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Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers
in all areas of mathematics written by mathematicians, principally from Europe and Asia. However
papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.
The EMJ publishes 4 issues in a year.
The language of the paper must be English only.
The contents of the EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews,

MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.
The EMJ is included in the list of journals recommended by the Committee for Control of

Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in
the list of journals recommended by the Higher Attestation Commission (Ministry of Education and
Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted electronically in
DVI, PostScript or PDF format to the EMJ Editorial Office through the provided web interface
(www.enu.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the
Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author.
Authors may nominate a member of the Editorial Board whom they consider appropriate for the
article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ.
Manuscripts are accepted for review on the understanding that the same work has not been already
published (except in the form of an abstract), that it is not under consideration for publication
elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors’ names (no degrees).
It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics
Subject Classification (2010) with primary (and secondary) subject classification codes), and the
Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.
References. Bibliographical references should be listed alphabetically at the end of the article.

The authors should consult the Mathematical Reviews for the standard abbreviations of journals’
names.

Authors’ data. The authors’ affiliations, addresses and e-mail addresses should be placed after
the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in the
paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.



Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see
http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published
previously (except in the form of an abstract or as part of a published lecture or academic thesis or as
an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration
for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by
the responsible authorities where the work was carried out, and that, if accepted, it will not be
published elsewhere in the same form, in English or in any other language, including electronically
without the written consent of the copyright-holder. In particular, translations into English of papers
already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent
data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code
of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts
for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/NewCode.pdf).
To verify originality, your article may be checked by the originality detection service CrossCheck
http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections,
clarifications, retractions and apologies when needed. All authors of a paper should have significantly
contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works
which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be
chosen in such a way that there is no conflict of interests with respect to the research, the authors
and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will
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a paper automatically implies the copyright transfer to the EMJ.
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The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to

mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ

and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one
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reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the
L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of
the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating
conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and
is available only for the Editorial Board and the Control Committee in the Field of Education and
Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The
author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a sufficient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially

sent to the author. A revised version of the paper in which the comments of the reviewer are taken
into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the author.
1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper
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1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded

in the minutes of the meeting of the Editorial Board.
1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor

informs the author about this and about the date of publication.
1.13. Originals reviews are stored in the Editorial Office for three years from the date of publica-

tion and are provided on request of the CCFES.
1.14. No fee for reviewing papers will be charged.
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2.2. A review should include a qualified analysis of the material of a paper, objective assessment

and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and
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- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of biblio-
graphic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding
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At the end of year 2019 there is 10th anniversary of the
activities of the Eurasian Mathematical Journal. Volumes

EMJ 10-4 and EMJ 11-1 are dedicated to this event.



VLADIMIR DMITRIEVICH STEPANOV

(to the 70th birthday)

Vladimir Dmitrievich Stepanov was born on December 13, 1949 in a
small town Belovo, Kemerovo region. In 1966 he finished the Lavrentiev
school of physics and mathematics at Novosibirsk academic town-ship and
the same year he entered the Faculty of Mathematics of the Novosibirsk
State University (NSU) from which he has graduated in 1971 and started
to teach mathematics at the Khabarovsk Technical University till 1981
with interruption for postgraduate studies (1973-1976) in the NSU.

In 1977 he has defended the PhD dissertation and in 1985 his doctoral
thesis "Integral convolution operators in Lebesgue spaces" in the S.L.

Sobolev Institute of Mathematics. Scientific degree "Professor of Mathematics" was awarded to him
in 1989. In 2000 V.D. Stepanov was elected a corresponding member of the Russian Academy of
Sciences (RAS).

Since 1985 till 2005 V.D. Stepanov was the Head of Laboratory of Functional Analysis at the
Computing Center of the Far Easten Branch of the Russian Academy of Science.

In 2005 V.D. Stepanov moved from Khabarovsk to Moscow with appointment at the Peoples
Friendship University of Russia as the Head of the Department of Mathematical Analysis (retired
in 2018). Also, he was hired at the V.A. Steklov Mathematical Institute of RAS at the Function
Theory Department.

Research interests of V.D. Stepanov are: the theory of integral and differential operators, har-
monic analysis in Euclidean spaces, weighted inequalities, duality in function spaces, approximation
theory, asymptotic estimates of singular, approximation and entropy numbers of integral transfor-
mations, and estimates of the Schatten-Neumann type. Main achievements: the theory of integral
convolution operators is constructed, the criteria for the boundedness and compactness of integral
operators in function spaces are obtained, weighted inequalities and the behaviour of approximation
numbers of the Volterra, Riemann-Liouville, Hardy integral operators are studied, etc.

Under his scientific supervision 15 candidate theses in Russia and 5 PhD theses in Sweden were
successfully defended. Professor V.D. Stepanov has over 100 scientific publications including 3 mono-
graphs. Participation in scientific and organizational activities of V.D. Stepanov is well known. He
is a member of the American Mathematical Society (since 1987) and a member of the London Math-
ematical Society (since 1996), Deputy Editor of the Analysis Mathematica, member of the Editorial
Board of the Eurasian Mathematical Journal, invited speaker at many international conferences and
visiting professor of universities in USA, Canada, UK, Spain, Sweden, South Korea, Kazakhstan,
etc.

The mathematical community, many his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal cordially congratulate Vladimir Dmitrievich on the occasion of his
70th birthday and wish him good health, happiness and new achievements in mathematics and
mathematical education.
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INTERNATIONAL CONFERENCE "ACTUAL PROBLEMS OF
ANALYSIS, DIFFERENTIAL EQUATIONS AND ALGEBRA" (EMJ-2019),

DEDICATED TO THE 10TH ANNIVERSARY OF
THE EURASIAN MATHEMATICAL JOURNAL

From October 16 to October 19, 2019 at the L.N. Gumilyov Eurasian National University (ENU)
the International Conference "Actual Problems of Analysis, Differential Equations and Algebra"
(EMJ-2019) was held. The conference was dedicated to the 10th anniversary of the Eurasian Math-
ematical Journal (EMJ).

The purposes of the conference were to discuss the current state of development of mathematical
scientific directions, expand the number of potential authors of the Eurasian Mathematical Journal
and further strengthen the scientific cooperation between the Faculty of Mechanics and Mathematics
of the ENU and scientists from other cities of Kazakhstan and abroad.

The partner universities for the organization of the conference were the M.V. Lomonosov Moscow
State University, the Peoples’ Friendship University of Russia (the RUDN University, Moscow) and
the University of Padua (Italy).

The conference was attended by more than 80 mathematicians from the cities of Almaty, Aktobe,
Karaganda, Nur-Sultan, Shymkent, Taraz, Turkestan, as well as from several foreign countries: from
Azerbaijan, Germany, Greece, Italy, Japan, Kyrgyzstan, Russia, Tajikistan and Uzbekistan.

The chairman of the International Programme Committee of the conference was Ye.B. Sydykov,
rector of the ENU, co-chairmen were Chief editors of the EMJ: V.I. Burenkov, professor of the
RUDN University, M. Otelbaev, academician of the National Academy of Sciences of the Republic of
Kazakhstan (NAS RK), V.A. Sadovnichy, academician of the Russian Academy of Sciences (RAS),
rector of the M.V. Lomonosov Moscow State University (MSU).

There were three sections at the conference: "Function Theory and Functional Analysis", "Dif-
ferential Equations and Equations of Mathematical Physics" and "Algebra and Model Theory". 16
plenary presentations of 30 minutes each and more than 60 sectional presentations of 20 minutes
each, devoted to contemporary areas of mathematics, were given.

It was decided to recommend selected reports of the participants for publication in the Eurasian
Mathematical Journal and the Bulletin of the Karaganda State University (series "Mathematics").

Before the conference, a collection of abstracts of the participants’ talks was published.

PROGRAMME OF THE INTERNATIONAL CONFERENCE EMJ-2019

INTERNATIONAL PROGRAMME COMMITTEE

Chairman: Ye.B. Sydykov, rector of the ENU;
Co-chairs: V.I. Burenkov, professor of the RUDN University (Russia);

M. Otelbayev, academician of the NAS RK (Kazakhstan);
V.A. Sadovnichy, rector of the MSU, academician of the RAS (Russia).

Members: Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), O.V. Besov (Russia), A.A.
Borubaev (Kyrgyzstan), G. Bourdaud (France), V.N. Chubarikov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), S.N. Kharin (Kazakhstan),
E. Kissin (Great Britain), M. Lanza de Cristoforis (Italy), R. Oinarov (Kazakhstan), S.A. Plaksa
(Ukraine), L.-E. Persson (Sweden), M.D. Ramazanov(Russia), M.A. Ragusa (Italy), M. Reissig (Ger-
many), M. Ruzhansky (Great Britain), S.M. Sagitov (Sweden), A.A. Shkalikov(Russia), G. Sinnamon
(Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov, Ya.T. Sultanaev (Russia), I.A. Taimanov,
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(Russia), D. Yang (China), B.T. Zhumagulov (Kazakhstan), A.S. Zhumadildaev (Kazakhstan).

ORGANIZING COMMITTEE

Chair: A.A. Moldazhanova, first vice-rector, vice-rector for academic works of the ENU.
Co-chairs: G.T. Merzadinova, vice-rector for research work of the ENU; A.N. Zholdasbekova,

vice-rector for international cooperation and innovations of the ENU; D. Kamzabekuly, vice-rector for
welfare development of the ENU, academician of the NAS RK; N.G. Aydargalieva, acting vice-rector
for financial and economic affairs of the ENU; D.Kh. Kozybayev, dean of the Faculty of Mechanics and
Mathematics of the ENU; K.N. Ospanov, professor of the Department of Fundamental Mathematics
of the ENU.

Members: A.M. Abylayeva (Kazakhstan), A. Alday (Kazakhstan), T. Bekjan (China), N.A.
Bokayev (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhebaev (Kazakhstan), L.K. Kus-
sainova (Kazakhstan), P.D. Lamberti (Italy), M.B. Muratbekov (Kazakhstan), E.E. Nurmoldin
(Kazakhstan), E.D. Nursultanov (Kazakhstan), I.N. Parasidis (Greece), M.I. Ramazanov (Kaza-
khstan), M.A. Sadybekov (Kazakhstan), A.M. Sarsenbi (Kazakhstan), D. Suragan (Kazakhstan),
T.V. Tararykova (Russia), B.Kh. Turmetov (Kazakhstan), J.A. Tussupov (Kazakhstan), U.U. Umir-
baev (Kazakhstan), D.B. Zhakebayev (Kazakhstan), A.Zh. Zhubanysheva (Kazakhstan).

Executive secretary: A.M. Temirkhanova.
Secretariat: R.D. Akhmetkaliyeva, A. Beszhanova, A.A. Dzhumabayeva, Zh.B. Yeskabylova,

D.S. Karatayeva, A.N. Kopezhanova, D. Matin, Zh.B. Mukanov, B.S. Nurimov, M. Raikhan, B.
Seilbek, S. Shaimardan, N. Tokmaganbetov, A. Hairkulova.

Conference Schedule:

16.10.2019
09.00 – 10.00 Registration
10.00 – 10.30 Opening of the conference
10.30 – 12.50 Plenary talks
12.50 – 14.00 Lunch
14.00 – 18.00 Session talks

17.10.2019
09.30 – 12.20 Plenary talks
12.20 – 14.00 Lunch
14.00 – 18.00 Session talks
18.00 – Dinner for participants of the conference

18.10.2019
09.30 – 13.00 Plenary talks
12.20 – 14.00 Lunch
14.00 – 17.00 Excursion around the city

19.10.2019
09.30 – 12.30 Plenary talks
12.30 – 13.00 Closing of the conference

At the opening ceremony welcome speeches were given by Ye.B. Sydykov, rector of the ENU,
chairman of the Program Committee of the conference; V.I. Burenkov, professor of the RUDN Uni-
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versity, editor-in-chief of the EMJ; L. Mukasheva, official representative of the international company
Clarivate Analytics in the Central Asian region; A. Ospanova, official representative of Scopus.

Plenary talks were given by
T.Sh. Kalmenov (Kazakhstan), M. Otelbaev and B.D. Koshanov (Kazakhstan), P.D. Lamberti

and V. Vespri (Italy) – on 16.10.2019;
V.I. Burenkov (Russia), T. Ozawa (Japan), H. Begehr (Germany), M.A. Sadybekov and A.A.

Dukenbaeva (Kazakhstan), D. Suragan (Kazakhstan) – on 17.10.2019;
M.L. Goldman (Russia), A. Bountis (Greece), A.K. Kerimbekov (Kyrgyzstan), S.N. Kharin

(Kazakhstan), M.I. Dyachenko (Russia) – on 18.10.2019;
E.D. Nursultanov (Kazakhstan), M.A. Ragusa (Italy), P.D. Lamberti and V. Vespri (Italy), M.G.

Gadoev (Russia) and F.S. Iskhokov (Tajikistan) – on 19.10.2019.
At the closing ceremony all participants unanimously congratulated the staff of the L.N. Gumilyov

Eurasian National University and the Editorial Board of the Eurasian Mathematical Journal with
the 10th anniversary of the journal and wished further creative successes.

They expressed hope that the journal will continue to play an important role in the development
of mathematical science and education in Kazakhstan in the future.

V.I. Burenkov, K.N. Ospanov, A.M. Temirkhanova
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Abstract. We study characterizations by differences of the Besov-type spaces Bs,τ
p,q (Rd). Our focus

is on necessary and sufficient conditions on s for the validity of those characterizations.
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1 Introduction and main results

In the last few years smoothness spaces built upon Morrey spaces have attracted some attention.
One variant has already been considered in the monograph of Besov, Il’in and Nikol’skii [4,
Section 27], see also Netrusov [29]. However, here we are interested in a modification, so-called
Besov-type spaces Bs,τ

p,q (Rd), originally introduced by El Baraka in 2002, see [13]. We refer to the
next section for the definition and more detailed comments on the literature. A rough interpretation
of the role of the parameters is as follows. As in case of Nikol’skii-Besov spaces s is related to the
smoothness, p is related to integrability properties and q is a fine-index. The new parameter, which
we shall call the Morrey parameter, is not well understood at this moment. Partly τ influences
smoothness, partly it influences integrability. In view of the coincidence Bs,0

p,q(Rd) = Bs
p,q(Rd)

the Besov-type spaces Bs,τ
p,q (Rd) may be understood as generalizations of Nikol’skii-Besov spaces

Bs
p,q(Rd). In the center of our approach always stands the definition in Fourier-analytical terms

(for Bs,τ
p,q (Rd) as well as for Bs

p,q(Rd)). Then an immediate question concerns the characteri-
zation by differences (and this is not only because of the fact that the historical roots can be
found there, see Nikol’skii [30], Besov [1], [2]). More exactly, we shall deal with the following problem.

Under which restrictions on the parameters s, τ, p, q, d the spaces Bs,τ
p,q (Rd) can be described by

using only ∆N
h f(x) ?

In our answer given below there is absolutely no surprise if we restrict ourselves to the Ba-
nach space case p, q ∈ [1,∞]. However, if p < 1, there is a surprising new phenomenon. To explain
this, first we recall the characterization by differences of the Nikol’skii-Besov spaces. Definitions of
the underlying function spaces will be recalled in Section 2, see Definition 1.

Theorem 1.1. Let 0 < p, q ≤ ∞ and let N ∈ N. If

d max
(

0,
1

p
− 1
)
< s < N , (1.1)
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then Bs
p,q(Rd) is the collection of all f ∈ Lmax(p,1)(Rd) such that(∫

Rd
|h|−sq ‖∆N

h f |Lp(Rd)‖q dh
|h|d

)1/q

<∞

(with the standard modification if q =∞).

We refer to [31, 4.3.4], [5, Chapter 4] and [40, Theorem 2.5.12], [41, Theorem 3.5.3]. Let us denote
by Bs

p,q,N(Rd) the collection of all functions f ∈ Lp(Rd) such that

‖ f |Bs
p,q,N(Rd)‖ := ‖ f |Lp(Rd)‖+

(∫
Rd
|h|−sq ‖∆N

h f |Lp(Rd)‖q dh
|h|d

)1/q

<∞ . (1.2)

Then the following statement is in principal known.

Theorem 1.2. Let 0 < p, q ≤ ∞ and N ∈ N. Let s ∈ R such that s < N .
(i) Bs

p,q(Rd) and Bs
p,q,N(Rd) coincide if and only if (1.1) holds.

(ii) If (1.1) holds, then ‖ · |Bs
p,q(Rd)‖ and ‖ · |Bs

p,q,N(Rd)‖ are equivalent for all
f ∈ Lp(Rd) ∩ Lloc1 (Rd).

There are easy explanations for these restrictions, which we will discuss below. But let us mention
that in the case s < σp Besov spaces always contain singular distributions. For example the Dirac
delta distribution belongs to Bd/p−d

p,∞ (Rd) for 0 < p ≤ ∞. Hence, a characterization of those spaces by
differences does not make sense. Here our aim will be to prove a related result for the more general
Besov-type spaces. The most satisfactory answer we have obtained in case p = q.

Theorem 1.3. Let s ∈ R, 0 < p <∞, 0 ≤ τ < 1
p
and N ∈ N.

(i) Then Bs,τ
p,p(Rd) is the collection of all f ∈ Llocmax(p,1)(Rd) such that

‖ f ‖1 := sup
P∈Q

1

|P |τ
(∫

P

|f(x)|pdx
) 1
p

+ sup
P∈Q

1

|P |τ

(∫ ∞
0

t−sp
∫
P

(
t−d
∫
B(0,t)

|∆N
h f(x)|dh

)p
dx

dt

t

) 1
p

is finite if and only if (1.1) holds. Here Q refers to the collection of all dyadic cubes in Rd.
(ii) If (1.1) holds, then ‖ · ‖1 and ‖ · |Bs,τ

p,p(Rd)‖ are equivalent on Llocmax(p,1)(Rd).

It is really surprising that the Morrey parameter τ is not playing a role here. Let us have a closer
look at the case 0 < p < 1. It is known that

Bs,τ
p,q (Rd) ⊂ Lloc1 (Rd) if s > d

(
1

p
− 1

)
− dτ(1− p) ,

whereas in the case of Nikol’skii-Besov spaces

Bs
p,q(Rd) ⊂ Lloc1 (Rd) if s > d

(
1

p
− 1

)
.

For d(1
p
−1)−dτ(1−p) < s ≤ d(1

p
−1) there is a large area where the spaces Bs,τ

p,p(Rd) do not contain
any singular distribution but also can not be described with the quasinorm ‖ · ‖1. In the case τ = 0
we recover the original Besov spaces Bs

p,p(Rd). Here this gap disappears. In the (1/p, s)-diagram



Besov-type spaces and differences 27

below, see Fig.1., we have tried to illustrate the result of Theorem 1.3. For convenience we have
chosen τ = 1

p
− 1 if p < 1.

Fig. 1. Bs,τ
p,p(Rd) and

differences.

A: ‖ · ‖1 describes
Bs,τ
p,p(Rd).

B: ‖ · ‖1 does not de-
scribe Bs,τ

p,p(Rd). On
[1,∞) above of the
thick line we have
Bs,τ
p,p(Rd) ⊂ Lloc1 (Rd).

Of course we will not only look at the case p = q. So in the course of this paper we will prove the
following result for possibly different p and q.

Theorem 1.4. Let 0 < p <∞, 0 ≤ τ < 1
p
, 0 < q, v ≤ ∞ and N ∈ N. We suppose

dmax

(
0,

1

p
− 1,

1

p
− 1

v

)
< s < N . (1.3)

Then a function f ∈ Llocp (Rd) belongs to Bs,τ
p,q (Rd) if and only if f ∈ Llocv (Rd) and

‖ f ‖(v,1) := sup
P∈Q

1

|P |τ
(∫

P

|f(x)|pdx
) 1
p

+ sup
P∈Q

1

|P |τ
(∫ 1

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

is finite. In the case q = ∞ and/or v = ∞ the usual modifications are made. The quasi-norms
‖ · |Bs,τ

p,q (Rd)‖ and ‖ · ‖(v,1) are equivalent on Llocp (Rd).

In this paper we also will investigate the necessity of the restrictions in Theorem 1.4. For
this purpose by Bs,τ,N

p,q,v (Rd) we denote the collection of all functions f ∈ Llocmax(p,v)(Rd) that sat-
isfy ‖f‖(v,1) <∞.

Theorem 1.5. Let s ∈ R, 0 < p < ∞, 0 ≤ τ < 1
p
, 0 < q, v ≤ ∞ and N ∈ N. Then Bs,τ

p,q (Rd) 6=
Bs,τ,N
p,q,v (Rd) if we are in one of the following cases:

(i) s ≤ 0,

(ii) s < d(1
p
− 1)− dτ(1− p) and 0 < p < 1,

(iii) s < d(1
p
− 1

v
)− dτ(1− p

v
), max(p, 1) < v <∞ and Bs,τ

p,q (B) ↪→ L1(B) for some ball B ⊂ Rd,

(iv) s ≤ d(1
p
− 1

v
) and q = p ≤ v <∞,
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(v) either N < s and 0 < q ≤ ∞ or N = s and 0 < q <∞.

The additional condition Bs,τ
p,q (B) ↪→ L1(B) for some ball B ⊂ Rd in part (iii) is probably

superfluous. At least, if τ = 0 we know that Bs
p,q(B) ↪→ L1(B) for some ball B ⊂ Rd is equivalent

to Bs
p,q(Rd) ⊂ Lloc1 (Rd) and this condition is needed to allow a characterization by differences. If we

compare this result with Theorem 1.4 it becomes clear that we do not have a complete answer at
this moment. For example, in the case q 6= p < v with 1 ≤ v <∞ it is not clear what happens if

d

(
1

p
− 1

v

)
− dτ

(
1− p

v

)
≤ s ≤ d

(
1

p
− 1

v

)
.

Again we have tried to illustrate the situation in an (1/p, s)-diagram, see Fig.2. For simplicity
we have chosen v = 1. In the diagram we assume p 6= q for every p and τ = 1

p
− 1 if p < 1. The

influence of the parameter q is hidden.

Fig. 2. Characterization
in terms of differences for
Bs,τ
p,q (Rd) with q 6= p and

τ = 1
p
− 1 if p < 1.

A:
Bs,τ
p,q (Rd) = Bs,τ,N

p,q,1 (Rd)

B:
Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,1 (Rd)

C : open problem

The paper is organized as follows. In Section 2 we shall define the Besov-type spaces Bs,τ
p,q (Rd).

In addition we collect some useful properties of these classes. In Section 3 we shall prove Theorem
1.4. To do so, we make use of some ideas of Hedberg and Netrusov, see [18]. In Section 4 we will
give some comments concerning the original Besov spaces. In Section 5 we deal with the necessity of
some of our restrictions in the Theorems 1.3 and 1.5. Our main tool here is the method which has
been developed by Christ and Seeger, see [9].

Notation

As usual N denotes the set of all natural numbers, N0 the set of all natural numbers and 0, Z the set
of all integers and R the set of all real numbers. Rd denotes the d-dimensional Euclidean space. We
put

B(x, t) := {y ∈ Rd : |x− y| < t} , x ∈ Rd , t > 0.

All functions are assumed to be complex-valued, i. e. we consider functions f : Rd → C. Let S(Rd)
be the collection of all Schwartz functions on Rd endowed with the usual topology and denote by
S ′(Rd) its topological dual, namely the space of all bounded linear functionals on S(Rd) endowed
with the weak ∗-topology. The symbol F refers to the Fourier transform and F−1 refers to its inverse
transform. Both are defined on S ′(Rd). Almost all function spaces which we consider in this paper
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are subspaces of S ′(Rd), i. e. spaces of equivalence classes with respect to almost everywhere equality.
However, if such an equivalence class contains a continuous representative, then usually we work with
this representative and call also the equivalence class a continuous function. By C∞0 (Rd) we mean
the set of all infinitely often continuously differentiable functions on Rd with compact support.

Given a quasi-Banach space X, the operator norm of a linear operator T : X → X is denoted
by ‖T |L(X)‖. For two quasi-Banach spaces X and Y we write X ↪→ Y if X ⊂ Y and the natural
embedding of X into Y is continuous. For all p ∈ (0,∞] and q ∈ (0,∞] we write

σp := d max
(

0,
1

p
− 1
)

and σp,q := d max
(

0,
1

p
− 1,

1

q
− 1
)
.

The symbols C,C1, c, c1 . . . denote positive constants that depend only on the fixed parameters
d, s, τ, p, q and probably on auxiliary functions. Unless otherwise stated their values may vary from
line to line. Sometimes we use the symbol “.” instead of “≤”. The meaning of A . B is given
by: there exists a positive constant C such that A ≤ C B. The symbol A � B will be used as an
abbreviation of A . B . A. In this paper one important tool will be the differences of higher order.
Let f : Rd → C be a function. Then for x, h ∈ Rd we define the difference of the first order by
∆1
hf(x) := f(x+ h)− f(x). Let N ∈ N. Then we define the difference of order N by

∆N
h f(x) :=

(
∆1
h

(
∆N−1
h f

))
(x) , x ∈ Rd.

2 Definition and basic properties of Besov-type spaces

2.1 Besov-type spaces

To define the spaces Bs,τ
p,q (Rd) we need a so-called smooth dyadic decomposition of the unity. Let

ϕ0 ∈ C∞0 (Rd) be a non-negative function such that ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(x) = 0 if |x| ≥ 3
2
.

For k ∈ N we define
ϕk(x) := ϕ0(2−kx)− ϕ0(2−k+1x), x ∈ Rd.

Since
∞∑
k=0

ϕk(x) = 1 , x ∈ Rd ,

and
suppϕk ⊂

{
x ∈ Rd : 2k−1 ≤ |x| ≤ 3 · 2k−1

}
, k ∈ N ,

we call the system (ϕk)k∈N0 a smooth dyadic decomposition of the unity on Rd. The Paley-Wiener-
Schwarz theorem states that F−1[ϕk Ff ] with k ∈ N0 is a smooth function for any f ∈ S ′(Rd). Let
Q be the collection of all dyadic cubes in Rd, i.e.,

Q := {Qj,k := 2−j([0, 1)d + k) : j ∈ Z, k ∈ Zd} .

The symbol l(P ) denotes the side-length of a cube P and jP := − log2(l(P )).

Definition 1. Let s ∈ R, 0 ≤ τ < ∞ and 0 < p, q ≤ ∞. Let (ϕk)k∈N0 be a smooth dyadic
decomposition of the unity. Then the Besov-type space Bs,τ

p,q (Rd) is defined to be the set of all
distributions f ∈ S ′(Rd) such that

‖f |Bs,τ
p,q (Rd)‖ := sup

P∈Q

1

|P |τ

( ∞∑
k=max(jP ,0)

2ksq
(∫

P

|F−1[ϕk Ff ](x)|pdx
) q
p

) 1
q

<∞.

In the cases p =∞ and/or q =∞ the usual modifications are made.
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We collect a few basic facts.

Lemma 2.1. Let s ∈ R, τ ≥ 0, 0 < p, q ≤ ∞ and ε > 0. Then the following assertions are true.

(i) The spaces Bs,τ
p,q (Rd) are independent of the chosen smooth dyadic decomposition of the unity

in the sense of equivalent quasi-norms.

(ii) The spaces Bs,τ
p,q (Rd) are quasi-Banach spaces.

(iii) If θ := min(1, p, q), then

‖f + g|Bs,τ
p,q (Rd)‖θ ≤ ‖f |Bs,τ

p,q (Rd)‖θ + ‖g|Bs,τ
p,q (Rd)‖θ for all f, g ∈ Bs,τ

p,q (Rd).

(iv) S(Rd) ↪→ Bs,τ
p,q (Rd) ↪→ S ′(Rd).

(v) The scale Bs,τ
p,q (Rd) is monotone with respect to q, namely if q1 ≤ q2, then Bs,τ

p,q1
(Rd) ↪→ Bs,τ

p,q2
(Rd).

(vi) The scale Bs,τ
p,q (Rd) is monotone with respect to s, namely for all q1, q2 ∈ (0,∞] we have

Bs+ε,τ
p,q1

(Rd) ↪→ Bs,τ
p,q2

(Rd).

(vii) Bs,0
p,q(Rd) = Bs

p,q(Rd).

Proof. For most proofs we refer to [49]. In particular, (i) can be found in Corollary 2.1, (ii) and (iii)
can be found in Lemma 2.1, (iv) is proved in Proposition 2.3. Parts (v) and (vi) can be found in
Proposition 2.1. Part (vii) is obvious.

In this paper we will concentrate on the case 0 ≤ τ < 1
p
. The following lemma tells us that most

of the other cases are less interesting anyway.

Lemma 2.2. Let s ∈ R, 0 ≤ τ <∞, 0 < p, q ≤ ∞. Let either q ∈ (0,∞) and τ ∈ (1
p
,∞) or q =∞

and τ ∈ [1
p
,∞). Then Bs,τ

p,q (Rd) = B
s+d(τ− 1

p
)

∞,∞ (Rd).

Proof. We refer to [48].

In the case 0 ≤ τ < 1
p
the definition of the Besov-type spaces Bs,τ

p,q (Rd) can be simplified.

Lemma 2.3. Let s ∈ R, 0 < p < ∞, 0 ≤ τ < 1
p
and 0 < q ≤ ∞. Let (ϕk)k∈N0 be a smooth

dyadic decomposition of the unity. Then the Besov-type space Bs,τ
p,q (Rd) is the set of all distributions

f ∈ S ′(Rd) such that

‖f |Bs,τ
p,q (Rd)‖(]) := sup

P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

|F−1[ϕk Ff ](x)|pdx
) q
p
) 1
q
<∞.

Moreover ‖ · |Bs,τ
p,q (Rd)‖ and ‖ · |Bs,τ

p,q (Rd)‖(]) are equivalent quasi-norms on Bs,τ
p,q (Rd). In the case

q =∞ the usual modifications should be made.

Proof. A proof can be found in [36], see Proposition 3.1.

Hereinafter we want to collect some further properties of the Besov-type spaces. Most of them
will be used in proofs later. It is interesting to know under which restrictions Bs,τ

p,q (Rd) contains
singular distributions and under which conditions it does not. The following result was proved in
[17], see Theorem 3.6.

Lemma 2.4. Let s ∈ R, 0 < p <∞, 0 ≤ τ ≤ 1
p
, and 0 < q ≤ ∞. Then the following assertions are

true.
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(i) Let either s > 0 and p ≥ 1 or s > d(1
p
− 1)− dτ(1− p) and p < 1. Then we have Bs,τ

p,q (Rd) ⊂
Lloc1 (Rd).

(ii) Let either s < 0 and p ≥ 1 or s < d(1
p
− 1)− dτ(1− p) and p < 1. Then we have Bs,τ

p,q (Rd) 6⊂
Lloc1 (Rd).

There is also a result concerning the limiting cases, see Theorem 3.8. in [17].

Lemma 2.5. Let s = 0, 0 < p <∞, 0 ≤ τ < 1
p
and 0 < q ≤ ∞. Then

B0,τ
p,q (Rd) 6⊂ Lloc1 (Rd) in the following cases:

(i) p ≥ 2 and q > 2,

(ii) 1 ≤ p < 2 and q > pmax
(

1, 1
d(1−pτ)

)
.

This can be supplemented as follows.

Lemma 2.6. Let 0 < q ≤ p < 1, 0 ≤ τ < 1
p
and s = d(1

p
− 1) − dτ(1 − p). Then there exists a

constant C > 0 such that
‖ f |L1(Rd)‖ ≤ C ‖ f |Bs,τ

p,q (Rd)‖ (2.1)

for all f ∈ Bs,τ
p,q (Rd) satisfying supp f ⊂ [−1, 1]d.

Proof. In [17, Theorem 3.8(i)] Haroske et al. showed that under the given restrictions Bs,τ
p,q (Rd) ⊂

Lloc1 (Rd). Looking into the details of their proof, we find that one can sharpen their result as stated
above.

Summarizing, the line s = s(p, τ), where

s(p, τ) =


d
(

1
p
− 1
)
− dτ(1− p) if 0 < p < 1;

0 if 1 ≤ p <∞;

represents the barrier for singular distributions within the scale Bs,τ
p,q (Rd).

Later on we shall also need Besov-type spaces on domains. We concentrate on smooth and
bounded domains only. Let D′(Ω) denote the usual space of distributions on Ω ⊂ Rd.

Definition 2. Let s ∈ R, 0 ≤ τ < ∞, 0 < p ≤ ∞ and 0 < q ≤ ∞. Let Ω ⊂ Rd be a bounded
C∞-domain. Then we define

Bs,τ
p,q (Ω) =

{
f ∈ D′(Ω) : ∃ g ∈ Bs,τ

p,q (Rd) such that f = g in Ω
}
.

We define
‖f |Bs,τ

p,q (Ω)‖ := inf
{
‖g|Bs,τ

p,q (Rd)‖ : f = g in Ω
}
.

For our purposes the following results concerning Besov-type spaces on domains are of interest.

Lemma 2.7. Let s ∈ R, 0 < p < ∞, 0 ≤ τ < 1
p
and 0 < q ≤ ∞. Let max(p, 1) < v < ∞. Let

Ω ⊂ Rd be a bounded C∞-domain. Then the following assertions are true.

(i) If s > d(1
p
− 1

v
)− dτ(1− p

v
), then Bs,τ

p,q (Ω) ↪→ Lv(Ω).

(ii) If s < d(1
p
− 1

v
)− dτ(1− p

v
), then Bs,τ

p,q (Ω) 6⊂ Lv(Ω).
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Proof. We refer to [16].

For m ∈ N we denote by Cm(Rd) the space of all bounded continuous functions for which all
classical derivatives up to order m are continuous and bounded. This space will be equipped with
the norm

‖ g |Cm(Rd)‖ := sup
|α|≤m

sup
x∈Rd

|Dαg(x)| .

Lemma 2.8. Let s ∈ R, 0 < p < ∞, 0 ≤ τ < 1
p
and 0 < q ≤ ∞. Let m ∈ N be sufficiently large.

Then there exists a positive constant C(m) such that for all g ∈ Cm(Rd) and all f ∈ Bs,τ
p,q (Rd) we

have
‖ f · g |Bs,τ

p,q (Rd)‖ ≤ C(m) ‖ g |Cm(Rd)‖ ‖ f |Bs,τ
p,q (Rd)‖.

Proof. A proof of this result can be found in [49, Theorem 6.1].

2.2 Smoothness spaces built on Morrey spaces

We shall need some further function spaces related to Morrey spaces, the so-called Triebel-Lizorkin-
Morrey spaces Esu,p,q(Rd). First we recall the definition of the Morrey spaces.

Definition 3. Let 0 < p ≤ u < ∞. Then the Morrey spaceMu
p(Rd) is defined to be the set of all

functions f ∈ Llocp (Rd) such that

‖f |Mu
p(Rd)‖ := sup

y∈Rd,r>0

|B(y, r)|
1
u
− 1
p

(∫
B(y,r)

|f(x)|pdx
) 1
p
<∞.

The Morrey spaces Mu
p(Rd) are quasi-Banach spaces (Banach spaces for p ≥ 1). Obviously we

haveMp
p(Rd) = Lp(Rd) for all p. Moreover, for 0 < p2 ≤ p1 ≤ u <∞ we have

Lu(Rd) =Mu
u(Rd) ↪→Mu

p1
(Rd) ↪→Mu

p2
(Rd) . (2.2)

Another interesting feature of Morrey spaces is given by the fact that they are nonseparable if
u 6= p. Notice that it is also possible to define the Morrey spaces using dyadic cubes instead of balls.
Now we can define the Triebel-Lizorkin-Morrey spaces Esu,p,q(Rd).

Definition 4. Let 0 < p ≤ u < ∞, 0 < q ≤ ∞ and s ∈ R. Let (ϕk)k∈N0 be a smooth dyadic
decomposition of the unity. Then the Triebel-Lizorkin-Morrey space Esu,p,q(Rd) is defined to be the
set of all distributions f ∈ S ′(Rd) such that

‖f |Esu,p,q(Rd)‖ :=
∥∥∥( ∞∑

k=0

2ksq|F−1[ϕkFf ](x)|q
) 1
q
∣∣∣Mu

p(Rd)
∥∥∥ <∞.

In the case q =∞ the usual modifications should be made.

The spaces Bs,τ
p,q (Rd) and Esu,p,q(Rd) are related in the following way.

Lemma 2.9. Let 0 < p ≤ u <∞ and s ∈ R. Then B
s, 1
p
− 1
u

p,p (Rd) = Esu,p,p(Rd).

Proof. This result can be found in [49, Corollary 3.3].
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2.3 Some more spaces

Probably with the paper of Kozono and Yamazaki [22] a refreshed interest in function spaces related
to Morrey spaces has started. Kozono and Yamazaki considered in particular Besov-Morrey spaces
N s
u,p,q(Rd), see also Mazzucato [25] in this context. As mentioned above, El Baraka [13, 14, 15]

introduced the Besov-type spaces around 2002. The spaces Esu,p,q(Rd) have been introduced in 2005
by Tang and Xu, see [39]. Later, around 2008, Yang and Yuan [46, 47] introduced Triebel-Lizorkin-
type spaces F s,τ

p,q (Rd), relatives of the classes Esu,p,q(Rd), and therefore generalizations of the Triebel-
Lizorkin spaces F s

p,q(Rd), extensively studied in Triebel’s series of monographs [40], [41], [42], [45], see
also [5] and the recent monograph by Sawano [33]. In two further books Triebel introduced two more
scales related to Morrey spaces, denoted by LrBs

p,q(Rd) and LrF s
p,q(Rd). If r = d(τ − 1

p
), these spaces

coincide locally with Bs,τ
p,q (Rd) and F s,τ

p,q (Rd), respectively, see [50] and [44]. In the meanwhile there is
an increasing number of papers dealing either with generalized Morrey spaces and smoothness spaces
defined on their base or modifications of Morrey spaces. In the Introduction we have already refered
to the monograph by Besov, Il’in, Nikol’skii [4, 5] and Netrusov [29]. There the authors modified the
Morrey spaces by replacing

sup
y∈Rd,r>0

|B(y, r)|
1
u
− 1
p

(∫
B(y,r)

|f(x)|pdx
) 1
p

by

sup
y∈Rd,r>0

min
(

1, |B(y, r)|
) 1
u
− 1
p
(∫

B(y,r)

|f(x)|pdx
) 1
p
,

see Definition 3. Another modification, the so-called local Morrey-type space, was investigated in the
works by Burenkov, Nursultanov [6] and Burenkov, Chigambayeva, Nursultanov [7]. For generalized
Morrey spaces, where |B(y, r)|

1
u
− 1
p was replaced by a function ϕ(y, r), we refer to the works by

Mizuhara [26], Nakai [27] and Nakamura, Noi, Sawano [28].

2.4 Some important inequalities

Later on we will need some technical lemmas. A central role will be played by the Hardy-Littlewood
maximal function Mf(x). Recall, for f ∈ Lloc1 (Rd) we have

Mf(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy, x ∈ Rd .

Most important for us will be the following vector-valued maximal inequality.

Lemma 2.10. Let 1 < p < ∞, 0 ≤ τ < 1
p
and 0 < q ≤ ∞. Let {fj}∞j=0 be a sequence of local

Lebesgue integrable functions on Rd. Then there is a constant C > 0 independent of {fj}∞j=0, such
that

sup
P∈Q

1

|P |τ
( ∞∑
j=0

(∫
P

|(M(fj))(x)|pdx
) q
p
) 1
q ≤ C sup

P∈Q

1

|P |τ
( ∞∑
j=0

(∫
P

|fj(x)|pdx
) q
p
) 1
q (2.3)

(with the usual modifications in the case q =∞ ).

Proof. A proof of this result can be found in [52, Proposition 2.3]. In the case q = ∞ the proof is
obvious.
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Remark 1. Observe that the maximal inequality stated in (2.3) is neither a consequence of

‖Mf |Mu
p(Rd)‖ ≤ C ‖ f |Mu

p(Rd)‖ (2.4)

nor of ∥∥∥∥( ∞∑
j=0

|Mfj(x)|q
) 1
q

∣∣∣∣Mu
p(Rd)

∥∥∥∥ ≤ C

∥∥∥∥( ∞∑
j=0

|fj(x)|q
) 1
q

∣∣∣∣Mu
p(Rd)

∥∥∥∥ , (2.5)

at least if q < ∞. Inequality (2.4) was proved by Chiarenza, Frasca [8] and for (2.5) we refer to
Tang, Xu [39].

Before we can write down the next result we have to introduce some additional notation. Let
ν ∈ R. Then Hν

2 (Rd) denotes a Bessel-potential space, defined as the collection of all f ∈ S ′(Rd)
with

‖f |Hν
2 (Rd)‖ = ‖(1 + |ξ|2)

ν
2 (Ff)(ξ)|L2(Rd)‖ <∞ .

Now we are able to quote a result obtained by Sawano and Tanaka [34, Theorem 2.4].

Lemma 2.11. Let 0 < q ≤ ∞, 0 < p ≤ u < ∞, η > 0 and ν > 1
η

+ d
2
. Let h ∈ Hν

2 (Rd) and R ∈ R
with R > 0. Let f ∈ Mu

p(Rd) ∩ S ′(Rd) with suppFf ⊂ B(0, R). Then there is a constant C > 0
independent of R, h and f , such that∫

Rd
|F−1h(x− y)f(y)|dy ≤ C ‖h(R·)|Hν

2 (Rd)‖ · ((M|f |η)(x))
1
η

for all x ∈ Rd.

3 The Hedberg-Netrusov approach to Besov-type spaces

In [18] Hedberg and Netrusov developed a general theory for function spaces that are related to
Besov and Triebel-Lizorkin spaces. This approach can be applied to deduce a characterization of
the Besov-type spaces in terms of differences. Below we will give a short summary of chapter 1 in
[18]. Afterwards we shall show that Besov-type spaces represent a particular case within this theory.
The starting point of the theory of Hedberg and Netrusov are quasi-Banach spaces of sequences of
functions, denoted by the symbol E.

Definition 5. Let E be a quasi - Banach space of sequences of Lebesgue measurable functions on
Rd. Then on E we define a non-negative function ‖·‖E, which should satisfy the following conditions:

(i) ‖ · ‖E has the same properties as a norm, except for the triangle inequality, which is replaced
by the following property. There exist constants κ with 0 < κ ≤ 1 and CE ≥ 1, such that for
any family {Fi}ji=0 of elements in E and any j ∈ N one has the inequality

∥∥∥ j∑
i=0

Fi

∥∥∥κ
E
≤ CE

j∑
i=0

∥∥∥Fi∥∥∥κ
E
.

(ii) The metric space (E, ‖ · ‖E) is complete.

(iii) If {fi}∞i=0 ∈ E and {gi}∞i=0 is a sequence of measurable functions such that |gi| ≤ |fi| almost
everywhere for all i ∈ N0, it follows that {gi}∞i=0 ∈ E and ‖{gi}∞i=0‖E ≤ ‖{fi}

∞
i=0‖E.
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Based on this definition Hedberg and Netrusov introduced the classes S(ε+, ε−, r) of spaces E
with ε+, ε− ∈ R and 0 < r <∞. To describe them we need some additional notation. For a sequence
of functions {fi}∞i=0 we define the left shift S+ and the right shift S− by S+ ({fi}∞i=0) := {fi+1}∞i=0 and
S− ({fi}∞i=0) := {fi−1}∞i=0 with f−1 = 0. Moreover, for 0 < r <∞ and t ≥ 0, we define the maximal
function Mr,tf and the operator M̂r,t by

M̂r,t ({fi}∞i=0) := {Mr,tfi}∞i=0 :=

{
sup
a>0

(
a−d

∫
B(0,a)

|fi(x+ y)|r

(1 + |y|)rt
dy
) 1
r

}∞
i=0

.

Definition 6. Let ε+, ε− ∈ R, 0 < r <∞ and t ≥ 0. The space E, satisfying (i)− (iii) in Definition
5, belongs to the class S(ε+, ε−, r, t), if the following conditions are satisfied.

(i) The linear operators S+ and S− are continuous on E and there are constants C1, C2 > 0
independent of j and {fi}∞i=0 such that for all j ∈ N we have

‖(S+)j|L(E)‖ ≤ C12−jε+ and ‖(S−)j|L(E)‖ ≤ C22jε− .

(ii) The operator M̂r,t is bounded on E and there is a constant C > 0, independent of {fi}∞i=0, such
that

∥∥{Mr,tfi}∞i=0

∥∥
E
≤ C ‖{fi}∞i=0‖E .

Set S(ε+, ε−, r) =
⋃
t≥0

S(ε+, ε−, r, t).

Now we are able to define the function spaces denoted by Y (E). Later it turns out that under
particular conditions these spaces coincide with Bs,τ

p,q (Rd).

Definition 7. Let ε+, ε− ∈ R and r > 0. Let E ∈ S(ε+, ε−, r). The space Y (E) consists of all
distributions f ∈ S ′(Rd) which have a representation f =

∑∞
i=0 fi converging in S ′(Rd) such that

‖{fi}∞i=0‖E <∞, suppFf0 ⊂ B(0, 2) and suppFfi ⊂ B(0, 2i+1) \B(0, 2i−1) for all i ∈ N.

We put
‖f‖Y (E) := inf ‖{fi}∞i=0‖E ,

where the infimum is taken over all admissible representations of f as described in Definition 7. Then
‖f‖Y (E) is a quasi-norm and Y (E) becomes a quasi-normed space. Now we are prepared to formulate
an important result of Hedberg and Netrusov concerning differences. The following assertion is only
one part of a more comprehensive result. For more details the reader may consult Theorem 1.1.14.
in [18].

Proposition 3.1. Let ε+, ε− > 0 and E ∈ S(ε+, ε−, r). Let 0 < r, v ≤ ∞, N ∈ N and suppose

dmax

(
0,

1

r
− 1,

1

r
− 1

v

)
< ε+ and ε− < N .

Then a function f ∈ Llocr (Rd) belongs to Y (E) if and only if f ∈ Llocv (Rd) and the functions

g0(x) =
(∫

B(x,1)

|f(y)|vdy
) 1
v and gi(x) = 2

di
v

(∫
B(0,2−i)

|∆N
z f(x)|vdz

) 1
v

, i ∈ N,

satisfy ‖{gi}∞i=0‖E <∞. The quasi-norms ‖f‖Y (E) and ‖{gi}∞i=0‖E are equivalent on Llocr (Rd). In the
case v =∞ the usual modifications should be made.

Proof. This result is just a combination of Theorem 1.1.14. and Proposition 1.1.12. from [18].
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Remark 2. A detailed study of the proof of Theorem 1.1.14. in [18] shows that it is possible to
replace

g0(x) =
(∫

B(x,1)

|f(y)|vdy
) 1
v by g̃0(x) = |f(x)|

in the formulation of Proposition 3.1. To prove this fortunately almost everything in the proof
of Theorem 1.1.14. in [18] can be retained unchanged. Only in the Steps 3 and 6 some minor
modifications are necessary. The changes in Step 3 are trivial. In Step 6 a combination of Lemma
1.1.4. and Lemma 1.1.3. from [18] delivers the desired result.

In what follows we want to investigate how the theory of Hedberg and Netrusov is connected
with the Besov-type spaces Bs,τ

p,q (Rd). For that purpose we define the following space of sequences of
functions.

Definition 8. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and 0 ≤ τ < 1
p
. Let {fj}∞j=0 be a sequence of

Lebesgue measurable functions on Rd which belong to Llocp (Rd). Then we define the space Bs,τp,q (Rd)
as the collection of all those sequences such that

‖{fj}∞j=0‖Bs,τp,q (Rd) := sup
P∈Q

1

|P |τ
( ∞∑
j=0

2jsq
(∫

P

|fj(x)|pdx
) q
p
) 1
q
<∞ .

In the case q =∞ the usual modifications are made.

Remark 3. It is not difficult to see that the spaces Bs,τp,q (Rd) are examples for the space E in the theory
of Hedberg and Netrusov. Of course the spaces Bs,τp,q (Rd) are quasi-Banach spaces. Furthermore, with
θ = min(1, p, q) we have

‖{fj + gj}∞j=0‖θBs,τp,q (Rd) ≤ ‖{fj}
∞
j=0‖θBs,τp,q (Rd) + ‖{gj}∞j=0‖θBs,τp,q (Rd)

for all sequences {fj}∞j=0 and {gj}∞j=0 of locally Lebesgue integrable functions. The proof of the lattice
property is trivial.

Now we want to investigate under which conditions Bs,τp,q (Rd) ∈ S(ε+, ε−, r, t).

Lemma 3.1. Let s ∈ R, 0 < r < p < ∞, 0 ≤ τ < 1
p
, 0 < q ≤ ∞ and t ≥ 0. Then Bs,τp,q (Rd) ∈

S(s, s, r, t).

Proof. Step 1. For the shift operator S+ we have to show that for all j ∈ N we get

‖(S+)j({fi}∞i=0)‖Bs,τp,q (Rd) ≤ 2−js‖{fi}∞i=0‖Bs,τp,q (Rd).

Since we can write
2isp|fi+j|p = 2(i+j)sp2−jsp|fi+j|p ,

this is simple. For the shift operator S− we can argue analoguously.
Step 2. Now we want to deal with the maximal functions Mr,tfi. We have

‖{Mr,tfi}∞i=0‖Bs,τp,q (Rd) = sup
P∈Q

1

|P |τ
( ∞∑
i=0

2isq
(∫

P

|Mr,tfi(x)|pdx
) q
p
) 1
q

≤ C1

[
sup
P∈Q

1

|P |rτ
( ∞∑
i=0

(∫
P

|(M(2isfi)
r)(x)|

p
r dx
) r
p
q
r
) r
q

] 1
r

.
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Here Mfi denotes the Hardy - Littlewood maximal function. Now we use Lemma 2.10. This is
possible because of 0 < r < p and τ < 1

p
. We obtain

‖{Mr,tfi}∞i=0‖Bs,τp,q (Rd) ≤ C2

[
sup
P∈Q

1

|P |rτ
( ∞∑
i=0

2isq
(∫

P

|fi(x)|pdx
) r
p
q
r
) r
q

] 1
r

= C2 ‖{fi}∞i=0‖Bs,τp,q (Rd).

The proof is complete.

Proposition 3.2. Let s ∈ R, 0 < r < p <∞, 0 ≤ τ < 1
p
and 0 < q ≤ ∞. Then we have

Y (Bs,τp,q (Rd)) = Bs,τ
p,q (Rd).

Moreover ‖ · |Bs,τ
p,q (Rd)‖ and ‖ · ‖Y (Bs,τp,q (Rd)) are equivalent quasi-norms.

Proof. Step 1. At first we prove Bs,τ
p,q (Rd) ↪→ Y (Bs,τp,q (Rd)). For this purpose we take f ∈ Bs,τ

p,q (Rd)
and show that all properties, which can be found in Definition 7, are fulfilled. Due to part (iv) of
Lemma 2.1 we have f ∈ S ′(Rd). If (ϕj)j∈N0 is a smooth dyadic decomposition of the unity we get
f =

∑∞
j=0F−1[ϕj · Ff ] with convergence in S ′(Rd). Now, because of the properties of the functions

(ϕj)j∈N0 , Lemma 2.3 and Definition 1 we obtain

‖f‖Y (Bs,τp,q (Rd)) ≤
∥∥∥{F−1[ϕj · Ff ]

}∞
j=0

∥∥∥
Bs,τp,q (Rd)

= ‖f |Bs,τ
p,q (Rd)‖(]) ≤ C ‖f |Bs,τ

p,q (Rd)‖.

It follows f ∈ Y (Bs,τp,q (Rd)).
Step 2. Now we prove Y (Bs,τp,q (Rd)) ↪→ Bs,τ

p,q (Rd). Let f ∈ Y (Bs,τp,q (Rd)). So we have a representation
f =

∑∞
i=0 fi that satisfies all the properties written down in Definition 7. We take θ = min(1, p, q).

Then we conclude

‖f |Bs,τ
p,q (Rd)‖θ ≤

[
sup
P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

|F−1[ϕk Ff ](x)|pdx
) q
p
) 1
q

]θ
=

[
sup
P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

|F−1[ϕk F
∞∑
i=0

fi](x)|pdx
) q
p
) 1
q

]θ
≤ C1 max

i∈{−1,0,1}

[
sup
P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

∣∣∣ ∫
Rd
F−1ϕk(x− y)fk+i(y)dy

∣∣∣pdx) qp) 1
q

]θ
.

Now we use Lemma 2.11. Choose 0 < η < p and ν > 1
η

+ d
2
. Since ϕk ∈ S(Rd) we have ϕk ∈ Hν

2 (Rd)

for all k ∈ N0. Moreover, because of ‖{fk}∞k=0‖Bs,τp,q (Rd) <∞ we find fk ∈ Mu
p(Rd) for all k ∈ N0 and

τ = 1
p
− 1

u
. We obtain

‖f |Bs,τ
p,q (Rd)‖θ

≤ C2 max
i∈{−1,0,1}

[
sup
P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

(
‖ϕk(2k+2·)|Hν

2 (Rd)‖ · ((M|fk+i|η)(x))
1
η

)p
dx
) q
p
) 1
q

]θ
≤ C2 sup

j∈N
‖ϕj(2j+2·)|Hν

2 (Rd)‖θ

× max
i∈{−1,0,1}

[
sup
P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

(
((M|fk+i|η)(x))

1
η

)p
dx
) q
p
) 1
q

]θ
.
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By definition we have ϕk(ξ) = ϕ1(2−k+1ξ), k ∈ N, ξ ∈ Rd. This implies that
supj∈N0

‖ϕj(2j+2·)|Hν
2 (Rd)‖ <∞. Now since η < p we can use Lemma 2.10 and obtain

‖f |Bs,τ
p,q (Rd)‖θ ≤ C3 max

i∈{−1,0,1}

[
sup
P∈Q

1

|P |τ
( ∞∑
k=0

2ksq
(∫

P

|fk+i(x)|pdx
) q
p
) 1
q

]θ
≤ C4 ‖{fk}∞k=0‖θBs,τp,q (Rd).

Therefore, we get f ∈ Bs,τ
p,q (Rd), since ‖{fk}∞k=0‖Bs,τp,q (Rd) < ∞. Moreover the calculations we did are

correct for any admissible representation f =
∑∞

i=0 fi and thus also for the infimum over all such
representations. Hence we get ‖f |Bs,τ

p,q (Rd)‖ ≤ C ‖f‖Y (Bs,τp,q (Rd)).

If we combine Proposition 3.1 and Proposition 3.2 we obtain a characterization of Bs,τ
p,q (Rd) that

uses differences.

Proposition 3.3. Let 0 < p <∞, 0 ≤ τ < 1
p
, 0 < q, v ≤ ∞, N ∈ N and

d max

(
0,

1

p
− 1,

1

p
− 1

v

)
< s < N .

Then a function f ∈ Llocp (Rd) belongs to Bs,τ
p,q (Rd) if and only if f ∈ Llocv (Rd) and

‖f |Bs,τ
p,q (Rd)‖(♣) := sup

P∈Q

1

|P |τ
[( ∫

P

(∫
B(x,1)

|f(y)|vdy
) p
v
dx
) q
p

+
∞∑
j=1

2jsq
(∫

P

2
djp
v

(∫
B(0,2−j)

|∆N
z f(x)|vdz

) p
v
dx
) q
p
] 1
q
<∞

(modify if q =∞ and/or v =∞). The quasi-norms ‖f |Bs,τ
p,q (Rd)‖ and ‖f |Bs,τ

p,q (Rd)‖(♣) are equivalent
for f ∈ Llocp (Rd).

Proof. This result is just a combination of Proposition 3.1 and Proposition 3.2. Firstly, we get the
above proposition not for functions f ∈ Llocp (Rd) but for f ∈ Llocr (Rd) with max( d

s+d
, d
s+ d

v

) < r < p.

Clearly, Llocp (Rd) ⊂ Llocr (Rd). Hence the claimed result follows.

Remark 4. In Proposition 3.3 we may replace the quasi-norm ‖f |Bs,τ
p,q (Rd)‖(♣) by

‖f |Bs,τ
p,q (Rd)‖(♠) := sup

P∈Q

1

|P |τ
[( ∫

P

|f(x)|pdx
) q
p

+
∞∑
j=1

2jsq
(∫

P

2
djp
v

(∫
B(0,2−j)

|∆N
z f(x)|vdz

) p
v
dx
) q
p
] 1
q
.

To prove this, we have to combine Remark 2, Proposition 3.1 and Proposition 3.2.

Now we are able to prove Theorem 1.4. For that purpose we have to modify the quasi-norm
showing up in Proposition 3.3.

Proposition 3.4. Let p, τ, q, v,N and s as in Proposition 3.3. Then a function f ∈ Llocp (Rd)
belongs to Bs,τ

p,q (Rd) if and only if f ∈ Llocv (Rd) and

‖f |Bs,τ
p,q (Rd)‖(v,1) := sup

P∈Q

1

|P |τ
(∫

P

|f(x)|pdx
) 1
p

+ sup
P∈Q

1

|P |τ
(∫ 1

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q
<∞
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(with standard modifications if q = ∞ and/or v = ∞). The quasi-norms ‖f |Bs,τ
p,q (Rd)‖ and

‖f |Bs,τ
p,q (Rd)‖(v,1) are equivalent on Llocp (Rd).

Proof. Step 1. At first we prove that there exists a constant C > 0, independent of f ∈ Llocp (Rd),
such that ‖f |Bs,τ

p,q (Rd)‖(♠) ≤ C ‖f |Bs,τ
p,q (Rd)‖(v,1). Applying the monotonicity of

∫
B(0,t)

|∆N
z f(x)|vdz

in t we get

sup
P∈Q

1

|P |τ

[ ∞∑
j=1

2jsq
(∫

P

2
djp
v

(∫
B(0,2−j)

|∆N
h f(x)|vdh

) p
v
dx
) q
p

] 1
q

≤ C1 sup
P∈Q

1

|P |τ

[ ∫ 1

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

] 1
q

.

This implies

‖f |Bs,τ
p,q (Rd)‖(♠) ≤ C2 sup

P∈Q

1

|P |τ
(∫

P

|f(x)|pdx
) 1
p

+ C2 sup
P∈Q

1

|P |τ

[ ∫ 1

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

] 1
q

.

Step 2. Secondly we will prove that for f ∈ Bs,τ
p,q (Rd) there is a constant C > 0 independent

of f such that ‖f |Bs,τ
p,q (Rd)‖(v,1) ≤ C‖f |Bs,τ

p,q (Rd)‖(♠). By Proposition 3.3 and Remark 4 we know
‖f |Bs,τ

p,q (Rd)‖(♠) <∞. Again we shall apply the monotonicity of
∫
B(0,t)

|∆N
h f(x)|vdh in t. This yields

sup
P∈Q

1

|P |τ
(∫ 1

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

≤ C1 sup
P∈Q

1

|P |τ
[ ∞∑
j=0

2jsq
(∫

P

2
djp
v

(∫
B(0,2−j)

|∆N
h f(x)|vdh

) p
v
dx
) q
p
] 1
q

≤ C2 ‖f |Bs,τ
p,q (Rd)‖(♠) + C2 sup

P∈Q

1

|P |τ
(∫

P

(∫
B(0,1)

|∆N
h f(x)|vdh

) p
v
dx
) 1
p
.

Recall that

∆N
h f(x) =

N∑
k=0

(−1)N−k
(
N

k

)
f(x+ kh) , x ∈ Rd . (3.1)

We use this in combination with a transformation of the coordinates and obtain

sup
P∈Q

1

|P |τ
(∫

P

(∫
B(0,1)

|∆N
h f(x)|vdh

) p
v
dx
) 1
p

≤ C3 ‖f |Bs,τ
p,q (Rd)‖(♠) + C3 sup

P∈Q

1

|P |τ
(∫

P

(∫
B(x,N)

|f(z)|vdz
) p
v
dx
) 1
p
.

Next we want to cover the ball B(x,N) with (2N + 1)d small balls with radius one. Let i ∈
{1, 2, . . . , (2N + 1)d} and wi be appropriate displacement vectors such that

(2N+1)d⋃
i=1

B(x+ wi, 1) ⊃ B(x,N). (3.2)
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Then due to the translation-invariance of the Morrey quasi-norm we get

sup
P∈Q

1

|P |τ
(∫

P

(∫
B(x,N)

|f(z)|vdz
) p
v
dx
) 1
p

≤ C4

(2N+1)d∑
i=1

sup
P∈Q

1

|P |τ
(∫

P

(∫
B(x+wi,1)

|f(z)|vdz
) p
v
dx
) 1
p

≤ C5 sup
P∈Q

1

|P |τ
(∫

P

(∫
B(x,1)

|f(z)|vdz
) p
v
dx
) 1
p

≤ C6 ‖f |Bs,τ
p,q (Rd)‖(♣) ≤ C7 ‖f |Bs,τ

p,q (Rd)‖(♠),

where in the last step we used Proposition 3.3 and Remark 4.

This can be slightly generalized.

Theorem 3.1. Let 0 < p <∞, 0 ≤ τ < 1
p
, 0 < q, v ≤ ∞, N ∈ N and

d max

(
0,

1

p
− 1,

1

p
− 1

v

)
< s < N .

Let 1 ≤ a ≤ ∞. Then a function f ∈ Llocp (Rd) belongs to Bs,τ
p,q (Rd) if and only if f ∈ Llocv (Rd) and

‖f |Bs,τ
p,q (Rd)‖(v,a) := sup

P∈Q

1

|P |τ
(∫

P

|f(x)|pdx
) 1
p

+ sup
P∈Q

1

|P |τ
(∫ a

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q
<∞

(with the usual modifications if q = ∞ and/or v = ∞). The quasi-norms ‖f |Bs,τ
p,q (Rd)‖ and

‖f |Bs,τ
p,q (Rd)‖(v,a) are equivalent on Llocp (Rd).

Remark 5. The letters v and a in the symbol (v, a) indicate the dependence of the concrete quasi-
norm on these parameters.

Proof. It will be enough to deal with a = ∞. Then the case 1 < a < ∞ will become a con-
sequence of Proposition 3.4 and a = ∞. Clearly, for all f ∈ Llocp (Rd) we have ‖f |Bs,τ

p,q (Rd)‖(v,1) ≤
‖f |Bs,τ

p,q (Rd)‖(v,∞). So we have to deal with the reverse inequality only. Let f ∈ Bs,τ
p,q (Rd). Proposition

3.4 implies that ‖f |Bs,τ
p,q (Rd)‖(v,1) <∞. Hence, we have to estimate

I := sup
P∈Q

1

|P |τ
(∫ ∞

1

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q
.

Again we use the monotonicity of
∫
B(0,t)

|∆N
h f(x)|vdh in t and obtain

I ≤ C1 sup
P∈Q

1

|P |τ
( ∞∑
j=1

2−jsq2−jd
q
v

(∫
P

(∫
B(0,2j)

|∆N
h f(x)|vdh

) p
v
dx
) q
p
) 1
q
.

Next we use formula (3.1). It follows

I ≤C2 ‖f |Bs,τ
p,q (Rd)‖(v,1)

+ C2 sup
P∈Q

1

|P |τ
( ∞∑
j=1

2−jsq2−jd
q
v

(∫
P

(∫
B(x,N2j)

|f(z)|vdz
) p
v
dx
) q
p
) 1
q
.
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The ball B(x,N ·2j) can be covered by (2N ·2j+1)d small balls with radius one. Let i ∈ {1, 2, . . . , (2N ·
2j + 1)d} and wi be appropriate displacement vectors such that

(2N ·2j+1)d⋃
i=1

B(x+ wi, 1) ⊃ B(x,N · 2j).

We obtain

I ≤C2 ‖f |Bs,τ
p,q (Rd)‖(v,1)

+ C2 sup
P∈Q

1

|P |τ
( ∞∑
j=1

2−jsq2−jd
q
v

(∫
P

( (2N ·2j+1)d∑
i=1

∫
B(x+wi,1)

|f(z)|vdz
) p
v
dx
) q
p
) 1
q
.

Now we put µ := min(p, v). In what follows we shall use the triangle inequality as well as( M∑
i=1

ai

)α
≤

M∑
i=1

aαi .

Here α ∈ (0, 1) and ai ≥ 0 for all i. It will be important that p
µ
≥ 1 and µ

v
≤ 1. At the end we reach

sup
P∈Q

1

|P |τ

( ∞∑
j=1

2−jsq2−jd
q
v

(∫
P

( (2N ·2j+1)d∑
i=1

∫
B(x+wi,1)

|f(z)|vdz
) p
v
dx
) q
p

) 1
q

≤ C3 sup
P∈Q

1

|P |τ

( ∞∑
j=1

2−jsq2−jd
q
v

[ (2N ·2j+1)d∑
i=1

(∫
P

(∫
B(x+wi,1)

|f(z)|vdz
) pµ
vµ
dx
)µ
p

] q
µ
) 1

q

≤ C3

( ∞∑
j=1

2−jsq2−jd
q
v

[ (2N ·2j+1)d∑
i=1

sup
P∈Q

1

|P |τµ
(∫

P

(∫
B(x+wi,1)

|f(z)|vdz
) p
v
dx
)µ
p

] q
µ
) 1

q

≤ C4

( ∞∑
j=1

2−jsq2−jd
q
v 2jd

q
µ

[
sup
P∈Q

1

|P |τ
(∫

P

(∫
B(x,1)

|f(z)|vdz
) p
v
dx
) 1
p

]q) 1
q

,

where we used the translation invariance of the Morrey norm. Since µ = min(p, v) and
s > dmax(0, 1

p
− 1

v
) the series converges. Finally we get( ∞∑
j=1

2−jsq2−jd
q
v 2jd

q
µ

[
sup
P∈Q

1

|P |τ
(∫

P

(∫
B(x,1)

|f(z)|vdz
) p
v
dx
) 1
p

]q) 1
q

≤ C5 sup
P∈Q

1

|P |τ
(∫

P

(∫
B(x,1)

|f(z)|vdz
) p
v
dx
) 1
p

≤ C6 ‖f |Bs,τ
p,q (Rd)‖(♣) ≤ C7 ‖f |Bs,τ

p,q (Rd)‖(v,1).

In the last step we used Proposition 3.3 and Proposition 3.4.

In the literature there exist some more characterizations of Bs,τ
p,q (Rd) in terms of differences. They

look slightly different. For convenience of the reader we recall a special case, see Theorem 4.7. in [49]
and Theorem 4.2. in [12]. We shall use the following notation. We say that a Lebesgue measurable
function f belongs to Lτp(Rd) if

‖ f |Lτp(Rd)‖ := sup
P∈Q, |P |≥1

1

|P |τ
(∫

P

|f(x)|pdx
) 1
p
<∞ . (3.3)
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Proposition 3.5. Let 0 < q ≤ ∞ and N ∈ N.
(i) Let 1 ≤ p <∞, 0 ≤ τ < 1

p
and 0 < s < N . Then a function f ∈ Llocp (Rd) belongs to Bs,τ

p,q (Rd) if
and only if f ∈ Lτp(Rd) and

‖f |Bs,τ
p,q (Rd)‖∗ := ‖ f |Lτp(Rd)‖

+ sup
P∈Q

1

|P |τ
(∫ 2 min(l(P ),1)

0

t−sq sup
|h|≤t

∥∥∥∆N
h f( · )

∣∣∣Lp(P )
∥∥∥q dt

t

) 1
q
<∞

(with standard modifications if q =∞). The quasi-norms ‖f |Bs,τ
p,q (Rd)‖ and ‖f |Bs,τ

p,q (Rd)‖∗ are equiv-
alent on Lτp(Rd) ∩ S ′(Rd).
(ii) Let 0 < p < 1, 0 ≤ τ < 1

p
and d max(0, 1

p
− 1) < s < N . Let σp < s0 < s. Then a function

f ∈ Llocp (Rd) belongs to Bs,τ
p,q (Rd) if and only if

sup
P∈Q, |P |≥1

‖ f |Bs0
p,∞(Rd)‖
|P |τ

<∞

and ‖f |Bs,τ
p,q (Rd)‖∗ <∞ (with standard modifications if q =∞). The quasi-norms ‖f |Bs,τ

p,q (Rd)‖ and
‖f |Bs,τ

p,q (Rd)‖∗ + supP∈Q, |P |≥1
‖ f |Bs0p,∞(Rd)‖

|P |τ are equivalent on Lτp(Rd) ∩ S ′(Rd).

Remark 6. Proposition 3.5(i) is in some sense satisfactory. It is quite close to the classical charac-
terization of Bs

p,q(Rd) by means of the modulus of smoothness. Part (ii) was understood as a first
attempt to characterize Besov-type spaces by differences in the case p < 1. Here, in this paper, we
chose the version given in Theorem 3.1, since in this variant we have a better understanding of the
necessary conditions. It is an interesting open problem to find necessary and sufficient conditions for
the validity of the characterizations in Proposition 3.5.

4 Besov spaces and differences

We shall prove Theorem 1.2.

Proof. The equivalence of the Fourier-analytic definition with the characterization by differences can
be found in many works. We refer to [40, Theorem 2.5.12] and [41, Theorem 3.5.3]. Concerning
necessity we mention the following easy explanations for the restrictions with respect to s.

• Let 0 < p < 1 and s < d(1
p
−1). Then the Dirac-Delta distribution belongs to Bs

p,q(Rd), we refer
to [40, Remark 2.5.3/3] or [32, Remark 2.2.4/3], and a characterization by differences makes
no sense. The same argument applies to the limiting case 0 < p ≤ 1, s = d(1

p
− 1) and q =∞.

• Let 0 < p < 1, 0 < q < ∞ and s = d(1
p
− 1). Then a detailed investigation of the behavior

of the operator norms of the mappings Tk : f → f(2k · ), k ∈ N, with respect to Besov spaces
yields a different picture than for the norm given in (1.2). More exactly,

lim
k→∞

‖Tk |Bs
p,q,N(Rd)→ Bs

p,q,N(Rd)‖
‖Tk |Bs

p,q(Rd)→ Bs
p,q(Rd)‖

=∞ ,

see the work by Schneider [35].
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• The case s = 0, N = 1 and 1 ≤ p, q < ∞ has been investigated by Besov [3]. He proved
that the class B0

p,q,1(Rd) is a proper subspace of B0
p,q(Rd). This can be extended to higher order

differences as well, see Lemma 5.2 below. In addition let us mention that B0
p,∞(Rd), 1 ≤ p ≤ ∞,

contains singular distributions, see [37], and therefore

B0
p,q,N(Rd) 6= B0

p,q(Rd) , N ∈ N , 1 ≤ p ≤ ∞ , 0 < q ≤ ∞ .

The proof is complete.

We have left open the case s = N for some N ∈ N. Here we were not able to close the gap
completely. However, some partial results are known.

• Let s = N and 0 < q < ∞. It is not difficult to see, that there exists a function f ∈
C∞0 (Rd) such that ‖ f |Bs

p,q,N(Rd)‖ = ∞, see Proposition 5.5 below for further details. Hence
BN
p,q,N(Rd) 6= BN

p,q(Rd).

• Let s = N and q =∞. It is well-known that

BN
p,∞,N(Rd) = WN

p (Rd) , 1 < p <∞ , (4.1)

see Nikol’skii [31, Theorem 4.8] or Stein [38, Chapter 5, Section 3, Proposition 3]. However
the Sobolev space WN

p (Rd) is a proper subspace of BN
p,∞(Rd). Hence we have BN

p,∞,N(Rd) 6=
BN
p,∞(Rd) for 1 < p <∞.

• Let p = 1 and N = 1. Then one also knows that B1
1,∞,1(R) does not coincide with B1

1,∞(R).
We refer to [31, Theorem 4.8.2] or [11, Chapter 2, Theorem 9.3].

5 Besov-type spaces and differences: necessary conditions

In Theorem 1.4 we have the following restrictions for s:

dmax

(
0,

1

p
− 1,

1

p
− 1

v

)
< s < N . (5.1)

In this section our main goal is to investigate whether these conditions are not only sufficient but
also necessary. For this purpose we will define the following function spaces.

Definition 9. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, 0 ≤ τ < 1
p
, 0 < v ≤ ∞ and N ∈ N. Then

Bs,τ,N
p,q,v (Rd) is the collection of all f ∈ Llocmax(p,v)(Rd) such that ‖f |Bs,τ

p,q (Rd)‖(v,1) is finite.

Let us mention that the classes Bs,τ,N
p,q,v (Rd) are quasi-Banach spaces. In what follows we will

investigate in which cases we have Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,v (Rd). To answer this question we will use quite
a number of different techniques. Therefore it seems to be reasonable to examine each condition
separately.

5.1 The necessity of s > d
(

1
p −

1
v

)
We start with some preliminaries.
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Proposition 5.1. Let s ∈ R, 0 < p < 1, 0 < q ≤ ∞, 0 ≤ τ < 1
p
, 0 < v ≤ ∞, N ∈ N with N > s

and

s < d

(
1

p
− 1

)
− dτ(1− p).

Then Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,v (Rd).

Proof. In the case s < d(1
p
− 1) − dτ(1 − p) with 0 < p < 1 the spaces Bs,τ

p,q (Rd) contain singular
distributions, see Lemma 2.4. So a characterization of Bs,τ

p,q (Rd) in terms of differences is not possible.
Therefore Bs,τ

p,q (Rd) 6= Bs,τ,N
p,q,v (Rd).

In the case max(p, 1) < v < ∞ this result can be improved. For that purpose we have to work
with Besov-type spaces on domains.

Proposition 5.2. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, 0 ≤ τ < 1
p
, N ∈ N and s < N . Let

max(p, 1) < v <∞. Furthermore we assume that

s < d

(
1

p
− 1

v

)
− dτ

(
1− p

v

)
and Bs,τ

p,q (B) ↪→ L1(B) for some ball B ⊂ Rd. Then Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,v (Rd) follows.

Proof. In this proof we will apply some ideas from [20, 5.3]. We will argue by contradiction. Our first
assumption is Bs,τ

p,q (Rd) = Bs,τ,N
p,q,v (Rd) as sets. Then Bs,τ

p,q (Rd) can not contain singular distributions.
Hence, Bs,τ

p,q (Rd) ⊂ Lloc1 (Rd) follows. Our second assumption is a sharpening of the first one. We
assume that the identity Id : Bs,τ,N

p,q,v (B(0, 1
8N

)) → Bs,τ
p,q (B(0, 1

8N
)) is a continuous operator. Here

Bs,τ,N
p,q,v (B(0, 1

8N
)) is defined as the set of all f ∈ Bs,τ,N

p,q,v (Rd) satisfying supp f ⊂ B(0, 1
8N

). First we
will disprove the second assumption, afterwards the first assumption.
Step 1. Let f be a function satisfying f ∈ Bs,τ

p,q (Rd) and supp f ⊂ B(0, 1
4N

). We will prove that there
is a constant C > 0 independent of f such that

‖f |Lv(Rd)‖ ≤ C ‖f |Bs,τ
p,q (Rd)‖. (5.2)

Our assumption implies

‖f |Bs,τ
p,q (Rd)‖ ≥ C1 ‖f |Bs,τ

p,q (Rd)‖(v,1)

≥ C1 sup
P∈Q

1

|P |τ
(∫ 1

0

t−sq
(∫

P

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q
.

Next we replace the supremum by selecting a dyadic cube P ∗ as small as possible such that
B(0, N+1

4
) ⊂ P ∗. Then we obtain

‖f |Bs,τ
p,q (Rd)‖ ≥ C1

1

|P ∗|τ
(∫ 1

0

t−sq
(∫

P ∗

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

≥ C2

(∫ 1

0

t−sq
(∫

B(0,N+1
4

)

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

≥ C2

(∫ 1

N+2
4N

t−sq
(∫

N
4
<|x|<N+1

4

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q
.
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Now we use that for N
4
< |x| < N+1

4
and t ≥ N+2

4N
we have B(−x

N
, 1

4N
) ⊂ B(0, t). Hence we get

‖f |Bs,τ
p,q (Rd)‖ ≥ C2

(∫ 1

N+2
4N

t−sq
(∫

N
4
<|x|<N+1

4

(
t−d
∫
B(−x

N
, 1
4N

)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

≥ C2

(∫ 1

N+2
4N

t−sq−d
q
v
−1dt

(∫
N
4
<|x|<N+1

4

(∫
B(−x

N
, 1
4N

)

|∆N
h f(x)|vdh

) p
v
dx
) q
p
) 1
q

≥ C3

(∫
N
4
<|x|<N+1

4

(∫
B(−x

N
, 1
4N

)

|∆N
h f(x)|vdh

) p
v
dx
) 1
p
.

Recall that

∆N
h f(x) =

N∑
k=0

(−1)N−k
(
N

k

)
f(x+ kh).

With N
4
< |x| < N+1

4
and h ∈ B(−x

N
, 1

4N
), taking also into account supp f ⊂ B(0, 1

4N
), we conclude

that f(x+ kh) = 0 for k ∈ {0, 1, . . . , N − 1}. This yields

‖f |Bs,τ
p,q (Rd)‖ ≥ C4

(∫
N
4
<|x|<N+1

4

(∫
B(−x

N
, 1
4N

)

|f(x+Nh)|vdh
) p
v
dx
) 1
p

≥ C5

(∫
N
4
<|x|<N+1

4

(∫
B(0, 1

4
)

|f(z)|vdz
) p
v
dx
) 1
p

≥ C6 ‖f |Lv(Rd)‖.

Hence, inequality (5.2) is proved.
Step 2. We shall need Besov-type spaces on smooth and bounded domains, more exactly on B(0, 1

8N
),

see Definition 2. We claim
Bs,τ
p,q

(
B(0,

1

8N
)
)
↪→ Lv

(
B(0,

1

8N
)
)
. (5.3)

Let f ∈ Bs,τ
p,q (B(0, 1

8N
)). By definition, there is a function g ∈ Bs,τ

p,q (Rd) with f = g on B(0, 1
8N

). Since
‖ g |Bs,τ

p,q (Rd)‖(v,1) < ∞, locally on B(0, 1
8N

), we can understand f as a pointwise defined function.
Now we take a sequence (hl)

∞
l=1 ⊂ Bs,τ

p,q (Rd) with hl = f on B(0, 1
8N

) for every l ∈ N such that

lim
l→∞
‖hl|Bs,τ

p,q (Rd)‖ = ‖f |Bs,τ
p,q (B(0,

1

8N
))‖.

Next we define a smooth cut-off function Ψ ∈ C∞0 (Rd) such that Ψ(x) = 1 on B(0, 1
8N

) and Ψ(x) = 0
for every x with |x| ≥ 1

4N
. Then for every l ∈ N we get

‖ f |Lv(B(0,
1

8N
))‖ ≤ ‖hl ·Ψ |Lv(Rd)‖ .

By Lemma 2.8 we know that hl · Ψ ∈ Bs,τ
p,q (Rd). Moreover supp(hl · Ψ) ⊂ B(0, 1

4N
). Now we apply

formula (5.2) with respect to the product hl ·Ψ ∈ Bs,τ
p,q (Rd) and get

‖f |Lv(B(0,
1

8N
))‖ ≤ C1‖hl ·Ψ|Bs,τ

p,q (Rd)‖.

Here C1 is the same constant as in (5.2) and therefore independent of f, hl and Ψ. Lemma 2.8 yields

‖f |Lv(B(0,
1

8N
))‖ ≤ C2 ‖Ψ|Cm(Rd)‖ ‖hl|Bs,τ

p,q (Rd)‖

≤ C3 ‖hl|Bs,τ
p,q (Rd)‖
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with m ∈ N sufficiently large. If l tends to infinity we find

‖f |Lv(B(0,
1

8N
))‖ ≤ C3 ‖f |Bs,τ

p,q (B(0,
1

8N
))‖

as claimed.
Step 3. Lemma 2.7 implies Bs,τ

p,q (B(0, 1
8N

)) 6⊂ Lv(B(0, 1
8N

)) in the case s < d(1
p
− 1

v
) − dτ(1 − p

v
)

which is in contradiction with (5.3). Hence, our assumption on the continuity of the identity must
be wrong.

Now let (fj)j be a convergent sequence in Bs,τ,N
p,q,v (B(0, 1

8N
)) with limit f ∈ Bs,τ,N

p,q,v (B(0, 1
8N

)). In
addition we assume limj→∞ fj = g in Bs,τ

p,q (B(0, 1
8N

)). Our first assumption implies convergence
in Lp(Rd), see Theorem 3.1 and Definition 9. This yields convergence almost everywhere for an
appropriate subsequence (fj`)`. The second assumption, applied to this subsequence, yields existence
of extensions hj` of fj` − g such that

lim
`→∞
‖hj` |Bs,τ

p,q (Rd)‖ = 0 .

Without loss of generality we may assume supphj` ⊂ [−1, 1]d. Because of our assumption Bs,τ
p,q (B) ↪→

L1(B) for some ball B ⊂ Rd we find

lim
`→∞

‖ fj` − g |L1(B(0,
1

8N
))‖ = 0.

Here we have used that Bs,τ
p,q (Rd) and L1(Rd) have translation invariant quasi-norms and that a scaling

f 7→ f(λ · ) will not influence the membership in these spaces as long as 0 < c ≤ λ ≤ C <∞ for some
fixed c, C. By switching to a further subsequence if necessary we conclude f = g almost everywhere.
Thus, we have proved that the identity Id : Bs,τ,N

p,q,v (B(0, 1
8N

)) → Bs,τ
p,q (B(0, 1

8N
)) is a closed linear

operator. The Closed Graph Theorem, which remains to hold for quasi-Banach spaces, yields that Id
must be continuous. This contradicts our previous conclusion. Therefore our assumption concerning
the equality of the sets also must be wrong. This proves Bs,τ

p,q (Rd) 6= Bs,τ,N
p,q,v (Rd) as claimed.

In the special case p = q there is an essential improvement of Proposition 5.2. For that purpose
we will use ideas of Christ and Seeger, see [9] and [10] as well.

Proposition 5.3. Let s ∈ R, 0 < q = p ≤ v < ∞ and 0 ≤ τ < 1
p
. Let N ∈ N with N > s.

Furthermore we have
s ≤ d

(
1

p
− 1

v

)
.

Then Bs,τ
p,p(Rd) 6= Bs,τ,N

p,p,v (Rd).

Proof. Our argument relies on [9, 6.2], see also [10, 6.2]. However, Christ and Seeger concentrated on
the special case v =∞ and gave only a comment on 0 < v <∞. For our purpose almost everything
what Christ and Seeger did there can be taken over unchanged. Only very few modifications were
necessary. Therefore we will be rather rough here. Without a further reading of [9, 10] and [20, 5.4]
(where the adaption to Morrey-type spaces is described) the following few lines will maybe not be
understandable.
Step 1. In their proof Christ and Seeger constructed a random function and made estimations for
the expected value of the different quasi-norms of this function. Here we will work with the same
random function. Moreover, we will use the same notation as there. Let η ∈ S(Rd) such that
suppFη ⊂ {ξ ∈ Rd : 1

2
< |ξ| < 1} and |η(x)| ≥ 1 for |x| ≤ 2−M+d+2 with M ∈ N. Next we need a

function φ ∈ C∞0 (Rd) with suppφ ⊂ [−2−2M−4, 2−2M−4]d such that

|φ ∗ η(z)| ≥ C(M) > 0 if |z| ≤ 2−M+d+1. (5.4)
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Let R ∈ N be sufficiently large and choose a large number W ∈ N. For k ∈ N we define nk := kR
and rk := 2nk−M . Furthermore we define the functions

φk(x) := rdk φ(rkx) and ηk(x) := rdk η(rkx) , x ∈ Rd.

Put α := 2−Wd. For n ∈ N0 let Q(n) be the set of all dyadic cubes with side length 2−n that are
located in [0, 1)d. For every cube Q let χQ be the corresponding indicator function. Let Ω be a
probability space with a probability measure µ. There is a family {θQ,α} of independent random
variables, indexed by the dyadic cubes Q and having the following property: each of these random
variables takes the value 1 with the probability α and the value 0 with the probability 1 − α. We
consider random functions

hω,αk (x) :=
∑

Q∈Q(nk)

θQ,α(ω)χQ(x) , x ∈ Rd .

These functions are supported in [0, 1]d and for all x we have hω,αk (x) ∈ {0, 1}. Now we define

gω,αk (x) := (ηk ∗ hω,αk )(x) , Gω,α
k (x) := 2−nksgω,αk (x) and Gω,α(x) :=

2Wd∑
k=1

Gω,α
k (x).

For more details concerning the used notation we refer to the Sections 2 and 4 and Subsection 6.2.
from [10].
Step 2. Now let u = 1

1
p
−τ . We will prove that there is a constant C1 > 0, independent of R and W ,

such that (∫
Ω

‖Gω,α|Bs,τ
p,p(Rd)‖udµ(ω)

) 1
u
< C1.

Therefore we can use Lemma 6.2.1. in [10] which we now recall.

Lemma 5.1. Let s ∈ R, 0 < p < ∞ and 0 < q < ∞. Then there is a constant C > 0 which only
depends on p, q,N and d such that(∫

Ω

‖Gω,α|F s
p,q(Rd)‖pdµ(ω)

) 1
p ≤ C.

Since u = 1
1
p
−τ we have τ = 1

p
− 1

u
and p ≤ u. By Lemma 2.9 and (2.2) we obtain

F s
u,p(Rd) = Esu,u,p(Rd) ↪→ Esu,p,p(Rd) = Bs,τ

p,p(Rd).

Thus, we get (∫
Ω

‖Gω,α|Bs,τ
p,p(Rd)‖udµ(ω)

) 1
u ≤ C1

(∫
Ω

‖Gω,α|F s
u,p(Rd)‖udµ(ω)

) 1
u ≤ C2.

Step 3. Next we prove that for large W ∈ N there is a C > 0 such that(∫
Ω

(‖Gω,α|Bs,τ
p,p(Rd)‖(v,1))udµ(ω)

) 1
u ≥ C max

(
2W (−s− d

v
+ d
p

),W
1
p

)
.

At first we will replace the supremum with respect to all dyadic cubes by choosing the specific
dyadic cube P ∗ = [0, 1)d. Then we find(∫

Ω

(‖Gω,α|Bs,τ
p,p(Rd)‖(v,1))udµ(ω)

) 1
u

≥
(∫

Ω

( 1

|P ∗|τ
(∫ 1

0

t−sp
∫
P ∗

(
t−d
∫
B(0,t)

|∆N
h G

ω,α(x)|vdh
) p
v
dx
dt

t

) 1
p
)u
dµ(ω)

) 1
u

≥
(∫

Ω

(∫
[ 1
4
, 3
4

]d

∫ 1

0

t−sp
(
t−d
∫
B(0,t)

|∆N
h G

ω,α(x)|vdh
) p
v dt

t
dx
)u
p
dµ(ω)

) 1
u
.
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Next, because of u
p
≥ 1, we can use Hölder’s inequality and obtain(∫

Ω

(‖Gω,α|Bs,τ
p,p(Rd)‖(v,1))udµ(ω)

) 1
u

≥ C2

(∫
Ω

∫
[ 1
4
, 3
4

]d

∫ 1

0

t−sp
(
t−d
∫
B(0,t)

|∆N
h G

ω,α(x)|vdh
) p
v dt

t
dx dµ(ω)

) 1
p
.

Now we are exactly in the same situation as in Step 2 of the proof of Proposition 10 in [20]. So we
can argue as there omitting further details.

Remark 7. Notice that for p = q Proposition 5.3 is much stronger than Proposition 5.2. At this
moment we do not know whether the condition s > d(1

p
− 1

v
) is also necessary in the case p 6= q.

5.2 The necessity of s > 0

To see that it is impossible to describe Bs,τ
p,q (Rd) by differences we follow Besov [3] and [21]. We have

to study the oszillations of linear combinations of indicator functions.

Lemma 5.2. Let 0 < p < ∞, 0 < q < ∞, 0 ≤ τ < 1
p
, 0 < v ≤ ∞ and N ∈ N. Then there exists a

sequence (gj)j of functions with the following properties:
(i) supp gj ⊂ [0, 1]d for all j ∈ N,
(ii) ‖gj|L∞(Rd)‖ ≤ 1 for all j ∈ N,
(iii) supj∈N ‖ gj |B0,τ,N

p,q,v (Rd)‖ =∞.

Proof. Let X denote the characteristic function of the unit cube [0, 1)d. We put

gj(x) :=
2j−1∑
k1=0

. . .
2j−1∑
kd=0

1− (−1)K(k)

2
X (2jx− k) , x ∈ Rd , j ∈ N , (5.5)

where the function K is defined as

K(k) := K(k1, . . . , kd) =
d∑
i=1

ki , k ∈ Zd.

In the case d = 2 a picture of this function looks like a checkerboard (if those parts where gj has
value 1 are printed in black). Obviously supp gj ⊂ [0, 1]d, the coefficients are either 1 or 0 and hence

‖ gj |L∞(Rd)‖ ≤ 1 for all j ∈ N . (5.6)

It remains to prove (iii). Therefore we recall that some properties already were investigated in [21].
There exist sets Xj ⊂ [0, 1]d and Hj ⊂ Rd such that

∆N
h gj(x) = 1 if (x, h) ∈ Xj ×Hj . (5.7)

Furthermore, |Xj| � 1 and
|B(0, t) ∩Hj| � td , 2−j < t < 1 ,

where the hidden constants depend on N and d only. Based on these properties it is now easy to
derive the following estimate

‖ gj |B0,τ,N
p,q,v (Rd)‖ ≥

(∫ 1

0

(∫
Xj

(
t−d
∫
B(0,t)∩Hj

|∆N
h gj(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

≥
(∫ 1

2−j

dt

t

) 1
q � j1/q .

This proves the claim.
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Let L∗∞(Rd) be the set of all functions g ∈ L∞(Rd) such that supp g ⊂ [0, 1]d. Then, as a
conclusion of Lemma 5.2 and the Theorem of Banach-Steinhaus (in the variant of the uniform
boundedness principle, valid also with target space being a quasi-Banach space, see [19] for an
appropriate version), we obtain

L∗∞(Rd) 6⊂ B0,τ,N
p,q,v (Rd).

Obviously we have
L∗∞(Rd) ↪→Mu

p(Rd).

For u = 1
1
p
−τ this can be complemented by

Mu
p(Rd) = E0

u,p,2(Rd) ↪→ B0,τ
p,max(p,2)(R

d)

if 1 < p < ∞, see [36]. Next we shall use the wavelet characterization of B0,τ
p,q (Rd) obtained in [23],

[24]. For functions having support in [0, 1]d it follows the monotonicity of the quasi-norm with respect
to p. So for p0 ≤ p1 we have

‖ f |B0,τ
p0,q

(Rd)‖ <∼ ‖ f |B
0,τ
p1,q

(Rd)‖ ,
see [23]. Alltogether we have obtained

L∗∞(Rd) ↪→ B0,τ
p,max(p,2)(R

d) , 0 < p <∞ . (5.8)

In case L∗∞(Rd) ⊂ B0,τ
p,q (Rd) we obtain B0,τ

p,q (Rd) 6= B0,τ,N
p,q,v (Rd). To cover the other values of q as well

we need a further modification of our test functions. Instead of (5.5) we consider

g̃j(x) :=
2j−1∑
k1=0

. . .
2j−1∑
kd=0

1− (−1)K(k)

2
Ψ(2jx− k) , x ∈ Rd , j ∈ N , (5.9)

where Ψ(x) :=
∏d

j=1 ψ(xj), x = (x1, . . . , xd) ∈ Rd, and ψ denotes the Haar wavelet that looks like

ψ(t) :=


1 if 0 ≤ t < 1

2
;

−1 if 1
2
≤ t < 1;

0 otherwise.

Observe that the support properties are not changed under this modification.

Lemma 5.3. Let 0 < p < ∞, 0 < q < ∞, 0 ≤ τ < 1
p
, 0 < v ≤ ∞ and N ∈ N. Then the sequence

(g̃j)j has the following properties:
(i) supp g̃j ⊂ [0, 1]d for all j ∈ N,
(ii) ‖g̃j|L∞(Rd)‖ ≤ 1 for all j ∈ N,
(iii) supj∈N ‖ g̃j |B0,τ,N

p,q,v (Rd)‖ =∞,
(iv) supj∈N ‖ g̃j |B0,τ

p,q (Rd)‖ <∞.

Proof. We use the notation from the proof of Lemma 5.2. The proof of properties (i)-(iii) remains
unchanged compared to Lemma 5.3. It will be enough to prove (iv). Therefore we shall use the
wavelet characterizations of B0,τ

p,q (Rd) obtained in [24], [23], [43] and [51]. From the characterization
by smooth and compactly supported wavelets and the property (i) it follows the monotonicity of the
quasi-norm with respect to p. So for p0 ≤ p1 we have

‖ g̃j |B0,τ
p0,q

(Rd)‖ <∼ ‖ g̃j |B
0,τ
p1,q

(Rd)‖ ,

see [23], [24]. Hence, it will be enough to deal with 1 < p < ∞ in (iv). In this situation we
may use the Haar wavelet characterization from [51] (alternatively one may use [43] and take into
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account that the spaces LrB0
p,q(Rd) with r = d(τ − 1

p
) and B0,τ

p,q (Rd) coincide locally, i.e., for functions
with property (i), see [50] and [44]). For k ∈ Zd we put X0,k(x) := X (x − k). Let X̃ denote the
characteristic function of the interval [0, 1). Then we put

hi,j,k(x) := 2
jd
2

( ∏
n∈I1

X̃ (2jxn − kn)
)( ∏

n∈I2

ψ(2jxn − kn)
)
, x ∈ Rd .

Here I1, I2 depend on i ∈ {1, . . . , 2d − 1} and have the following properties. I1 ∪ I2 = {1, 2, . . . , d},
I1 ∩ I2 = ∅ and I2 6= ∅. This yields 2d − 1 possibilities. 〈f, X0,k〉 and 〈f, hi,j,k〉 denote
scalar products (Fourier coefficients of f with respect to the Haar system). For all sequences
t := {ti,j,m}i∈{1,...,2d−1},j∈N0,m∈Zd ⊂ C a further abbreviation which will be used is given by

‖t |b0,τ
p,q (Rd)‖ := sup

P∈Q

1

|P |τ

 ∞∑
j=max(jP ,0)

2j(
d
2
− d
p

)q
2d−1∑
i=1

 ∑
m: Qj,m⊂P

|ti,j,m|p

q
p


1
q

.

Proposition 5.4. Let 1 < p < ∞, 0 < q ≤ ∞ and 0 ≤ τ < 1
p
. Let f ∈ S ′(Rd). Then f ∈ B0,τ

p,q (Rd)

if and only if f can be represented in S ′(Rd) as

f =
∑
k∈Zd
〈f, X0,k〉 X0,k +

2d−1∑
i=1

∞∑
j=0

∑
k∈Zd
〈f, hi,j,k〉hi,j,k (5.10)

with convergence in S ′(Rd) and

‖µ(f) |b0,τ
p,q (Rd)‖ := sup

P∈Q

1

|P |τ

 ∑
m: Q0,m⊂P

|〈f, X0,m〉|p
 1

p

+
∥∥{〈f, hi,j,m〉}i,j,m∣∣b0,τ

p,q (Rd)
∥∥ <∞ .

Moreover, the mapping
J : f 7→ {〈f, X0,m〉}m ∪ {〈f, hi,j,k〉}i,j,k

is an isomorphic map of B0,τ
p,q (Rd) onto `p× b0,τ

p,q (Rd). In other words ‖µ(f) |b0,τ
p,q (Rd)‖ is equivalent to

‖f |B0,τ
p,q (Rd)‖.

Now it is easy to see that g̃j is given by its Fourier-Haar series. The frequency level is j and it
has 2dj non-zero coefficients which are all equal to 2−

jd
2 . This yields for all j ∈ N

∥∥ {〈g̃j, hi,n,m〉}i,n,m∣∣b0,τ
p,q (Rd)

∥∥ ≤ sup
P∈Q

P⊂[0,1]d,|P |≥2−jd

1

|P |τ
2j(

d
2
− d
p

)

 ∑
m: Qj,m⊂P

|〈g̃j, hi0,j,m〉|p
 1
p

≤ max
`=0,1,... ,j

2`dτ2j(
d
2
− d
p

)2−
jd
2 2(j−`) d

p ≤ 1 ,

since τ < 1
p
. This proves Lemma 5.3.

Corollary 5.1. Let 0 < p < ∞, 0 < q < ∞, 0 ≤ τ < 1
p
, 0 < v ≤ ∞ and N ∈ N. Then

B0,τ
p,q (Rd) 6= B0,τ,N

p,q,v (Rd).
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Proof. In the case q ≥ max(p, 2) we are done, see (5.8). Let 1 ≤ q < max(p, 2). Then we apply
the Theorem of Banach-Steinhaus (in the variant of the uniform boundedness principle) and Lemma
5.3. Then we conclude B0,τ

p,q (Rd) 6= B0,τ,N
p,q,v (Rd). For 0 < q < 1 we will argue by the Closed Graph

Theorem, but first we exclude those cases where B0,τ
p,q (Rd) contains singular distributions. Now we

assume B0,τ
p,q (Rd) = B0,τ,N

p,q,v (Rd). Let (fj)j ⊂ B0,τ
p,q (Rd) be a convergent sequence with limit f . In

addition we assume that (fj)j converges in B0,τ,N
p,q,v (Rd) to some function g. Convergence in B0,τ

p,q (Rd)
implies convergence in S ′(Rd) and therefore

lim
j→∞

∫
Q0,m

|f(x)− fj(x)| dx = 0 for all m ∈ Zd .

Hence, a subsequence converges almost everywhere. Convergence in B0,τ,N
p,q,v (Rd) implies convergence

in Lτp(Rd). Again there is a subsequence which must converge almost everywhere. This yields f = g
almost everywhere, hence the embedding Id : B0,τ,N

p,q,v (Rd) → B0,τ
p,q (Rd) is a closed operator. The

Closed Graph Theorem yields continuity of this embedding, but by Lemma 5.3 this is wrong and
hence the assumption was wrong.

It remains to check the case q =∞.

Corollary 5.2. Let 0 < p <∞, 0 ≤ τ < 1
p
, 0 < v ≤ ∞ and N ∈ N. Then B0,τ

p,∞(Rd) 6= B0,τ,N
p,∞,v(Rd).

Proof. This is an immediate consequence of Lemma 2.5.

5.3 The necessity of s < N

Proposition 5.5. Let s ≥ 0, 0 < p <∞, 0 ≤ τ < 1
p
and N ∈ N. Let 0 < v ≤ ∞. If either

N < s and 0 < q ≤ ∞ or N = s and 0 < q <∞ ,

then Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,v (Rd).

Proof. To prove this result we will follow the ideas from [20, 5.6]. We work with a function f ∈
C∞0 (Rd) that has its support in B(0, 3N + 3). In B(0, 2N + 2) this function looks like

f(x1, x2, . . . , xd) = ex1+x2+x3+...+xd . (5.11)

Then, because of Lemma 2.1, we have f ∈ Bs,τ
p,q (Rd). We want to prove that ‖f |Bs,τ

p,q (Rd)‖(v,1) =∞.
Let 0 < ε < 1. We define

Hd
+ =

{
h = (h1, h2, . . . , hd) ∈ Rd : h1 ≥ 0, h2 ≥ 0, . . . , hd ≥ 0

}
.

At first, instead of the supremum, we choose a dyadic cube P ∗ with B(0, 1) ⊂ P ∗ that is as small as
possible. Then we obtain

‖f |Bs,τ
p,q (Rd)‖(v,1) ≥ 1

|P ∗|τ
(∫ 1

0

t−sq
(∫

P ∗

(
t−d
∫
B(0,t)

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q

≥ C1

(∫ 1

ε

t−sq
(∫

B(0,1)

(
t−d
∫

(B(0,t)\B(0, t
2

))∩Hd
+

|∆N
h f(x)|vdh

) p
v
dx
) q
p dt

t

) 1
q
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for an appropriate positive constant C1 and any ε ∈ (0, 1). Observe that h ∈ (B(0, t) \B(0, t
2
))∩Hd

+

yields |h| ≥ t
2
≥ ε

2
> 0. Due to the Mean Value Theorem in several variables there exists a ζ ∈ Rd

on the line that connects x and x+ h such that

|∆N
h f(x)| = |∆N−1

h f(x+ h)−∆N−1
h f(x)|

=
∣∣∣∂∆N−1

h f

∂y1

(ζ)h1 +
∂∆N−1

h f

∂y2

(ζ)h2 + . . .+
∂∆N−1

h f

∂yd
(ζ)hd

∣∣∣.
We have |ζ + Nh| ≤ 2 + N and so ζ + Nh ∈ B(0, 2N + 2). Taking into account (5.11), for
ζ = (ζ1, ζ2, . . . , ζd), we get

∂∆N−1
h f

∂yk
(ζ) =

∂

∂yk

(N−1∑
l=0

(−1)N−1−l
(
N − 1

l

)
ey1+y2+...+yd+lh1+lh2+...+lhd

)
(ζ)

=
N−1∑
l=0

(−1)N−1−l
(
N − 1

l

)
eζ1+ζ2+...+ζd+lh1+lh2+...+lhd

= ∆N−1
h f(ζ)

for any k ∈ {1, 2, . . . , d}. Next because of h ∈ Hd
+ we obtain

|∆N
h f(x)| =

∣∣∣∆N−1
h f(ζ)h1 + ∆N−1

h f(ζ)h2 + . . .+ ∆N−1
h f(ζ)hd

∣∣∣ ≥ ∣∣∆N−1
h f(ζ)

∣∣ |h|.
By iteration we can find an η ∈ B(0, N + 1) such that

|∆N
h f(x)| ≥ |f(η)| |h|N ≥ |h|N .

By means of these observations we obtain

‖f |Bs,τ
p,q (Rd)‖(v,1) ≥ C2

(∫ 1

ε

t−sq
(∫

B(0,1)

(
t−d
∫

(B(0,t)\B(0, t
2

))∩Hd
+

|h|Nvdh
) p
v
dx
) q
p dt

t

) 1
q

≥ C3

(∫ 1

ε

tq(N−s)−1dt
) 1
q
.

For s ≥ N it follows that the right-hand side tends to infinity if ε tends to zero. Hence
‖f |Bs,τ

p,q (Rd)‖(v,1) =∞ as claimed. This proves that Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,v (Rd).

Remark 8. Notice that the proof of Proposition 5.5 does not work in the case s = N and q =∞.

5.4 The proof of the main results

Proof of Theorem 1.3. First we consider sufficiency of the conditions in Theorem 1.5. Therefore
it is enough to apply Proposition 3.4 with v = 1. Then we turn to necessity of the given conditions.
For s < 0 we know that Bs,τ

p,q (Rd) contains singular distributions, see the Lemmas 2.4 and 2.5. The
range s = 0 is excluded by using Corollary 5.1. For s = N we make use of Propositon 5.5. Finally,
Proposition 5.3 applied with v = 1, excludes s = d (1

p
− 1).

Proof of Theorem 1.4. This follows from Proposition 3.4.

Proof of Theorem 1.5. We collect Lemmas 2.4, 2.5, Corollaries 5.1, 5.2 and Propositions
5.1, 5.2, 5.3, 5.5.
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Open problems

Open Problem 1
A comparison of Theorem 1.4 and Theorem 1.5 shows that there is a gap between sufficient and
necessary conditions. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, 0 ≤ τ < 1

p
, N ∈ N with N ≥ s and

0 < v ≤ ∞. Then we do not know whether we have Bs,τ
p,q (Rd) = Bs,τ,N

p,q,v (Rd) or Bs,τ
p,q (Rd) 6= Bs,τ,N

p,q,v (Rd)
in the following cases:

(i) d(1
p
− 1

v
)− dτ(1− p

v
) ≤ s ≤ d(1

p
− 1

v
) and q 6= p < v <∞ with v > 1,

(ii) d(1
p
− 1)− dτ(1− p) ≤ s ≤ d(1

p
− 1) with 0 < p < 1 and 0 < v < 1,

(iii) N = s and q =∞.

Open Problem 2
The second open problem is related to Proposition 3.5. Find necessary and sufficient conditions for
the validity of the characterizations given there.
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