ISSN (Print): 2077-9879 ISSN (Online): 2617-2658

Eurasian Mathematical Journal

2019, Volume 10, Number 3

Founded in 2010 by the L.N. Gumilyov Eurasian National University in cooperation with the M.V. Lomonosov Moscow State University the Peoples' Friendship University of Russia (RUDN University) the University of Padua

Starting with 2018 co-funded by the L.N. Gumilyov Eurasian National University and the Peoples' Friendship University of Russia (RUDN University)

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Nur-Sultan, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy Vice–Editors–in–Chief

K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.K. Bliev (Kazakhstan), N.A. Bokavev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), M.A. Sadybekov (Kazakhstan) S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), D. Suragan (Kazakhstan), I.A. Taimanov (Russia), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission</u>. Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office through the provided web interface (www.enu.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

<u>Copyright</u>. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the <u>Abstract</u> (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References.</u> Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.

1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.

1.7. A positive review is not a sufficient basis for publication of the paper.

1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.

1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

2.1. In the title of a review there should be indicated the author(s) and the title of a paper.

2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.

2.3. A review should cover the following topics:

- compliance of the paper with the scope of the EMJ;

- compliance of the title of the paper to its content;

- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);

- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ) The Nur-Sultan Editorial Office The L.N. Gumilyov Eurasian National University Building no. 3 Room 306a Tel.: +7-7172-709500 extension 33312 13 Kazhymukan St 010008 Nur-Sultan, Kazakhstan

The Moscow Editorial Office The Peoples' Friendship University of Russia (RUDN University) Room 515 Tel.: +7-495-9550968 3 Ordzonikidze St 117198 Moscow, Russia

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879 Volume 10, Number 3 (2019), 20 – 27

BOUNDEDLY SOLVABLE NEUTRAL TYPE DELAY DIFFERENTIAL OPERATORS OF THE FIRST ORDER

Z.I. Ismailov, P. Ipek Al

Communicated by M. Otelbaev

Key words: boundedly solvable operator, neutral type delay differential operator, spectrum.

AMS Mathematics Subject Classification: 47A10, 34K06.

Abstract. In this work, by using methods of operator theory, all boundedly solvable extensions of the minimal operator generated by a linear neutral type delay differential-operator expression of the first order in a Hilbert space of vector-functions on a finite interval are described. Furthermore, the geometry of spectrum sets of these operators is studied.

DOI: https://doi.org/10.32523/2077-9879-2019-10-3-20-27

1 Introduction

It is known that many problems in chemistry, biology, medicine, economy, control theory, electrodynamics, ecology etc. are reduced the study of boundary value problems for functional differential equations for the first and second order in corresponding function spaces. In order words functional differential equations arise in many areas of science and technology. Problems in chemical reactions [3], [5], [17] and chemical kinetics [1], [6], [7], [8] etc. can be modelled by time-delay functional differential equations. The delay reaction-diffusion equation without diffusive term is expressed by following neutral type delay differential equations of the form

$$\frac{d}{dt}(x(t) + px(t-\tau)) + q(t)x(t-\sigma) = 0, \ t > 0$$

where: $p \in \mathbb{R}, \tau > 0, \sigma \ge 0$, and q(t) > 0 for t > 0.

Note that asymptotic behaviour and oscillation of solutions of this equations have been investigated in detail by many mathematician (for example see [15] and references therein). In modelling of certain cell growth phenomena the important role is played by neutral type delay differential equations (see [2], and references therein). Value in the 21st century of these and connected problems is undisputed.

Let us recall that an operator $T: D(T) \subset H \to H$ in a Hilbert space H is called boundedly solvable, if T is one-to-one, TD(T) = H and $T^{-1}: H \to H$ is bounded. In mathematical literature it is known that boundedly solvable extensions of any unbounded linear operator in a Hilbert space have been described by M.I. Vishik in [16]. Generalization of this results to nonlinear and complete additive Hausdorff topological spaces have been done by M.O. Otelbaev, B.K. Kokebaev and A.N. Shynybekov in their works [11], [12], [13], [14].

In this work, in Section 2 based on methods of operator theory all boundedly solvable extensions of the minimal operator generated by a linear neutral type delay differential-operator expression of the first order in a Hilbert space of vector-functions on a finite interval are described. Furthermore, in Section 3 the geometry of spectrum sets of these operators is studied. Finally, in Section 4 an example is given.

Everywhere in this paper by $\sigma(\cdot)$ and $\rho(\cdot)$ will be denoted spectrum and resolvent sets of an operator respectively.

2 Description of boundedly solvably extensions

We start with considering the following simplest scalar neutral type functional differential equation in nonhomogeneous form

$$\begin{aligned} a\dot{x}(t) + b\dot{x}(t-\tau) + cx(t) + dx(t-\tau) &= h(t), \ t > 0 \\ a \neq 0, \ b \neq 0, \ |c| + |d| > 0, \ a, b, c, d \in \mathbb{C}, \ \tau > 0, \\ x(t) &= \varphi(t) \in C^1[-\tau, 0], \ h : [0, \infty] \to \mathbb{C}. \end{aligned}$$

Note that without loss of generality it can be assumed that d = 0. To verify it suffices to use the substitution $x(t) = exp\left(-\frac{d}{b}t\right)u(t), t > 0.$

Moreover the above boundary value condition can be choosen to be such that

$$\varphi(t) = 0, \ -\tau \le t \le 0.$$

To verify it suffices to use the following substitution

$$u(t) = \begin{cases} x(t) - \varphi(t), & \text{if } -\tau \le t \le 0, \\ x(t), & \text{if } t > 0. \end{cases}$$

Consequently, it suffices to consider the following nonhomogeneous neutral type delay differential equation

$$a\dot{y}(t) + b\dot{y}(t-\tau) + cy(t) = h(t), \ t > 0$$

with the boundary condition

 $y(t) = 0, \ -\tau \le t \le 0.$

This problem can be written in form

$$a\dot{y}(t) + bS_l^{\tau}\dot{y}(t) + cy(t) = h(t), \ t > 0$$

 $y(t) = 0, \ -\tau \le t \le 0,$

where: $S_l^{\tau} : L^2(0, 1) \to L^2(0, 1)$, and

$$S_l^{\tau} f(t) = \begin{cases} f(t-\tau), & \text{if } \tau \le t \le 1, \\ 0, & \text{if } 0 \le t < \tau, \end{cases} f \in L^2(0,1).$$

In this work will be considered the following neutral type functional differential-operator expression of a form

$$l(u) = u'(t) + \sum_{k=1}^{n} A_k u'(t - \alpha_k) + \sum_{j=1}^{m} B_j u(t - \tau_j)$$

in the Hilbert space $L^2(H, (a, b))$ of vector-functions on a finite interval, where: (1) for each k = 1, 2, ..., n

$$0 < \alpha_k < \infty$$

and for any j = 1, 2, ..., m

$$0 \leq \tau_j < \infty;$$

(2)H is a separable Hilbert space;

(3) for $k = 1, 2, ..., n, j = 1, 2, ..., m, A_k, B_j \in L(H)$ and $0 \in \rho \left(1 + \sum_{k=1}^n A_k S_l^{\tau} \right),$ $\sum_{k=1}^n A_k \neq 0 \text{ and } \sum_{j=1}^m B_j \neq 0.$

The differential expression $l(\cdot)$ can be rewritten in the form

$$l(u) = Au'(t) + Bu(t), \ a < t < b_{t}$$

where:

$$A: L^{2}(H, (a, b)) \to L^{2}(H, (a, b)), \ A = E + \sum_{k=1}^{n} A_{k} S_{l}^{\alpha_{k}},$$
$$B: L^{2}(H, (a, b)) \to L^{2}(H, (a, b)), \ B = \sum_{j=1}^{m} B_{j} S_{l}^{\tau_{j}},$$

and note that for $\gamma > 0, \ \gamma < b-a, \ S_l^\gamma: L^2(H,(a,b)) \to L^2(H,(a,b)),$

$$S_l^{\gamma} f(t) = \begin{cases} 0, & \text{if } a + \tau \le t < b1, \\ f(t-\tau), & \text{if } a \le t < a + \tau, \end{cases} f \in L^2(H, (0, 1)).$$

Now assume that

$$m(v) = Av'(t), \ a < t < b.$$

In the standard way the minimal $M_0(L_0)$ and maximal M(L) operators corresponding to the differential expression $m(\cdot)(l(\cdot))$ can be defined in $L^2(H, (a, b))$ (see [9]).

Along this work it will be assumed that AB = BA.

Now let $U(t, s), t, s \in [a, b]$ be the family of evolution operators corresponding to the homogeneous differential equation

$$\begin{cases} AU'_t(t,s)f + BU(t,s)f = 0, \ t,s \in (a,b), \\ U(s,s)f = f, \ f \in H \end{cases}$$

Note that if \widetilde{L} is an extension of the minimal operator L_0 , i.e. $L_0 \subset \widetilde{L} \subset L$, then $U^{-1}L_0U = M_0$, $M_0 \subset U^{-1}\widetilde{L}U = \widetilde{M} \subset M$, $U^{-1}LU = M$.

Theorem 2.1. Each boundedly solvable extension \widetilde{L} of the minimal operator L_0 in $L^2(H, (a, b))$ is generated by the differential-operator expression $l(\cdot)$ and boundary condition

$$(W+E)u(a) = WU(a,b)u(b),$$
 (2.1)

where $W \in L(H)$ and E is a identity operator in H. The operator W is determined uniquely by the extension \widetilde{L} , i.e $\widetilde{L} = L_W$.

Conversely, the restriction of the maximal operator L_0 to the manifold of vector-functions satisfying condition (2.1) for some bounded operator $W \in L(H)$ is a boundedly solvable extension of the minimal operator L_0 in $L^2(H, (a, b))$. *Proof.* First, all boundedly solvable extensions \widetilde{M} of the minimal operator M_0 in $L^2(H, (a, b))$ in terms of boundary values will be described. Consider the following so-called Cauchy extension M_c ,

.

$$M_c u = Au'(t),$$
$$M_c : D(M_c) = \{ u \in W_2^1 H(a, b) : u(a) = 0 \} \subset L^2(H, (a, b)) \to L^2(H, (a, b))$$

of the minimal operator M_0 . It is clear that M_c is a boundedly solvable extension of M_0 and

. .

$$M_c^{-1} := L^2(H, (a, b)) \longrightarrow L^2(H, (a, b)), \ M_c^{-1}f(t) = \int_a^t A^{-1}f(x)dx, \ f \in L^2(H, (a, b)).$$

Now assume that \widetilde{M} is a boundedly solvable extension of the minimal operator M_0 in $L^2(H, (a, b))$. In this case it is known that the domain of \widetilde{M} can be written as direct sum of the form

$$D(\widetilde{M}) = D(M_0) \oplus (M_c^{-1} + K)V,$$

where $V = KerM = H, K \in L(H)$ (see [16]). Therefore for each $u \in D(\widetilde{M})$

$$u(t) = u_0(t) + M_c^{-1}f + Kf, \ u_0 \in D(M_0), \ f \in H.$$

That is,

$$u(t) = u_0(t) + (t-a)A^{-1}f + Kf, \ u_0 \in D(M_0), \ f \in H.$$

Hence

$$u(a) = Kf, \quad u(b) = (b-a)A^{-1}f + Kf = ((b-a)A^{-1} + K)f$$

and from these relations it follows that

$$\frac{1}{b-a}Au(a) = \frac{AK}{b-a}f, \ \frac{1}{b-a}Au(b) = \left(E + \frac{AK}{b-a}\right)f.$$

The last relations can also be written in following form

$$\frac{1}{b-a}Au(a) = Tf, \ \frac{1}{b-a}Au(b) = (E+T)f$$

where: $T = \frac{AK}{b-a}$. Consequently,

$$\frac{1}{b-a}(E+T)Au(a) = \frac{1}{b-a}TAu(b),$$

i.e.

$$(E+T)Au(a) = TAu(b).$$

Then

$$(A+S)u(a) = Su(b), \ S = TA$$

hence

$$(E + A^{-1}S)u(a) = A^{-1}Su(b).$$

The last relation can be expressed in the form

$$(E+W)u(a) = Wu(b), (2.2)$$

where: $W = A^{-1}S, W \in L(H)$.

The uniqueness of the operator $W \in L(H)$ is clear from the work [16]. Therefore $\widetilde{M} = M_W$. This

completes the proof of the first assertion.

Conversely, if M_W is a operator generated by the differential expression $m(\cdot)$ and boundary condition (2.2), then M_W is boundedly invertible and

$$M_W^{-1} := L^2(H, (a, b)) \longrightarrow L^2(H, (a, b)),$$
$$M_W^{-1}f(t) = \int_a^t A^{-1}f(x)dx + W \int_a^b A^{-1}f(x)dx, \quad f \in L^2(H, (a, b))$$

Consequently, all boundedly solvable extensions of the minimal operator M_0 in $L^2(H, (0, 1))$ are generated by the differential expression $m(\cdot)$ and boundary condition (2.2) with any linear bounded operator W.

Now consider the general case. For this in $L^2(H, (a, b))$ we introduce the operator of the form

$$U: L^{2}(H, (a, b)) \to L^{2}(H, (a, b)),$$
$$(Uz)(t) := U(t, a)z(t), z \in L^{2}(H, (a, b)).$$

The properties of the family of evolution operators $U(t,s), t, s \in [a,b]$ imply that the operator U is linear continuous boundedly solvable and such that

$$(U^{-1}z)(t) = U(a,t)z(t).$$

On the other hand from the relations

$$U^{-1}L_0U = M_0, \quad U^{-1}\widetilde{L}U = \widetilde{M}, \quad U^{-1}LU = M$$

it follows that the operator U is one-to-one between of sets of boundedly solvable extensions of the minimal operators L_0 and M_0 in $L^2(H, (a, b))$.

An extension \widetilde{L} of the minimal operator L_0 is boundedly solvable in $L^2(H, (a, b))$ if and only if the operator $\widetilde{M} = U^{-1}\widetilde{L}U$ is an extension of the minimal M_0 in $L^2(H, (a, b))$. Then $u \in D(\widetilde{L})$ if and only if

$$(W+E)U(a,a)u(a) = WU(a,b)u(b),$$

that is,

$$(W+E)u(a) = WU(a,b)u(b).$$

This proves the validity of the claims in theorem.

Corollary 2.1. The resolvent operator $R_{\lambda}(L_W), \lambda \in \rho(L_W)$ of any boundedly solvable operator L_W of the minimal operator L_0 , generated by the differential expression $l(\cdot)$ with the boundary condition

$$(W+E)u(a) = WU(a,b)u(b), W \in L(H)$$

is of the form $R_{\lambda}(K_W) : L^2(H, (a, b)) \to L^2(H, (a, b))$, where

$$R_{\lambda}(L_{W})f(t) = U(t,a) \left(E - W \left(e^{\lambda A^{-1}(b-a)} - E \right) \right)^{-1} W \int_{a}^{b} e^{\lambda A^{-1}(b-s)} A^{-1}f(s) ds + \int_{a}^{t} e^{\lambda A^{-1}(t-s)} A^{-1}U(a,s)f(s) ds, \ f \in L^{2}(H,(a,b)).$$

3 Spectrum of boundedly solvable extensions

In this section the structure of the spectrums of boundedly solvable extensions of the minimal operator L_0 will be investigated.

The validity of following assertion is clear.

Theorem 3.1. If \widetilde{L} is a boundedly solvable extension of the minimal operator L_0 and $\widetilde{M} = U^{-1}\widetilde{L}U$ is a boundedly solvable extension of the minimal operator M_0 , then for the spectrums of these extensions the equality $\sigma(\widetilde{L}) = \sigma(\widetilde{M})$ holds.

For the spectrums of boundedly solvable extensions of L_0 the following proposition is valid.

Theorem 3.2. If L_W is a boundedly solvable extension of the minimal operator L_0 in the space $L^2(H, (a, b))$, then the spectrum of L_W has the form

$$\sigma(L_W) = \{\alpha\nu : \alpha \in \sigma(A), \ \nu \in \Omega\},\$$
$$\Omega := \left\{\lambda \in \mathbb{C} : \lambda = \ln\left|\frac{\mu+1}{\mu}\right| + iarg\left(\frac{\mu+1}{\mu}\right) + 2p\pi i, \ \mu \in \sigma(W) \setminus \{0,1\}, \ p \in \mathbb{Z}\right\}.$$

Proof. First, the spectrum of a boundedly solvable extension $M_W = U^{-1}L_W U$ of the minimal operator M_0 in $L^2(H, (a, b))$ will be investigated. For this we consider the following spectral problem

$$M_W u = \lambda u + f, \lambda \in \mathbb{C}, \ f \in L^2(H, (a, b)).$$

Then it is clear that $\lambda \neq 0$ and

$$Au' = \lambda u + f, \ \lambda \in \mathbb{C} \setminus \{0\}, \ f \in L^2(H, (a, b))$$
$$(W + E)u(a) = Wu(b), W \in L(H).$$

The above problem can be formulated the following form

 $(A \otimes D_W) u = \lambda u + f,$

where $D_W: D(L_W) \subset L^2(a, b) \to L^2(a, b)$,

$$D(L_W) = \left\{ u \in W_2^1(a, b) : (W + E)u(a) = Wu(b) \right\}.$$

It is known that the operator D_W is a boundedly solvable in $L^2(a, b)$ and the spectrum has the following structure

$$\sigma(D_W) = \left\{ \lambda \in \mathbb{C} : \lambda = \ln \left| \frac{\mu + 1}{\mu} \right| + i \arg(\frac{\mu + 1}{\mu}) + 2p\pi i, \mu \in \sigma(K) \setminus \{0, -1\}, \ p \in \mathbb{Z} \right\}$$

([10]). The problem considered above is equivalent to the following spectral problem

$$(A^{-1} \otimes D_W^{-1})u = \frac{1}{\lambda}u - \frac{1}{\lambda}(A^{-1} \otimes D_W^{-1})f, \ \lambda \in \mathbb{C} \setminus \{0\}, \ f \in L^2(H, (a, b))$$

for the operator $A^{-1} \otimes D_W^{-1}$ in $L^2(H, (a, b))$.

In this case

$$\sigma\left((A\otimes D_W)^{-1}\right) = \left\{\lambda^{-1} : \lambda \in \sigma((A\otimes D_W)\right\},\$$

that is,

$$\sigma(A^{-1} \otimes D_W^{-1}) = \left\{ \lambda^{-1} : \lambda \in \sigma((A \otimes D_W)) \right\}.$$

From this and [4] we have

$$\sigma\left((A\otimes D_W)^{-1}\right) = \left\{\alpha\nu : \alpha\in\sigma(A^{-1}), \ \nu\in\sigma(D_W^{-1})\right\}.$$

Consequently,

$$\sigma(A \otimes D_W) = \{\alpha \nu : \alpha \in \sigma(A), \nu \in \sigma(D_W)\},\$$

that is,

$$\sigma(M_W) = \{\alpha\nu : \alpha \in \sigma(A), \nu \in \sigma(D_W)\}$$

Then by Theorem 3.1 the validity of the assertion in last theorem it is clear.

4 Application

Consider the following reaction-diffusion equation of neutral type without diffusive term of the form

$$\frac{d}{dt}(x(t) + px(t-\tau)) + qx(t-\sigma) = f(t), \ t \in [0,T],$$

where $p, q \in \mathbb{R}$; $0 < \tau, \sigma < T < \infty$, with the initial condition

$$x(t) = 0, \ t \in [-max(\tau, \sigma), 0]$$

(see [15]).

It is clear that if |p| < 1, then $0 \in \rho(E + pS_l^{\tau}), E + pS_l^{\tau} : L^2(0,1) \to L^2(0,1).$

The last initial value problem can be considered as the Cauchy problem of the form

$$\begin{cases} L_c x(t) = f(t), \ 0 < t < T \\ x(0) = 0 \end{cases}$$

where $L_c x(t) = A x'(t) + B x(t), \ A = E + p S_l^{\tau}, \ B = q S_l^{\sigma}.$

In this case by Corollary 2.2 this problem has a unique L^2 -solution in [0, T] and it can be represented in the following form

$$x(t) = L_c^{-1} f(t) = U(t,0) \int_0^t A^{-1} U(0,s) f(s) ds, \ f \in L^2(0,T).$$

Here $U(t,s), t,s \in [0,T]$ is the family of evolution operators corresponding to the problem

$$\begin{cases} AU'_t(t,s)f + BU(t,s)f = 0, \\ U(s,s)f = f, f \in \mathbb{R}. \end{cases}$$

Note that the Cauchy operator L_c is a boundedly solvable extension of the corresponding minimal operator in $L^2(0, T)$. To verify this it suffices to take W = 0. For W = 0

$$\sigma(D_W^{-1}) = \{0\}$$

Then

$$\sigma(A^{-1} \otimes D_W^{-1}) = \{0\}.$$

Consequently, by Theorem 3.2 $\sigma(L_c) = \emptyset$.

Acknowledgments

The authors are grateful to G. Ismailov (PhD student of the Boğzici University, Istanbul) for his help in preparing an English version of this paper and technical discussions.

References

- [1] N.A. Allen, Computational software for building biochemical reaction network models with differential equations, PhD Dissertation, Faculty of the Virginia Polytechnic Institute and State University, (2005) 119p.
- [2] Ch.T.H. Baker, G.A. Bocharov, F. A. Rihan, Neutral delay differential equations in the modelling of cell growth, Applied Mathematics Group, Researc Report, Department of Mathematics, University of Chester, 1-30.
- [3] K. Bareli, R.M. Noyes, Gas-evolution oscillators, A model based on a delay equation. J. Phys. Chem. 96 (1992), 7664-7670.
- [4] A. Brown, C. Pearcy, Spectra of tensor product of operators. Proc. Amer. Math. Soc. 17(1) (1966), 162-166.
- [5] T. Chevalier, A. Freund, J. Ross, The effects of a nonlinear delayed feedback on a chemical reaction. J. Chem. Phys. 95 (1991), 308-316.
- [6] I.R. Epstein, Delay effects and differential delay equations in chemical-kinetics. International Reviews in Physical Chemistry 11(1) (1992), 135-160.
- [7] I.R. Epstein, Y. Luo, Differential delay equation in chemical kinetics, Nonlinear models: The cross-shaped phase diagram and the oregonator. J. Chem. Phys. 95 (1991), 244-254.
- [8] E.L. Haseltine, J.B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15) (2002), 6959-6969.
- [9] L. Hörmander, On the theory of general partial differential operators. Acta Math. 94 (1955), 161-248.
- [10] Z.I. Ismailov, P. Ipek, Spectrums of solvable pantograph differential-operator for first order. Abstract and Applied Analysis (2014), 1-8.
- [11] B.K. Kokebaev, M. Otelbaev, A.N. Shynybekov, On the theory of contraction and extension of operators I. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 5 (1982), 24-26 (in Russian).
- [12] B.K. Kokebaev, M. Otelbaev, A.N. Shynybekov, On questions of extension and restriction of operator. English Translation: Soviet Math. Dokl. 28 1 (1983), 259-262.
- [13] B.K. Kokebaev, M. Otelbaev, A.N. Shynybekov, On the theory of contraction and extension of operators II. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 110 (1983), 24-26 (in Russian).
- [14] M. Otelbaev, A.N. Shynybekov, Well-posed problems of Bitsadze-Samarskii type. English Translation: Soviet Math. Dokl. 26 1 (1983), 157-161.
- B. Shi, Asymptotic behavior of solutions for a delay reaction-diffusion equation of neutral type. Nikonkai Math. J. 13 (2002), 133-143.
- [16] M.I. Vishik, On general boundary problems for elliptic differential equations. Amer. Math. Soc. Transl. II 24 (1963), 107-172.
- [17] J. Weiner, F.W. Schneider, K. Bar-Eli, Delayed-output-controlled chemical oscillations. J. Phys. Chem. 93 (1989), 2704-2711.

Zameddin Ismailovich Ismailov Karadeniz Technical University Department of Mathematics 61080, Trabzon, Turkey E-mail: zameddin.ismailov@gmail.com

Pembe Ipek Al Karadeniz Technical University Institute of Natural Sciences 61080, Trabzon, Turkey E-mail: ipekpembe@gmail.com

Events

5TH INTERNATIONAL CONFERENCE "ACTUAL PROBLEMS OF MATHEMATICS AND COMPUTER SCIENCE: THEORY, METHODOLOGY, PRACTICE" (APRIL 18–20, 2019, YELETS, RUSSIA)

The XX century is marked by the enrichment of world science with outstanding achievements in the field of mathematics, solving many important problems that remain relevant in the modern world. Such problems include, in particular, the problems considered in fundamental works of academician S. Chaplygin. Based on his works new research paths were set, and serious applied problems were addressed in the fields of aerodynamics, gas dynamics, hydrodynamics, and mechanics. They were further intensively developed due to the achievements of contemporary information technology.

To commemorate his activities was organized a large-scale scientific event in the historic homeland of academician S. Chaplygin — the 5th international conference "Actual problems of mathematics and computer science: theory, methodology, practice", dedicated to the 150th anniversary of the birth of academician S. Chaplygin.

The Ivan Bunin Yelets State University (Russia), the Samarkand State University (Uzbekistan), the Higher School of Insurance and Finance (Bulgaria), the Khachatur Abovyan Armenian State Pedagogical University (Armenia), and the Scientific and Methodological Council on Mathematics of the Ministry of Science and Higher Education of Russia held through April 18–20, 2019 the 5th International Conference "Actual problems of mathematics and computer science: theory, methodology, practice" dedicated to the 150th anniversary of academician S. Chaplygin.

The conference marked the three major milestones related to the development of mathematical science in the Lipetsk region and in the oldest university center in the region — the Ivan Bunin Yelets State University.

1. April 2019 is the 150th anniversary of the birth of S. Chaplygin (1869-1942) — a well-known Russian scientist, academician of the Academy of Sciences of the USSR. S. Chaplygin is an outstanding representative of the Lipetsk region, whose surname is immortalized in the name of the city Chaplygin (previously Ranenburg) in the Lipetsk region.

2. 2019 year is the 80th anniversary of the foundation of the Faculty of Physics and Mathematics. It is the oldest faculty of the Ivan Bunin Yelets State University, where students of the scientific school of academician N. Zhukovsky were taught, whose famous representative was academician S. Chaplygin.

3. In October 2019 there will be 10 years since the organization of the Lipetsk Branch of the Scientific and Methodological Council for Mathematics of the Ministry of Science and Higher Education of Russia on the basis of the Ivan Bunin Yelets State University.

The main goals of the conference were the creation of conditions for international scientific communication of representatives of fundamental and applied areas in the field of mathematics, understanding the importance of scientific works of S. Chaplygin, the actualization of his scientific achievements, taking into account the rapid development of information technologies and their adaptation to modern mathematical education.

The plenary session of the conference was opened by the Rector of the Ivan Bunin Yelets State University Professor E. Gerasimova and continued by the President of the International Academy of the History of Science Professor S. Demidov (Moscow, Russia), who presented the talk "Pure and Applied Mathematics at the M.V. Lomonosov Moscow State University in the first half of the twentieth century: N. Luzin and S. Chaplygin". Professor A. Soleev (Samarkand, Uzbekistan) devoted his talk to basic ideas and general provisions of the Power Geometry. Professor A. Soldatov (Moscow, Russia) focused on the consideration of the Dirichlet problem for equations of mixed type. In her talk Professor G. Zhukova (Moscow, Russia) discussed the dependence of solutions to singularly perturbed linear differential systems on a small parameter. The talk of Professors O. Masina (Yelets, Russia) and O. Druzhinina (Moscow, Russia) was devoted to the analysis of the known and developed by the authors approaches to the study of the stability of intelligent control systems. The talks of Professors V. Tikhomirov (Moscow, Russia), T. Sergeeva (Moscow, Russia) and E. Smirnov (Yaroslavl, Russia) addressed the issues of improving mathematical education, introducing novelty into the teaching process while maintaining the best traditions of high-quality teaching mathematics, laid by S. Chaplygin in his productive teaching activities.

The relevance of the event was noted in the talks of Professors A. Abylkasymova (Alma-Ata, Kazakhstan), A. Borovskikh (Moscow, Russia), S. Grozdev (Sofia, Bulgaria), M. Mkrtchyan (Yerevan, Armenia) and other scientists. At the end of the plenary session, talks were presented by the authors of this communication on the history of the Scientific and Methodological Council on Mathematics of the Ministry of Science and Higher Education of Russia and its contribution to the development of mathematics and its applications in Russian education, as well as on the activities of the Lipetsk Branch of the Scientific and Methodological Council.

The following sections were working at the conference: "Modern Directions in Mathematics", "Applied problems of mathematics", "Computer modeling, information technologies and systems", "New theories, models and technologies of teaching mathematics and computer science at schools and universities", "Actualization of the problems of the history of mathematics and mathematical education in modern conditions".

At the conference there were more than 250 participants, including leading foreign specialists from Armenia, Bulgaria, Uzbekistan, Kazakhstan, well-known scientists from more than twenty regions of Russia, as well as young researchers. Overall, it was a successful conference, which helped to increase the scientific and innovative activity of the region, stimulated the participants to develop mathematics, information technologies and mathematical education.

S. Dvoryatkina, S. Rozanova, S. Shcherbatykh