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1 Introduction

R. O'Neil [16] investigated the boundedness of the following convolution operator

Af(y) =

∫
Rn

K(y − x)f(x)dx, y ∈ Rn,

in the Lorentz spaces Lp,q ≡ Lp,q(Rn).

In particular, for 1 < p, r, q < ∞, 0 < h1, h2, h3 ≤ ∞, 1 +
1

q
=

1

p
+

1

r
, and

1

h1

=
1

h2

+
1

h3

he

obtained the following inequality:

‖K ∗ f‖Lq,h1
≤ c‖f‖Lp,h2

‖K‖Lr,h3
, (1.1)

where c > 0 depends only on the numerical parametres.
This result was further developed in the works of R. Hunt [10], L. Yap [18], A. Blozinski [5], [6],

[7], and other authors. See also the recent works [14], [15], [17].
In the paper of E. Nursultanov and S. Tikhonov [13] another method was used to obtain

the generalization of inequality (1.1), which also covers the limiting cases. In particular, for

1 ≤ h1, h2, h3 ≤ ∞, and
1

h1

=
1

h2

+
1

h3

they proved that

a) if 1 < p <∞, then ‖K ∗ f‖Lp,h1
≤ c‖f‖Lp,h2

‖K∗∗‖L1,h3
,

b) if p = 1, then ‖(K ∗ f)∗∗‖L1,h1
≤ c‖f ∗∗‖L1,h2

‖K∗∗‖L1,h3
,

c) if p =∞, then ‖K ∗ f‖L∞,h1
≤ 4‖f‖L∞,h2

‖K∗∗‖L1,h3
,

where c > 0 depends only on the numerical parametrs, K∗∗(t) =
1

t

t∫
0

K∗(s)ds, K∗ is the decreasing

rearrangement of K, and L∞,h is the space introduced by C. Bennett and R. DeVore [2] (see also
[1], [8]).
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In the paper of M. K�repela [11] the boundedness of the convolution operator between weighted
Lorentz spaces Γp(v) and Γq(w) was characterized for the range of parameters p, q ∈ [1,∞], or
p ∈ (0, 1) and q ∈ {1,∞}, or p =∞ and q ∈ (0, 1). He provided Young-type convolution inequalities
of the form

‖f ∗ g‖Γq(w) ≤ C‖f‖Γp(v)‖g‖Y , f ∈ Γp(v), g ∈ Y,

characterizing the optimal rearrangement-invariant space Y for which the inequality is satis�ed.
In the paper of D.V. Gorbachev, V.I. Ivanov, and S.Y. Tikhonov [9] the Young inequality was

proved for a convolution de�ned by a generalized translation operator.
The aim of this paper is to investigate the Young-O'Neil-type inequality in the anisotropic Lorentz

spaces.

2 Anisotropic Lorentz spaces Lp̄,q̄
(
[0, 1]2

)
Let p̄ = (p1, p2), q̄ = (q1, q2) be such that if 1 ≤ pi < ∞, then 1 ≤ qi ≤ ∞ and if pi = ∞, then
qi =∞, where i = 1, 2.

Let Lp̄,q̄
(
[0, 1]2

)
be the anisotropic Lorentz space (see [12]), which is de�ned as the set of measur-

able functions f(x1, x2) with respect to each variable with �nite norm

‖f‖Lp̄,q̄ =

 1∫
0

 1∫
0

(
t

1
p1
1 t

1
p2
2 f ∗1,∗2(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

, 1 ≤ qi <∞ (i = 1, 2).

Here f ∗1,∗2(t1, t2) is the multivariate decreasing rearrangement of f(x1, x2) obtained by applying
decreasing rearrangement f ∗1(t1, x2) of f(x1, x2) with respect to the �rst variable x1, under �xed
second variable x2 and then with respect to x2, under �xed �rst variable t1 of f

∗1(t1, x2). As usual

the expression

 1∫
0

(G(s))q
ds

s


1
q

for q =∞ is understood as sup
s>0

G(s).

By C, Ci, c we will denote positive constants that may be di�erent in di�erent contexts and
depend only on parameters pi and qi. We will write F � G if F ≤ C1G and G ≤ C2F .

Let f be a measurable function locally integrable in [0, 1]2. We de�ne the function f ?1,?2(t1, t2)
in [0, 1]2 as follows

f ?1,?2(t1, t2) =
1

t1t2

t2∫
0

t1∫
0

f ∗1,∗2(s1, s2)ds1ds2. (2.1)

It has following properties.

Property 2.1.

f ?1,?2(t1, t2) = sup
|e2|=t2
e2⊂[0,1]

1

|e2|

∫
e2

sup
|e1|=t1
e1⊂[0,1]

1

|e1|

∫
e1

|f(x1, x2)|dx1dx2, (2.2)

where the suprema are taken over all compact sets ei ⊂ [0, 1], whose measure |ei| = ti (i = 1, 2);

Proof. In the one-dimensional case, f ? can be written as (see [2], p. 53)

f ?(t) = sup
|e|=t
e⊂[0,1]

1

|e|

∫
e

|f(x)|dx.
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Then

sup
|e2|=t2
e2⊂[0,1]

1

|e2|

∫
e2

sup
|e1|=t1
e1⊂[0,1]

1

|e1|

∫
e1

|f(x1, x2)|dx1dx2 = sup
|e2|=t2
e2⊂[0,1]

1

|e2|

∫
e2

|f ?1(t1, x2)|dx2

= f ?1,?2(t1, t2).

Property 2.2.
f ?1,?2(t1, t2) ≥ f ∗1,∗2(t1, t2). (2.3)

Proof. Using formula (2.1) we have

f ?1,?2(t1, t2) =
1

t1t2

t2∫
0

t1∫
0

f ∗1,∗2(s1, s2)ds1ds2 ≥
1

t1t2

t2∫
0

f ∗1,∗2(t1, s2)

t1∫
0

ds1ds2

=
1

t2

t2∫
0

f ∗1,∗2(t1, s2)ds2 ≥
1

t2
f ∗1,∗2(t1, t2)

t2∫
0

ds2 = f ∗1,∗2(t1, t2).

Property 2.3.

1∫
0

1∫
0

f(x1, x2)g(x1, x2)dx1dx2 ≤
1∫

0

1∫
0

f ∗1,∗2(x1, x2)g∗1,∗2(x1, x2)dx1dx2. (2.4)

Proof. Using the Hardy-Littlewood theorem (see [2]), we have

1∫
0

1∫
0

f(x1, x2)g(x1, x2)dx1dx2 ≤
1∫

0

1∫
0

f ∗1(x1, x2)g∗1(x1, x2)dx1dx2

≤
1∫

0

1∫
0

f ∗1,∗2(x1, x2)g∗1,∗2(x1, x2)dx1dx2.

Lemma 2.1 (Two-dimensional analogue of Hardy's inequality). Let 1 < pi < ∞, 1 ≤ qi ≤
∞, 1

pi
+

1

p′i
= 1 (i = 1, 2), and f be a non-negative measurable function on [0, 1]2, then 1∫

0

 1∫
0

t 1
p1
1 t

1
p2
2

t1t2

t2∫
0

t1∫
0

f(s1, s2)ds1ds2

q1

dt1
t1


q2
q1

dt2
t2


1
q2

≤ p′1p
′
2

 1∫
0

 1∫
0

(
t

1
p1
1 t

1
p2
2 f(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

(2.5)
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and  1∫
0

 1∫
0

t1− 1
p1

1 t
1− 1

p2
2

1∫
t2

1∫
t1

f(s1, s2)
ds1

s1

ds2

s2

q1

dt1
t1


q2
q1

dt2
t2


1
q2

≤ p′1p
′
2

 1∫
0

 1∫
0

(
t
1− 1

p1
1 t

1− 1
p2

2 f(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

.

(2.6)

Proof. Applying the generalized Minkowski inequality and sequentially in two variables the Hardy
inequality (see [3]), we have 1∫

0

 1∫
0

t 1
p1
1 t

1
p2
2

t1t2

t2∫
0

t1∫
0

f(s1, s2)ds1ds2

q1

dt1
t1


q2
q1

dt2
t2


1
q2

=

 1∫
0

t
q2
(

1
p2
−1
)

2

∥∥∥∥t 1
p1
− 1
q1
−1

1

t2∫
0

t1∫
0

f(s1, s2)ds1ds2

∥∥∥∥q2
Lq1

dt2
t2


1
q2

≤

 1∫
0

t
q2
(

1
p2
−1
)

2

 t2∫
0

∥∥∥∥t 1
p1
− 1
q1
−1

1

t1∫
0

f(s1, s2)ds1

∥∥∥∥
Lq1

ds2

q2

dt2
t2


1
q2

=

 1∫
0

t
q2
(

1
p2
−1
)

2

 t2∫
0

 1∫
0

t 1
p1
−1

1

t1∫
0

f(s1, s2)ds1

q1

dt1
t1


1
q1

ds2


q2

dt2
t2


1
q2

≤ p′1

 1∫
0

t 1
p2
−1

2

t2∫
0

 1∫
0

(
t

1
p1
1 f(t1, s2)

)q1 dt1
t1


1
q1

ds2


q2

dt2
t2


1
q2

≤ p′1p
′
2

 1∫
0

t
1
p2
2

 1∫
0

(
t

1
p1
1 f(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

= p′1p
′
2

 1∫
0

 1∫
0

(
t

1
p1
1 t

1
p2
2 f(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

.

Inequality (2.6) is proved similarly to inequality (2.5) 1∫
0

 1∫
0

t1− 1
p1

1 t
1− 1

p2
2

1∫
t2

1∫
t1

f(s1, s2)
ds1

s1

ds2

s2

q1

dt1
t1


q2
q1

dt2
t2


1
q2

=

 1∫
0

t

(
1− 1

p2

)
q2

2

∥∥∥∥∥t1− 1
p1
− 1
q1

1

1∫
t2

1∫
t1

f(s1, s2)
ds1

s1

ds2

s2

∥∥∥∥∥
q2

Lq1

dt2
t2


1
q2
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≤

 1∫
0

t

(
1− 1

p2

)
q2

2

 1∫
t2

∥∥∥∥∥t1− 1
p1
− 1
q1

1

1∫
t1

f(s1, s2)

s2

ds1

s1

∥∥∥∥∥
Lq1

ds2

q2

dt2
t2


1
q2

=

 1∫
0

t

(
1− 1

p2

)
q2

2

 1∫
t2

 1∫
0

t1− 1
p1

1

1∫
t1

f(s1, s2)

s2

ds1

s1

q1

dt1
t1


1
q1

ds2


q2

dt2
t2


1
q2

≤ p′1

 1∫
0

t

(
1− 1

p2

)
q2

2

 1∫
t2

 1∫
0

(
t
1− 1

p1
1

f(t1, s2)

s2

)q1 dt1
t1


1
q1

ds2


q2

dt2
t2


1
q2

= p′1

 1∫
0

t1− 1
p2

2

1∫
t2

 1∫
0

(
t
1− 1

p1
1 f(t1, s2)

)q1 dt1
t1


1
q1

ds2

s2


q2

dt2
t2


1
q2

≤ p′1p
′
2

 1∫
0

t1− 1
p2

2

 1∫
0

(
t
1− 1

p1
1 f(t1, t2)

)q1 dt1
t1


1
q1


q2

dt2
t2


1
q2

= p′1p
′
2

 1∫
0

 1∫
0

(
t
1− 1

p1
1 t

1− 1
p2

2 f(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

.

Lemma 2.2 (see [4], p. 21). Let 1 < pi <∞,
1

pi
+

1

pTMi
= 1 (i = 1, 2), f ∈ Lp̄

(
[0, 1]2

)
. Then

‖f‖Lp = sup
‖g‖Lp̄′=1

0≤g↓

1∫
0

1∫
0

f(t1, t2)g(t1, t2)dt1dt2.

Lemma 2.3. Let 1 < pi <∞, 1 ≤ qi ≤ ∞,
1

pi
+

1

p′i
= 1,

1

qi
+

1

q′i
= 1 (i = 1, 2). Then

1

pTM1pTM2

‖f‖Lp̄,q̄ ≤ sup
‖g‖Lp̄′,q̄′=1

0≤g↓

1∫
0

1∫
0

f ∗1,∗2(t1, t2)g(t1, t2)dt1dt2 ≤ ‖f‖Lp̄,q̄ .

Proof. We consider the quantity

Jp̄,q̄ = sup
0≤g↓

1∫
0

1∫
0

f ∗1,∗2(t1, t2)g(t1, t2)dt1dt2


1∫

0

 1∫
0

(
t

1
p′1
1 t

1
p′2
2 g(t1, t2)

)qTM1 dt1
t1


qTM2

qTM1
dt2
t2


1

qTM2

,
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where the supremum is taken over all nonnegative functions g(t1, t2), which are nonincreasing with
respect to each variable.

By the H�older inequality, we have

1∫
0

1∫
0

f ∗1,∗2(t1, t2)g(t1, t2)dt1dt2 =

1∫
0

1∫
0

f ∗1,∗2(t1, t2)g∗1,∗2(t1, t2)dt1dt2

=

1∫
0

1∫
0

(
t

1
p1
1 t

1
p2
2 f ∗1,∗2(t1, t2)

)(
t

1
p′1
1 t

1
p′2
2 g∗1,∗2(t1, t2)

)
dt1
t1

dt2
t2

≤ ‖f‖Lp̄,q̄‖g‖L
p̄TM,q̄TM

.

Thus, we get
Jp̄,q̄ ≤ ‖f‖Lp̄,q̄ .

Let us prove the reverse inequality.

Jp̄,q̄ ≥ sup

g(t1,t2)=
1∫
t1

1∫
t2

h(s1,s2)ds2ds1

h≥0

1∫
0

1∫
0

f ∗1,∗2(t1, t2)g(t1, t2)dt1dt2


1∫

0

 1∫
0

(
t

1
p′1
1 t

1
p′2
2 g(t1, t2)

)qTM1 dt1
t1


qTM2

qTM1
dt2
t2


1

qTM2

= sup
h≥0

1∫
0

1∫
0

f ∗1,∗2(t1, t2)

1∫
t1

1∫
t2

h(s1, s2)ds2ds1dt1dt2


1∫

0

 1∫
0

t 1
p′1
1 t

1
p′2
2

1∫
t1

1∫
t2

h(s1, s2)ds2ds1

qTM1

dt1
t1


qTM2

qTM1

dt2
t2


1

qTM2

.

By Lemma 2.1, we obtain
1∫

0

 1∫
0

t 1
p′1
1 t

1
p′2
2

1∫
t1

1∫
t2

h(s1, s2)ds2ds1

qTM1

dt1
t1


qTM2

qTM1

dt2
t2


1

qTM2

≤ c


1∫

0

 1∫
0

(
t

1
p′1

+1

1 t
1
p′2

+1

2 h(t1, t2)

)qTM1 dt1
t1


qTM2

qTM1
dt2
t2


1

qTM2

= c


1∫

0

 1∫
0

hq
TM

1(t1, t2)tα1
1 t

α2
2 dt1


qTM2

qTM1

dt2


1

qTM2

,
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where αi = qTM1

(
1

qi
+

1

p′i

)
, i = 1, 2 and c = p′1p

′
2.

Hence, using the dual representation in anisotropic space Lq̄ (Lemma 2.2) we obtain

Jp̄,q̄ ≥
1

c
sup
h≥0

1∫
0

1∫
0

h(t1, t2)

t1∫
0

t2∫
0

f ∗1,∗2(s1, s2)ds2ds1dt1dt2


1∫

0

 1∫
0

hq
TM

1(t1, t2)tα1
1 t

α2
2 dt1


qTM2

qTM1

dt2


1

qTM2

=
1

c
sup
h≥0

1∫
0

1∫
0

h(t1, t2)t

α1

qTM1
1 t

α2

qTM1
2

t1∫
0

t2∫
0

f ∗1,∗2(s1, s2)ds2ds1t
− α1

qTM1
1 t

− α2

qTM1
2 dt1dt2


1∫

0

 1∫
0

hq
TM

1(t1, t2)tα1
1 t

α2
2 dt1


qTM2

qTM1

dt2


1

qTM2

=
1

c

∥∥∥∥∥∥t
− α1

qTM1
1 t

− α2

qTM1
2

t1∫
0

t2∫
0

f ∗1,∗2(s1, s2)ds2ds1

∥∥∥∥∥∥
Lq̄

=
1

c

 1∫
0

 1∫
0

t− α1

qTM1
1 t

− α2

qTM1
2

t1∫
0

t2∫
0

f ∗1,∗2(s1, s2)ds2ds1

q1

dt1


q2
q1

dt2


1
q2

≥ 1

c

 1∫
0

 1∫
0

(
t
1− α1

qTM1
1 t

1− α2

qTM1
2 f ∗1,∗2(t1, t2)

)q1
dt1


q2
q1

dt2


1
q2

=
1

c

 1∫
0

 1∫
0

(
t

1
p1
− 1
q1

1 t
1
p2
− 1
q2

2 f ∗1,∗2(t1, t2)

)q1
dt1


q2
q1

dt2


1
q2

=
1

c
‖f‖Lp̄,q̄ .

Lemma 2.4. Let 1 < pi <∞, 1 ≤ qi ≤ ∞ (i = 1, 2). Then

‖f‖Lp,q ≤ ‖f ?1,?2‖Lp,q ≤ p′1p
′
2‖f‖Lp,q

Proof. Applying formulas (2.3) and (2.1) we have
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‖f‖Lp,q =

 1∫
0

 1∫
0

(
t

1
p1
1 t

1
p2
2 f ∗1,∗2(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

≤

 1∫
0

 1∫
0

(
t

1
p1
1 t

1
p2
2 f ?1,?2(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

= ‖f ?1,?2‖Lp,q

=

 1∫
0

 1∫
0

t 1
p1
1 t

1
p2
2

t1t2

t2∫
0

t1∫
0

f ∗1,∗2(s1, s2)ds1ds2

q1

dt1
t1


q2
q1

dt2
t2


1
q2

≤ p′1p
′
2

 1∫
0

 1∫
0

(
t

1
p1
1 t

1
p2
2 f ∗1,∗2(t1, t2)

)q1 dt1
t1


q2
q1

dt2
t2


1
q2

= p′1p
′
2

∥∥f∥∥
Lp,q

,

where we have used Lemma 2.1.

3 Main result

Let f and K be measurable functions on [0, 1]2 and [−1, 1]2 respectively. Let the integral

1∫
0

1∫
0

f(y1, y2)K(x1 − y1, x2 − y2)dy1dy2, (3.1)

exists for almost every (x1, x2) ∈ [0, 1]2 and it is called the convolution of the functions f , K, denoted
by f ∗K.

Lemma 3.1. Let f and g be measurable on [0, 1]2 and K be measurable on [−1, 1]2 functions. Then
1∫

0

1∫
0

g(t1, t2)(f ∗K)∗1,∗2(t1, t2)dt1dt2

≤
1∫

0

1∫
0

g∗1,∗2(t1, t2)

1∫
0

1∫
0

f ∗1,∗2(s1, s2)K?1,?2(max(s1, t1),max(s2, t2))ds1ds2dt1dt2.

Proof. Using properties (2.2), (2.3), (2.4), we obtain

I =

1∫
0

1∫
0

g(t1, t2)(f ∗K)∗1,∗2(t1, t2)dt1dt2

≤
1∫

0

1∫
0

g∗1,∗2(t1, t2)(f ∗K)?1,?2(t1, t2)dt1dt2

=

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2
e2⊂[0,1]

1

|e2|

∫
e2

sup
|e1|=t1
e1⊂[0,1]

1

|e1|

∫
e1

∣∣(f ∗K)(x1, x2)
∣∣dx1dx2dt1dt2.
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By the de�nition of the supremum, for any ε > 0 there exists a compact e1(t1, x2) ⊂ [0, 1] with
measure |e1(t1, x2)| = t1 such that

sup
|e1|=t1

∫
e1

|(f ∗K)(x1, x2)|dx1 ≤ (1 + ε)

∫
e1(t1,x2)

|(f ∗K)(x1, x2)|dx1.

Hence

I ≤ (1 + ε)

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1

|e2|

∫
e2

1

|e1(t1, x2)|

∫
e1(t1,x2)

∣∣(f ∗K)(x1, x2)
∣∣dx1dx2dt1dt2

= (1 + ε)

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1

|e2|

∫
e2

1

|e1(t1, x2)|

×
∫

e1(t1,x2)

∣∣∣∣∣
1∫

0

1∫
0

f(y1, y2)K(x1 − y1, x2 − y2)dy1dy2

∣∣∣∣∣dx1dx2dt1dt2

≤ (1 + ε)

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1∫
0

1∫
0

∣∣f(y1, y2)
∣∣ 1

|e2|

∫
e2

1

|e1(t1, x2)|

×
∫

e1(t1,x2)

∣∣K(x1 − y1, x2 − y2)
∣∣dx1dx2dy1dy2dt1dt2

≤ (1 + ε)

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1∫
0

1∫
0

f ∗1,∗2(s1, s2)

×

 1

|e2|

∫
e2

1

|e1(t1, x2)|

∫
e1(t1,x2)

∣∣K(x1 − ·, x2 − ·)
∣∣dx1dx2


?1,?2

(s1, s2)ds1ds2dt1dt2

= (1 + ε)

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1∫
0

1∫
0

f ∗1,∗2(s1, s2) sup
|ω2|=s2
ω2⊂[0,1]

1

|ω2|

∫
ω2

sup
|ω1|=t1
ω1⊂[0,1]

1

|ω1|

×
∫
ω1

∣∣∣∣∣ 1

|e2|

∫
e2

1

|e1(t1, x2)|

∫
e1(t1,x2)

K(x1 − y1, x2 − y2)dy1dy2

∣∣∣∣∣dx1dx2ds1ds2dt1dt2.

Similarly, there is a compact ω1(s1, y2) ⊂ [0, 1] with the measure |ω1(s1, y2)| = s1 such that

I ≤ (1 + ε)2

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1∫
0

1∫
0

f ∗1,∗2(s1, s2) sup
|ω2|=s2
ω2⊂[0,1]

1

|ω2|

∫
ω2

1

|ω1(s1, y2)|

×
∫

ω1(s1,y2)

∣∣∣∣∣ 1

|e2|

∫
e2

1

|e1(t1, x2)|

∫
e1(t1,x2)

K(x1 − y1, x2 − y2)dy1dy2

∣∣∣∣∣dx1dx2ds1ds2dt1dt2
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≤ (1 + ε)2

1∫
0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1∫
0

1∫
0

f ∗1,∗2(s1, s2) sup
|ω2|=s2
ω2⊂[0,1]

1

|ω2|

∫
ω2

1

|e2|

∫
e2

1

|ω1(s1, y2)|

×
∫

ω1(s1,y2)

1

|e1(t1, x2)|

∫
e1(t1,x2)

|K(x1 − y1, x2 − y2)|dx1dy1dx2dy2ds1ds2dt1dt2.

Since in this inequality ε is an arbitrary positive number, the desired inequality follows

I ≤
1∫

0

1∫
0

g∗1,∗2(t1, t2) sup
|e2|=t2

1∫
0

1∫
0

f ∗1,∗2(s1, s2) sup
|ω2|=s2
ω2⊂[0,1]

1

|ω2|

∫
ω2

1

|e2|

∫
e2

1

|ω1(s1, y2)|

×
∫

ω1(s1,y2)

1

|e1(t1, x2)|

∫
e1(t1,x2)

|K(x1 − y1, x2 − y2)|dx1dy1dx2dy2ds1ds2dt1dt2.

We consider

D(s1, t1, x2, y2) =
1

|ω1(s1, y2)|

∫
ω1(s1,y2)

1

|e1(t1, x2)|

∫
e1(t1,x2)

|K(x1 − y1, x2 − y2)|dx1dy1

≤


1

ω1(s1, y2)

∫
ω1(s1,y2)

sup
|e1|=t1

1

|e1|

∫
e1

|K(x1, x2 − y2)|dx1dy2, s1 ≤ t1,

1

e1(t1, x2)

∫
e(t1,x2)

sup
|ω1|=s1

1

|ω1|

∫
ω1

|K(y1, x2 − y2)|dy1dx2, s1 > t1.

≤


sup
|e1|=t1

1

|e1|

∫
e1

|K(x1, x2 − y2)|dx1, s1 ≤ t1,

sup
|ω1|=s1

1

|ω1|

∫
ω1

|K(y1, x2 − y2)|dy1, s1 > t1.

Now we estimate the quantity

Φ(t1, s1, t2, s2) =
1

|ω2|

∫
ω2

1

|e2|

∫
e2

1

|ω1(s1, y2)|

∫
ω1(s1,y2)

1

|e1(t1, x2)|

×
∫

e1(t1,x2)

|K(x1 − y1, x2 − y2)|dx1dy1dx2dy2

≤



sup
|e2|=t2

1

|e2|

∫
e2

sup
|e1|=t1

1

|e1|

∫
e1

|K(x1, x2)|dx1dx2, s1 ≤ t1, s2 ≤ t2,

sup
|ω2|=s2

1

|ω2|

∫
ω2

sup
|e1|=t1

1

|e1|

∫
e1

|K(x1, y2)|dx1dy2, s1 ≤ t1, s2 > t2,

sup
|e2|=t2

1

|e2|

∫
e2

sup
|ω1|=s1

1

|ω1|

∫
ω1

|K(y1, x2)|dy1dx2, s1 > t1, s2 ≤ t2,

sup
|ω2|=s2

1

|ω2|

∫
ω2

sup
|ω1|=s1

1

|ω1|

∫
ω1

|K(y1, y2)|dy1dy2, s1 > t1, s2 > t2

= K?1,?2(max(s1, t1),max(s2, t2)).
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Thus,

I ≤
1∫

0

1∫
0

g∗1,∗2(t1, t2)

1∫
0

1∫
0

f ∗1,∗2(s1, s2)K?1,?2(max(s1, t1),max(s2, t2))ds1ds2dt1dt2.

Theorem 3.1. Let 1 < qi < ∞, 1 ≤ pi, ri, hi, ξi, ηi < ∞, and 1 +
1

qi
=

1

pi
+

1

ri
,

1

hi
=

1

ξi
+

1

ηi
(i = 1, 2). Suppose that f and K are respectively measurable on [0, 1]2 and [−1, 1]2 functions such
that f ?1,?2 ∈ Lp̄,ξ

(
[0, 1]2

)
and K?1,?2 ∈ Lr,η

(
[0, 1]2

)
. Then f ∗K ∈ Lq̄,h̄

(
[0, 1]2

)
and

‖f ∗K‖Lq̄,h̄ ≤ 4(q′1q
′
2)2‖f ?1,?2‖Lp̄,ξ‖K

?1,?2‖Lr,η . (3.2)

Proof. By Lemmas 2.3 and 3.1, we have

‖f ∗K‖Lq̄,h̄ ≤ q′1q
′
2 sup
‖g‖L

q̄TM,h̄TM
=1

1∫
0

1∫
0

g(t1, t2)(K ∗ f)∗1,∗2(t1, t2)dt1dt2

≤ q′1q
′
2 sup
‖g‖L

q̄TM,h̄TM
=1

1∫
0

1∫
0

g∗1,∗2(t1, t2)

1∫
0

1∫
0

f ∗1,∗2(s1, s2)

×K?1,?2(max(s1, t1),max(s2, t2))ds1ds2dt1dt2

= q′1q
′
2 sup
‖g‖L

q̄TM,h̄TM
=1

1∫
0

1∫
0

g∗1,∗2(t1, t2)

 t1∫
0

t2∫
0

f ∗1,∗2(s1, s2)K?1,?2(t1, t2)ds1ds2

+

t1∫
0

1∫
t2

f ∗1,∗2(s1, s2)K?1,?2(t1, s2)ds1ds2

+

1∫
t1

t2∫
0

f ∗1,∗2(s1, s2)K?1,?2(s1, t2)ds1ds2

+

1∫
t1

1∫
t2

f ∗1,∗2(s1, s2)K?1,?2(s1, s2)ds1ds2

 dt1dt2.

Changing the order of integration and taking into account the de�nition of f ?1,?2 , we get

‖f ∗K‖Lq̄,h̄ ≤ q′1q
′
2 sup
‖g‖Lq̄′,h̄′=1

1∫
0

1∫
0

K?1,?2(t1, t2)

g∗1,∗2(t1, t2)

t1∫
0

t2∫
0

f ∗1,∗2(s1, s2)ds1ds2

+

t1∫
0

f ∗1,∗2(s1, t2)ds1

t2∫
0

g∗1,∗2(t1, s2)ds2 +

t1∫
0

g∗1,∗2(s1, t2)ds1

×
t2∫

0

f ∗1,∗2(t1, s2)ds2 + f ∗1,∗2(t1, t2)

t1∫
0

t2∫
0

g∗1,∗2(s1, s2)ds1ds2

 dt1dt2

= q′1q
′
2 sup
‖g‖L

q̄TM,h̄TM
=1

1∫
0

1∫
0

t1t2K
?1,?2(t1, t2)

(
g∗1,∗2(t1, t2)f ?1,?2(t1, t2)
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+ f ?1,∗2(t1, t2)g∗1,?2(t1, t2) + g?1,∗2(t1, t2)f ∗1,?2(t1, t2)

+ f ∗1,∗2(t1, t2)g?1,?2(t1, t2)
)
dt1dt2

≤ q′1q
′
2 sup
‖g‖L

q̄TM,h̄TM
=1

1∫
0

1∫
0

t1t2K
?1,?2(t1, t2)g?1,?2(t1, t2)f ?1,?2(t1, t2)dt1dt2

= q′1q
′
2 sup
‖g‖L

q̄TM,h̄TM
=1

1∫
0

1∫
0

t
1
p1
− 1
ξ1

1 t
1
p2
− 1
ξ2

2 f ?1,?2(t1, t2)t
1
r1
− 1
η1

1 t
1
r2
− 1
η2

2 K?1,?2(t1, t2)

× t
1
q′1
− 1
h′1

1 t
1
q′2
− 1
h′2

2 g?1,?2(t1, t2)dt1dt2.

Applying H�older's inequality and Lemma 2.4, we derive

‖f ∗K‖Lq̄,h̄ ≤ q′1q
′
2 sup
‖g‖Lq̄′,h̄′=1

‖f ?1,?2‖Lp̄,ξ̄‖K
?1,?2‖Lr̄,η‖g?1,?2‖Lq̄′,h̄′

≤ (q′1q
′
2)2 sup
‖g‖Lq̄′,h̄′=1

‖f ?1,?2‖Lp̄,ξ‖K
?1,?2‖Lr,η‖g‖Lq̄′,h̄′

= (q′1q
′
2)2‖f ?1,?2‖Lp̄,ξ‖K

?1,?2‖Lr,η .

Remark 1. This theorem also covers the limiting cases when at least one of the parameters pi, ri is
equal to 1. In the case pi > 1, ri > 1, the functions f ?1,?2 and K?1,?2 in (3.2) can be replaced by the
functions f and K, respectively.

Let us give an example showing the sharpness of the result of Theorem 2.1, where in inequality
(3.2) for 1 < qi = pi < ∞ the factor ‖K?1,?2‖L1,η

cannot be replaced by ‖K‖L1,η
. That is, for

1 < qi = pi <∞ and
1

hi
=

1

ξi
+

1

ηi
the inequality

‖f ∗K‖Lq̄,h ≤ c‖f ?1,?2‖Lq̄,ξ‖K‖L1,η
(3.3)

where c>0 is independent of f and K, does not hold. Also in the case 1 < qi = ri < ∞ and
1

hi
=

1

ξi
+

1

ηi
the norm ‖f ?1,?2‖L1,ξ

cannot be replaced by ‖f‖L1,ξ
, that is, the following inequality

‖f ∗K‖Lq̄,h ≤ c‖f‖L1,ξ
‖K?1,?2‖Lq̄,η (3.4)

where c>0 is independent of f and K, does not hold.

Example 1. Let 1 < q1, q2 <∞. For su�ciently large N1, N2 ∈ N we de�ne

f(t1, t2) =

(
min

(
N1,

1

t1

)) 1
q1

(
min

(
N2,

1

t2

)) 1
q2

and

K(t1, t2) = min

(
N1,

1

t1

)
min

(
N2,

1

t2

)
.

Then
‖f ?1,?2‖Lq̄,ξ‖K‖L1,η

≈ (lnN1)
1
h1 (lnN2)

1
h2 .

and
‖f ∗K‖Lq̄,h ≥ c1(lnN1)

1+ 1
h1 (lnN2)

1+ 1
h2
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Thus, (3.3) implies

(lnN1)(lnN2) ≤ c,

i.e. we arrive at a contradiction.

Proof. We have

‖f ?1,?2‖Lq̄,ξ ≈ ‖f‖Lq̄,ξ =

=

 1∫
0

 1∫
0

(
t

1
q1
− 1
ξ1

1 t
1
q2
− 1
ξ2

2

(
min

(
N1,

1

t1

)) 1
q1

(
min

(
N2,

1

t2

)) 1
q2

)ξ1

dt1


ξ2
ξ1

dt2


1
ξ2

=

 1∫
0

(
t

1
q1
− 1
ξ1

1

(
min

(
N1,

1

t1

)) 1
q1

)ξ1

dt1


1
ξ1

×

 1∫
0

(
t

1
q2
− 1
ξ2

2

(
min

(
N2,

1

t2

)) 1
q2

)ξ2

dt2


1
ξ2

=


1
N1∫

0

(
t

1
q1
− 1
ξ1

1 N
1
q1

1

)ξ1
dt1 +

1∫
1
N1

(
t

1
q1
− 1
ξ1

1 t
− 1
q1

1

)ξ1
dt1


1
ξ1

×


1
N2∫

0

(
t

1
q2
− 1
ξ2

2 N
1
q2

2

)ξ2
dt2 +

1∫
1
N2

(
t

1
q2
− 1
ξ2

2 t
− 1
q2

2

)ξ2
dt2


1
ξ2

=

(
q1

ξ1

+ lnN1

) 1
ξ1

(
q2

ξ2

+ lnN2

) 1
ξ2

≈ (lnN1)
1
ξ1 (lnN2)

1
ξ2

and

‖K‖L1,η
=

 1∫
0

 1∫
0

(
t
1− 1

η1
1 t

1− 1
η2

2 min

(
N1,

1

t1

)
min

(
N2,

1

t2

))η1

dt1


η2
η1

dt2


1
η2

=

 1∫
0

(
t
1− 1

η1
1 min

(
N1,

1

t1

))η1

dt1


1
η1
 1∫

0

(
t
1− 1

η2
2 min

(
N2,

1

t2

))η2

dt2


1
η2

=


1
N1∫

0

(
t
1− 1

η1
1 N1

)η1

dt1 +

1∫
1
N1

(
t
1− 1

η1
1 t−1

1

)η1

dt1


1
η1
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×


1
N2∫

0

(
t
1− 1

η2
2 N2

)η2

dt2 +

1∫
1
N2

(
t
1− 1

η2
2 t−1

2

)η2

dt2


1
η2

=

(
1

η1

+ lnN1

) 1
η1

(
1

η2

+ lnN2

) 1
η2

≈ (lnN1)
1
η1 (lnN2)

1
η2

= (lnN1)
1
h1
− 1
ξ1 (lnN2)

1
h2
− 1
ξ2 .

Next, we de�ne

φ(x1, x2) =

{
(K ∗ f)(x1, x2), (x1, x2) ∈ [a1, 1]× [a2, 1]

0, (x1, x2) /∈ [a1, 1]× [a2, 1],
ai =

1

Ni

(eqi + 1), i = 1, 2.

Then if (x1, x2) ∈ [a1, 1]× [a2, 1], we obtain

φ(x1, x2) = (K ∗ f)(x1, x2) ≥

x2− 1
N2∫

1
N2

x1− 1
N1∫

1
N1

f(s1, s2)K(x1 − s1, x2 − s2)ds1ds2

=

x2− 1
N2∫

1
N2

x1− 1
N1∫

1
N1

(
min

(
N1,

1

s1

)) 1
q1

(
min

(
N2,

1

s2

)) 1
q2

×min

(
N1,

1

x1 − s1

)
min

(
N2,

1

x2 − s2

)
ds1ds2

=

x2− 1
N2∫

1
N2

x1− 1
N1∫

1
N1

(
1

s1

) 1
q1

(
1

s2

) 1
q2 ds1ds2

(x1 − s1)(x2 − s2)

≥ 1(
x1 − 1

N1

) 1
q1

(
x2 − 1

N2

) 1
q2

x1− 1
N1∫

1
N1

ds1

x1 − s1

x2− 1
N2∫

1
N2

ds2

x2 − s2

=
N

1
q1

1 N
1
q2

2 ln(N1x1 − 1) ln(N2x2 − 1)

(N1x1 − 1)
1
q1 (N2x2 − 1)

1
q2

.

We note that for θ1 > eq1 , we have ln θ1 ln θ2

θ
1
q1
1 θ

1
q2
2

′
θ1

=
(q1 − ln θ1) ln θ2

q1θ
1
q1

+1

1 θ
1
q2
2

< 0,

and for θ2 > eq2 , we get  ln θ1 ln θ2

θ
1
q1
1 θ

1
q2
2

′
θ2

=
ln θ1(q2 − ln θ2)

q2θ
1
q1
1 θ

1
q2

+1

2

< 0.
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Then we obtain that the function ln θ1 ln θ2

θ
1
q1
1 θ

1
q2
2

is decreasing for each variable on [eq1, 1]× [eq2, 1]. Hence,

φ∗1,∗2(t1, t2) ≥ ln(N1(t1 + a1)− 1) ln(N2(t2 + a2)− 1)(
t1 + a1 − 1

N1

) 1
q1

(
t2 + a2 − 1

N2

) 1
q2

, (t1, t2) ∈ (0, 1− a1)× (0, 1− a2).

Using this, we derive

‖f ∗K‖Lq̄,h ≥

 1∫
0

 1∫
0

(
t

1
q1
− 1
h1

1 t
1
q2
− 1
h2

2 φ∗1,∗2(t1, t2)

)h1

dt1


h2
h1

dt2


1
h2

≥


1−a2∫
0

 1−a1∫
0

t 1
q1
− 1
h1

1 t
1
q2
− 1
h2

2

ln(N1(t1 + a1)− 1) ln(N2(t2 + a2)− 1)(
t1 + a1 − 1

N1

) 1
q1

(
t2 + a2 − 1

N2

) 1
q2


h1

dt1


h2
h1

dt2


1
h2

=

 1−a1∫
0

t 1
q1
1

ln(N1(t1 + a1)− 1)(
t1 + a1 − 1

N1

) 1
q1


h1

dt1
t1


1
h1

×

 1−a2∫
0

t 1
q2
2

ln(N2(t2 + a2)− 1)(
t2 + a2 − 1

N2

) 1
q2


h2

dt2
t2


1
h2

≥ 2
− 1
q1

 1−a1∫
0

(ln(N1(t1 + a1)− 1))h1
dt1
t1


1
h1

×2
− 1
q2

 1−a2∫
0

(ln(N2(t2 + a2)− 1))h2
dt2
t2


1
h2

≈
(
lnh1+1(N1(t1 + a1)− 1)

) 1
h1

∣∣∣∣1−a1

0

(
lnh2+1(N2(t2 + a2)− 1)

) 1
h2

∣∣∣∣1−a2

0

≈ (lnN1)
1+ 1

h1 (lnN2)
1+ 1

h2 .

The fact that inequality (3.4) does not hold can be proved in a similar way. It su�ces to consider
the following functions

f(t1, t2) = min

(
N1,

1

t1

)
min

(
N2,

1

t2

)
and

K(t1, t2) =

(
min

(
N1,

1

|t1|

)) 1
q1

(
min

(
N2,

1

|t2|

)) 1
q2

.
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Events

5TH INTERNATIONAL CONFERENCE �ACTUAL PROBLEMS OF
MATHEMATICS AND COMPUTER SCIENCE: THEORY, METHODOLOGY,

PRACTICE� (APRIL 18�20, 2019, YELETS, RUSSIA)

The XX century is marked by the enrichment of world science with outstanding achievements in
the �eld of mathematics, solving many important problems that remain relevant in the modern world.
Such problems include, in particular, the problems considered in fundamental works of academician
S. Chaplygin. Based on his works new research paths were set, and serious applied problems were
addressed in the �elds of aerodynamics, gas dynamics, hydrodynamics, and mechanics. They were
further intensively developed due to the achievements of contemporary information technology.

To commemorate his activities was organized a large-scale scienti�c event in the historic homeland
of academician S. Chaplygin � the 5th international conference �Actual problems of mathematics
and computer science: theory, methodology, practice�, dedicated to the 150th anniversary of the
birth of academician S. Chaplygin.

The Ivan Bunin Yelets State University (Russia), the Samarkand State University (Uzbekistan),
the Higher School of Insurance and Finance (Bulgaria),the Khachatur Abovyan Armenian State Ped-
agogical University (Armenia), and the Scienti�c and Methodological Council on Mathematics of the
Ministry of Science and Higher Education of Russia held through April 18�20, 2019 the 5th Inter-
national Conference �Actual problems of mathematics and computer science: theory, methodology,
practice� dedicated to the 150th anniversary of academician S. Chaplygin.

The conference marked the three major milestones related to the development of mathematical
science in the Lipetsk region and in the oldest university center in the region � the Ivan Bunin Yelets
State University.

1. April 2019 is the 150th anniversary of the birth of S. Chaplygin (1869�1942) � a well-
known Russian scientist, academician of the Academy of Sciences of the USSR. S. Chaplygin is
an outstanding representative of the Lipetsk region, whose surname is immortalized in the name of
the city Chaplygin (previously Ranenburg) in the Lipetsk region.

2. 2019 year is the 80th anniversary of the foundation of the Faculty of Physics and Mathematics.
It is the oldest faculty of the Ivan Bunin Yelets State University, where students of the scienti�c
school of academician N. Zhukovsky were taught, whose famous representative was academician
S. Chaplygin.

3. In October 2019 there will be 10 years since the organization of the Lipetsk Branch of the Sci-
enti�c and Methodological Council for Mathematics of the Ministry of Science and Higher Education
of Russia on the basis of the Ivan Bunin Yelets State University.

The main goals of the conference were the creation of conditions for international scienti�c com-
munication of representatives of fundamental and applied areas in the �eld of mathematics, un-
derstanding the importance of scienti�c works of S. Chaplygin, the actualization of his scienti�c
achievements, taking into account the rapid development of information technologies and their adap-
tation to modern mathematical education.

The plenary session of the conference was opened by the Rector of the Ivan Bunin Yelets State
University Professor E. Gerasimova and continued by the President of the International Academy
of the History of Science Professor S. Demidov (Moscow, Russia), who presented the talk �Pure
and Applied Mathematics at the M.V. Lomonosov Moscow State University in the �rst half of the
twentieth century: N. Luzin and S. Chaplygin�.
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Professor A. Soleev (Samarkand, Uzbekistan) devoted his talk to basic ideas and general provisions
of the Power Geometry. Professor A. Soldatov (Moscow, Russia) focused on the consideration of the
Dirichlet problem for equations of mixed type. In her talk Professor G. Zhukova (Moscow, Russia)
discussed the dependence of solutions to singularly perturbed linear di�erential systems on a small
parameter. The talk of Professors O. Masina (Yelets, Russia) and O. Druzhinina (Moscow, Russia)
was devoted to the analysis of the known and developed by the authors approaches to the study of
the stability of intelligent control systems. The talks of Professors V. Tikhomirov (Moscow, Russia),
T. Sergeeva (Moscow, Russia) and E. Smirnov (Yaroslavl, Russia) addressed the issues of improving
mathematical education, introducing novelty into the teaching process while maintaining the best
traditions of high-quality teaching mathematics, laid by S. Chaplygin in his productive teaching
activities.

The relevance of the event was noted in the talks of Professors A. Abylkasymova (Alma-Ata,
Kazakhstan), A. Borovskikh (Moscow, Russia), S. Grozdev (So�a, Bulgaria), M. Mkrtchyan (Yere-
van, Armenia) and other scientists. At the end of the plenary session, talks were presented by
the authors of this communication on the history of the Scienti�c and Methodological Council on
Mathematics of the Ministry of Science and Higher Education of Russia and its contribution to the
development of mathematics and its applications in Russian education, as well as on the activities
of the Lipetsk Branch of the Scienti�c and Methodological Council.

The following sections were working at the conference: �Modern Directions in Mathematics�,
�Applied problems of mathematics�, �Computer modeling, information technologies and systems�,
�New theories, models and technologies of teaching mathematics and computer science at schools
and universities�, �Actualization of the problems of the history of mathematics and mathematical
education in modern conditions�.

At the conference there were more than 250 participants, including leading foreign specialists from
Armenia, Bulgaria, Uzbekistan, Kazakhstan, well-known scientists from more than twenty regions
of Russia, as well as young researchers. Overall, it was a successful conference, which helped to
increase the scienti�c and innovative activity of the region, stimulated the participants to develop
mathematics, information technologies and mathematical education.

S. Dvoryatkina, S. Rozanova, S. Shcherbatykh


