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1 Introduction

The theory of inverse problems for differential systems and its general methods goes back to works
[2, 3] and has been further developed in [1, 8, 9, 18, 19] for deterministic systems described by
ordinary differential equations (ODE). A set of ODE with a given integral curve was constructed
in [2]. That paper plays a fundamental role in the formation and development of the theory of
inverse problems in the dynamics of systems described by ODE. The statement and classification
of the inverse problems for differential equations and their solutions in the class of ODE are
discussed in [1, 3, 8, 9, 18, 19].

Solving inverse problems of differential systems (problems of construction of a set of differ-
ential equations according to a given integral manifold) is based on two methods: the Erugin
method and the quasi-inversion method. Firstly, the Erugin method (the method of introduction
of an auxiliary Erugin function) provides necessary and sufficient conditions for a given set to be
an integral manifold [2, 3]. And, secondly, the quasi-inversion method, developed in [9], allows
to write out the common solution of the functional-algebraic equation, to which the problem of
construction of a set of differential equations for a given integral manifold is reduced.

However, the increasing requirements to the accuracy of description and serviceability of ma-
terial systems lead to the situation in which numerous observed phenomena cannot be explained
on the basis of the analysis of deterministic processes. Thus, in particular, probability laws
should be used for the simulation of the behaviour of actual systems.

Thus, the problem of generalization of the methods used for the solution of inverse problems
for differential systems to the class of stochastic differential equations seems to be quite urgent
[7, 11].

Stochastic differential equations of the Itô-type are used to describe various models of me-
chanical systems taking into account the action of external random forces and are important
for numerous applications, e.g., the motion of artificial satellites under the action of gravity and
aerodynamic forces [10], the fluctuation drift of a heavy gyroscope in the gimbal suspension [12],
and many others. In [13-15], the inverse problems of dynamics are studied under the additional
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assumptions of the presence of random perturbations from the class of Wiener processes. In
particular, the following problems are solved by the method of quasi-inversion:

(a) the main inverse problem of dynamics, i.e., the construction of the set of Itô-type second-
order stochastic differential equations with a given integral manifold;

(b) the problem of reconstruction of the equations of motion, i.e., the construction of the set
of control parameters contained in a given system of Itô-type second-order stochastic differential
equations according to a given integral manifold; and

(c) the problem of closure of the equations of motion, i.e., the construction of the set of
closing Itô-type second-order stochastic differential equations for a given system of equations
and a given integral manifold.

Other important (but different from the problem considered in this paper) inverse problems
in the presence of random perturbations from the class of Wiener processes are considered in
[5, 16]. In particular, the main inverse problem (according to Galiullin’s classification [3]) with
degenerate diffusion is solved by the method of separation in [5], and the inverse stochastic prob-
lem of reconstruction with an integral manifold, which depends only on a part of the variables,
is considered in [16].

In [15, 17], one of the inverse problems - the problem of construction of a set of closing
stochastic differential equations of Itô on the given integral manifold is considered in the as-
sumption that random perturbations belong to a class of independent Wiener processes (as a
special case of processes with independent increments).

In this paper, in contrast to [15, 17] we suppose that random perturbations belong to a more
general class, namely the class of processes with independent increments.

The posed inverse problem of closure of stochastic differential first-order Itô equations by
given properties of the motion is solved by a quasi-inversion method. The necessary and sufficient
conditions of this problem’s solvability are obtained in the terms of closing equations’ coefficients.

2 Statement of the general problem of constructing
of closing stochastic differential equations

We assume that the set

Λ(t) : λ(y, z, v, w, t) = 0, where λ ∈ Rm, λ = λ(y, z, v, w, t) ∈ C1 2 1 2 1
y z v w t (2.1)

and the system of stochastic differential Itô equations of the first order
ẏ = f1(y, z, v, w, t),

ż = f2(y, z, v, w, t) + σ1(y, z, v, w, t)ξ̇0 +

∫
c1(x, t)Ṗ 0(t, dx)

(2.2)

are given. It is required to finish building the system of the closing equations of the form
v̇ = f3(y, z, v, w, t),

ẇ = f4(y, z, v, w, t) + σ2(y, z, v, w, t)ξ̇0 +

∫
c2(x, t)Ṗ 0(t, dx)

(2.3)

such that set (2.1) is an integral manifold of the system of equations (2.2), (2.3).
Here y ∈ Rl1 , z ∈ Rl2 , v ∈ Rp1 , w ∈ Rp2 , l1 + l2 = l, l > 0; p1 + p2 = p, p > 0; l + p = n,

x = (yT , zT , vT , wT )T ∈ Rn; ξ0 ∈ Rk is a vector Wiener process; P 0 is a Poisson process; P 0(t, dx)
is the number of jumps of the process P 0 in the interval [0, t], falling on the set dx. Matrices σ1,
σ2 have dimensions respectively (l2 × k), (p2 × k); c1(x, t) and c2(x, t) are vector functions that
map the space Rn into spaces Rl2 and Rp2 respectively.
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We say that a function g(x, t) belongs to the class K, g ∈ K, if g is continuous in t, t ∈ [0,∞]
satisfies the Lipschitz condition with respect to x in the entire space Rn; i.e.

‖g(x, t)− g(x̃, t)‖ ≤M‖x− x̃‖

and satisfies the condition of linear growth in x

‖g(x, t)‖ ≤M(1 + ‖x‖)

with a certain constant M.
It is presumed that there is a degeneracy of the diffusion with respect to the variable y in

equation (2.2) and with respect to the variable v in equation (2.3).
It is assumed that the vector functions f1, f2, the matrix σ1, and also unknown vector func-

tions f3, f4 and matrix σ2 belong to the class K. This guarantees the existence and uniqueness
(up to stochastic equivalence) of solution

(
y(t)T , z(t)T , v(t)T , w(t)T

)T of system of equations
(2.2), (2.3) with the initial condition

(
y(t0)T , z(t0)T , v(t0)T , w(t0)T

)T
= (yT0 , z

T
0 , v

T
0 , w

T
0 )T .

This solution is a strictly Markov process, which is continuous with probability 1 [7, p. 107].
Let us suppose that

(i) the vector function λ(y, z, v, w, t) is continuously differentiable with respect to all its ar-
guments;

(ii) the given vector functions f1, f2, c1 and the matrix σ1, and also the unknown sets of
vector functions {f3}, {f4} and the unknown set of matrices {σ2} belong to the class K.

Condition (ii) ensures in Rn, following [4], the existence and uniqueness up to the stochas-
tic equivalence of the solution

(
y(t)T , z(t)T , v(t)T , w(t)T

)T of system of equations (2.2), (2.3)
with the initial condition

(
y(t0)T , z(t0)T , v(t0)T , w(t0)T

)T
= (yT0 , z

T
0 , v

T
0 , w

T
0 )T . This solution is a

strictly Markov process, which is continuous with probability 1 [7, p. 107]. Moreover condition
(i) ensures the possibility of deriving the equation of the perturbed motion with respect to the
integral manifold Λ.

Thus, the posed problem:
1) is sufficiently fully investigated in [3, 9] in the absence of random perturbations (σ1 ≡ 0,

σ2 ≡ 0);
2) generalizes the problem of construction of the set of closing Itô-type second-order stochastic

differential equations
ü = f2(x, ẋ, u, u̇, t) + σ2(x, ẋ, u, u̇, t)ξ̇ (2.3′)

for a given system of equations

ẍ = f1(x, ẋ, u, u̇, t) + σ1(x, ẋ, u, u̇, t)ξ̇ (2.2′)

and a given integral manifold

Λ(t) : λ(x, ẋ, u, u̇, t) = 0, where λ ∈ Rm, λ = λ(x, ẋ, u, u̇, t) ∈ C1 2 1 2 1
xẋ uu̇ t , (2.1′)

so, that set (2.1′) is an integral manifold of the system of equations (2.2′) and (2.3′), which was
considered in [15, 17];

3) extends results of work [6], where the posed problem is solved in the supposition, that
random perturbations ξ(t) are from a class of Wiener processes (a particular case of processes
with independent increments).

For the solution of the posed problem we will use the quasi-inversion method [9], which is
based on



96 M.I. Tleubergenov, G.T. Ibraeva

Lemma 1.1. [9, p. 12–13]. The set of all solutions of the linear systems

Hv = g, H = (hµk), v = (vk), g = (gµ), µ = 1,m; k = 1, n, m ≤ n (2.4)

where the matrix H has a rank m, is defined by the expression

v = svτ + vν , (2.5)

where s is any scalar,

vτ = [HC] = [h1 . . . hmcm+1 . . . cn−1] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 . . . en

h11 . . . h1n

. . . . . . . . .
hm1 . . . hmn

cm+1,1 . . . cm+1,n

. . . . . . . . .
cn−1,1 . . . cn−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the vector product of vectors hµ = (hµk) and any vectors cρ = (cρk), ρ = m+ 1, n− 1; ek is
individual basis vectors of space Rn, vτ = (vτk), where

vτk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . 1 . . . 0
h11 . . . h1k . . . h1n

. . . . . . . . . . . . . . .
hm1 . . . hmk . . . hmn

cm+1,1 . . . cm+1,n . . . cm+1,n

. . . . . . . . . . . . . . .
cn−1,1 . . . cn−1,k . . . cn−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, vν = H+g,

H+ = HT (HHT )−1, HT is the transposed matrix to H.
For the solving of posed problem of closing of equations’ system (2.3) we will differentiate a

composite function λ = λ(y, z, v, w, t) by rule Itô [4] in the case of processes with independent
increments

λ̇ = M +

(
∂λ

∂v

)
f3 +

(
∂λ

∂w

)
f4 +

(
∂λ

∂z

)
σ1ξ̇ +

(
∂λ

∂w

)
σ2ξ̇0 + S3, (2.6)

where M =
∂λ

∂t
+

(
∂λ

∂y

)
f1 +

(
∂λ

∂z

)
f2 + S1 + S2, S1 =

1

2

[
∂2λ

∂z∂z
: D1 +

∂2λ

∂w∂w
: D2

]
,

S2 =

∫
{λ(y, z + c1(x, t), v, w + c2(x, t), t)− λ(y, z, v, w, t)− ∂λ

∂z
c1(x, t)− ∂λ

∂w
c2(x, t)}dx,

S3 =

∫
[λ(y, z + c1(x, t), v, w + c2(x, t), t)− λ(y, z, v, w, t)]Ṗ 0(t, dx),

and under
∂2λ

∂z∂z
: D1, D1 = σ1σ

T
1 ,

∂2λ

∂w∂w
: D2, D2 = σ2σ

T
2 we understand, following [17],

the vector, the elements of which are traces of the matrices’ products of flexons of corresponding
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elements λµ(y, z, v, w, t) of the vector λ(y, z, v, w, t) on components z, w of matrices D1, D2 :

∂2λ

∂z∂z
: D1 =


tr
( ∂2λ1

∂z∂z
D1

)
...

tr
(∂2λm
∂z∂z

D1

)


,

∂2λ

∂w∂w
: D2 =


tr
( ∂2λ1

∂w∂w
D2

)
...

tr
( ∂2λm
∂w∂w

D2

)


.

Further, providing that set (2.1) be an integral manifold of the system of equations (2.2),
(2.3), we introduce, following the Erugin method [2], any m-dimensional vector functions A1, A2

and (m× k) matrix B, possessing property

A1(0, y, z, v, w, t) ≡ A2(0, y, z, v, w, t) ≡ 0, B(0, y, z, v, w, t) ≡ 0,

such that equation (2.7)

λ̇ = A1(λ, y, z, v, w, t) +B(λ, y, z, v, w, t)ξ̇0 +

∫
A2(λ, x, t)Ṗ 0(t, dx) (2.7)

holds.
Comparing equations (2.6) and (2.7), we arrive at the following relations:

∂λ

∂v
f3 +

∂λ

∂w
f4 = A1 −M,

∂λ

∂z
σ1 +

∂λ

∂w
σ2 = B,

λ(y, z + c1(x, t), v, w + c2(x, t), t)− λ(y, z, v, w, t) = A2,

(2.8)

from which it is necessary to define vector functions f3, f4 and a matrix σ2.We will suppose that
f3 = φ(y, z, v, w, t), where φ ∈ K.

Then expression (2.8) will become:

∂λ

∂w
f4 = A1 −M −

∂λ

∂v
f3,

∂λ

∂w
σ2 = B − ∂λ

∂z
σ1,

λ(y, z + c1(x, t), v, w + c2(x, t), t)− λ(y, z, v, w, t) = A2.

(2.9)

Now we assume that along with conditions (i) and (ii), the following condition (iii) also
holds

(iii) the vector function λ is linear in z and w and has the form

λ = α(y, v, t) + β1(t)z + β2(t)w, (2.10)

where α(y, v, t) is a vector function of arbitrarily specified from the class K, α ∈ K, and β1(t),
β2(t) are matrices arbitrarily given and continuous in t of order (m×l2) and (m×p2) respectively.
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If condition (iii) is satisfied, namely, if λ is linear in z and w, we have
∂2λ

∂z∂z
≡ 0,

∂2λ

∂w∂w
≡ 0

and, consequently, S1 ≡ 0, S2 ≡ 0, and S3 in the linear case will take the form

S3 =

∫
[β1(t)c1(x, t) + β2(t)c2(x, t)]Ṗ 0(t, dx).

Let f3 = f(y, z, v, w, t), where the vector function f is an arbitrary function from the class
K. Then taking into account expression (2.10), relations (2.9) take the form

β2f4 = A1 − M̃ −
∂α

∂v
f,

β2σ2 = B − β1σ1,

β2c2 = A2 − β1c1,

(2.11)

where M̃ =
∂α

∂t
+
∂β1

∂t
z +

∂β2

∂t
w +

∂α

∂y
f1 +

∂α

∂z
f2.

From relations (2.11) by formula (2.6) of Lemma 1.1, we will define unknown vector functions
f4, c2 and a matrix σ2 in the form of

f4 = s1 [β2C] + (β2)+ Ã1,

σ2i = s2i [β2C] + (β2)+ B̃i, i = 1, k,

c2 = s3 [β2C] + (β2)+ Ã2,

(2.12)

where Ã1 = A1 − M̃ − β1f, B̃i = (B − β1σ1)i, Ã2 = A2 − β1c1, σ2i is i-th column of the matrix
σ2 = (σ2νj), (ν = 1, p2, j = 1, k), B̃i is i-th column of the matrix B̃ = (B̃µl), (µ = 1,m,
l = 1, k),

[β2C] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 · · · ep2

β2,11 · · · β2,1p2

· · · · · · · · ·
β2,m1 · · · β2,mp2

cm+1,1 · · · cm+1,p2

· · · · · · · · ·
cp2−1,1 · · · cp2−1,p2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Consequently, the following theorem takes place.
Theorem 2.1. Let conditions (i), (ii) and (iii) be satisfied. Then the system of differential
equations (2.2), (2.3) of Itô type has the given integral manifold (2.1) if and only if the sets of
vector functions {f4}, {c2} and columns σ2i of the set of matrices {σ2} of the closing stochastic
differential equations (2.3) can be represented in form (2.12).

3 Scalar case of the closure’s inverse problem

Let us give the set
Λ(t) : η(y, z, v, w, t) = 0, where η ∈ R1, (3.1)
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and the system of scalar stochastic differential equations ẏ = g1(y, z, v, w, t),

ż = g2(y, z, v, w, t) + γ1(y, z, v, w, t)ζ̇0 +
∫
κ1(x, t)Ṗ 0(t, dx),

(3.2)

where y, z, v, w ∈ R1, it is required to finish building the closing system of scalar stochastic
equations {

v̇ = g3(y, z, v, w, t),

ẇ = g4(y, z, v, w, t) + γ2(y, z, v, w, t)ζ̇0 +
∫
κ2(x, t)Ṗ 0(t, dx),

(3.3)

so that set (3.1) is an integral manifold of the system of equations (3.2), (3.3), where ζ0 = ζ0(t, ω)
is a scalar Wiener process, P 0 is a scalar Poisson process, P 0(t, dx) is the number of jumps of
the process in the interval [0, t].

The problem consists in the definition of functions g3, g4 and γ2 by the given functions g1, g2,
γ1 and by the given integral manifold η(y, z, v, w, t) = 0.

Let us differentiate a composite function η = η(y, z, v, w, t) by the rule of Itô [4] in the case
of a process with independent increments

η̇ =
∂η

∂t
+
∂η

∂y
g1 +

∂η

∂z
g2 +

∂η

∂v
g3 +

∂η

∂w
g4 + S̃1 + S̃2 + S̃3 +

(
∂η

∂z
γ1 +

∂η

∂w
γ2

)
ζ̇0, (3.4)

where
S̃1 =

1

2

(
∂2η

∂z
γ2

1 +
∂2η

∂w
γ2

2

)
,

S̃2 =

∫
{η(y, z + κ1(x, t), v, w + κ2(x, t), t)− η(y, z, v, w, t)− ∂η

∂z
κ1(x, t)− ∂η

∂w
κ2(x, t)}dx,

S̃3 =

∫
[η(y, z + κ1(x, t), v, w + κ2(x, t), t)− η(y, z, v, w, t)]Ṗ 0(t, dx),

Further, following Erugin method [2], we will introduce scalar functions a1 =
= a1(η, y, z, v, w, t), a2 = a2(η, y, z, v, w, t) and b = b(η, y, z, v, w, t), which possess the property
a1(0, y, z, v, w, t) ≡ a2(0, y, z, v, w, t) ≡ b(0, y, z, v, w, t) ≡ 0. Then equality (3.5)

η̇ = a1 + bζ̇0 +

∫
a2(η, x, t)Ṗ 0(t, dx) (3.5)

also holds.
The following relations follow from (3.4) and (3.5)

∂η

∂w
g4 = a−m− ∂η

∂z
g3,

∂η

∂w
γ2 = b− ∂η

∂z
γ1,

η(y, z + χ1(t), v, w + χ2(t), t)− η(y, z, v, w, t) = a2,

(3.6)

where m =
∂η

∂t
+
∂η

∂y
g1 +

∂η

∂z
g2 + S̃1 + S̃2.

Conditions (i), (ii), (iii) in this section will take the corresponding forms

(i’) the scalar function η(y, z, v, w, t) is continuously differentiable with respect to all its ar-
guments;
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(ii’) the given scalar functions g1, g2, c1, γ1 and also the unknown sets of scalar functions
{g3}, {g4}, {γ2} belong to the class K;

(iii’) the scalar function η is linear in z and w and has the form

η = µ(y, v, t) + χ1(t)z + χ2(t)w, (3.7)

where µ ∈ K; χ1(t), χ2(t) are scalar functions continuous in t.

Let us suppose that conditions (i’), (ii’), (iii’) are satisfied and that the function g3 is equal
to some arbitrary function g from a class K : g3 = g(y, z, v, w, t), g ∈ K. Then from (3.6), (3.7)
we have S̃1 ≡ S̃2 ≡ 0, S̃3 =

∫
[χ1κ1 + χ2κ2]Ṗ 0(t, dx) and the following relations follow:

χ2g4 = a1 − m̃−
∂µ

∂v
g,

χ2γ2 = b− χ1γ1,

χ2κ2 = a2 − χ1κ1,

(3.8)

where m̃ =
∂µ

∂t
+
∂χ1

∂t
z +

∂χ2

∂t
w +

∂µ

∂y
g1 + χ1(t)g2.

From (3.8) under the supposition that χ2 6= 0, we have
g4 = χ−1

2

(
a1 − m̃−

∂µ

∂v
g

)
,

γ2 = χ−1
2 (b− χ1γ1) ,

κ2 = χ−1
2 (a2 − χ1κ1) .

(3.9)

Relations (3.9) represent a solution of stochastic problem of closure, i.e. the problem of
construction of the set of closing equations (3.3) by the given integral manifold (3.1) and by the
given stochastic equation (3.2).

Conclusion
We have constructed the set of the closing stochastic differential Itô equations of the first

order with diffusion degenerate with respect to a part of the variables, such that the joint system
of given and constructed differential equations possesses the given integral manifold. It should
be noted that random perturbations are assumed to be in the class of processes with independent
increments.
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