223).



LCT based integral transforms and Hausdorff operators 71

References

[1] M.J. Bastiaans, Wigner ditribution function and its application to first-order optics, J. Opt. Soc. Amer. 69 (1979),
1710–1716.

[2] C. Bennett, R. Sharpley Interpolation of Operators, Pure Applied Math., 129, Boston, MA, Academic Press,
1988.

[3] S.A. Collins, Lens-system diffraction integral written in terms of matrix optics, J. Opt. Soc. Amer. 60 (1970),
1168–1177.

[4] R.R. Goldberg, Certain operators and Fourier transforms on L2, Proc. Amer. Math. Soc. 10 (1959), 385–390.
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xxiv+427 pp

[9] A. Koc, H.M. Ozaktas, C. Candan, M.A. Kutey, Digital computation of linear canonical transforms, IEEE Trans.
Signal Proc. 56 (2008), 2383–2394.

[10] E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Math. J. 4 (2013), no. 4, 101–141.

[11] M. Moshinsky, C. Quesne, Linear canonical transformations and their unitary representations, J. Math. Phys.
12 (1971), 1772–1783.

[12] C. Palma, V. Bagini, Extension of the Fresnel transform to ABCD systems, J. Opt. Soc. Amer. 14 (1997),
1774–1779.

[13] A. Prasad, Z.A. Ansari, P. Jain, The linear canonical transform and pseudo-differential operator, submitted.

[14] A.E. Siegman, Lasers, Mill Valley, CA: University Science Books, 1986.

[15] V.D. Stepanov, On operators in Lp(Rn) spaces which commute with shifts, Sib. Math. J. 15 (1974), no. 3, 496–501.

[16] E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford, 1937.

[17] L. Zhao, J.J. Healy, J.T. Sheridan, Two-dimensional nonseparable linear canonical transform: sampling theorem
and unitary discretization, J. Opt. Soc. Am. A. 31 (12) (2014), 2631-2641.

Pankaj Jain
Department of Mathematics
South Asian University
Akbar Bhawan, Chanakya Puri
New Delhi – 110 021
India
Emails: pankaj.jain@sau.ac.in & pankajkrjain@hotmail.com

Sandhya Jain
Department of Mathematics
Vivekananda College (University of Delhi)
Vivek Vihar, Delhi - 110095
India
Email: singhal.sandhya@gmail.com

Vladimir Dmitrievich Stepanov
Computing Center of the Far Eastern Branch of the Russian Academy of Sciences
Kim Yu Chen str. 65, 680000 Khabarovsk, Russia
Email: stepanov@mi-ras.ru Received: 14.04.2019


