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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard
notations and terminology of [4]. The notation Y ≤ X (Y < X) means that Y is a subgroup (proper
subgroup) of a group X.

A subgroup H of G is called seminormal in G if there exists a subgroup B such that G = HB
and HX is a subgroup of G for each subgroup X of B. The groups with given systems of seminormal
subgroups were investigated in works of many authors, see, for example, the references in [13].

Following [16] a subgroup H is called propermutable in G if G has a subgroup B such that
G = NG(H)B and H permutes with all subgroups of B. The groups with some propermutable
subgroups were investigated in [1, 16, 17].

Obviously, if a subgroup H is seminormal in G, then H is propermutable in G. The opposite is
not always true. For example, in the group

G = 〈a, b, c | |a| = |b| = 3, |c| = 2, ab = ba, ac = ca, bc = b−1〉 ' Z3 × S3

([6], IdGroup=[18,3]), the subgroup A = 〈c〉 is propermutable in G, since NG(A) = 〈ac〉 and B = 〈b〉,
but A is not seminormal in G.

In this paper, we present new properties of propermutable subgroups. Also we provide new
information on the structure of a group with propermutable Sylow (Hall, maximal) subgroups and a
group G = AB with propermutable subgroups A and B.

2 Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel. A group
whose chief factors have prime orders is called supersoluble. Recall that a p-closed group is a group
with a normal Sylow p-subgroup and a p-nilpotent group is a group with a normal Hall p′-subgroup.
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Denote by G′, Z(G), F (G) and Φ(G) the derived subgroup, centre, Fitting and Frattini subgroups
of G, respectively, and by Op(G) the largest normal p-subgroup of G. Denote by π(G) the set of
all prime divisors of order of G. We use Ept to denote an elementary abelian group of order pt and
Zm to denote a cyclic group of order m. The semidirect product of a normal subgroup A and a
subgroup B is written as follows: AoB.

The monographs [5, 10] contain the necessary information of the theory of formations.
A class group F is called a formation if the following statements is true:
(1) if G ∈ F and N C G, then G/N ∈ F.
(2) if G/N1 ∈ F and G/N2 ∈ F, then G/N1 ∩N2 ∈ F.
A formation F is said to be saturated if G/Φ(G) ∈ F implies G ∈ F. The formations of all

supersoluble, nilpotent and abelian groups are denoted by U, N and A, respectively. Let F be a
formation. Recall that the F-residual of G is the intersection of all those normal subgroups N of G
for which G/N ∈ F and is denoted by GF .

Recall that a group G is said to be siding if every subgroup of the derived subgroup G′ is normal in
G, see [14, Definition 2.1]. It is clear that ifG is a siding group, thenG is supersoluble, every subgroup
and quotient subgroup of G is a siding group. Metacyclic groups and soluble T-groups (groups in
which every subnormal subgroup is normal) are siding groups. The group G = (Z6 × Z2) o Z2 ([6],
IdGroup(G)=[24,8]) is a siding group but is neither a metacyclic nor a T-group.

Lemma 2.1. ([7, VI.9]) (1) The class U is a hereditary saturated formation.
(2) Every minimal normal subgroup of a supersoluble group has prime order.
(3) Let N be a normal subgroup of G and assume that G/N is supersoluble. If N is either cyclic

or N ≤ Z(G), or N ≤ Φ(G), then G is supersoluble.
(4) Each supersoluble group has an Sylow tower of supersoluble type.
(5) The derived subgroup of a supersoluble group is nilpotent.
(6) A group G is supersoluble if and only if every maximal subgroup of G has prime index.

If H is a subgroup of G, then HG =
⋂
x∈GH

x is called the core of H in G. If a group G contains
a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator. A
simple check proves the following lemma.

Lemma 2.2. Let F be a saturated formation and G be a group. Assume that G /∈ F, but G/N ∈ F
for all non-trivial normal subgroups N of G. Then G is a primitive group.

Lemma 2.3. ([7, II.3.2]) Let G be a soluble primitive group and M be a primitivator of G. Then
the following statements hold:

(1) Φ(G) = 1;
(2) F (G) = CG(F (G)) = Op(G) and F (G) is an elementary abelian subgroup of order pn for

some prime p and some positive integer n;
(3) G contains a unique minimal normal subgroup N and, moreover, N = F (G);
(4) G = F (G) oM and Op(M) = 1;

Lemma 2.4. ([10, Lemma 5.8, Lemma 5.11]) Let F and H be non-empty formations, K be normal
in G. Then:

(1) (G/K)F = GFK/K;
(2) GFH = (GH)F;
(3) if H ⊆ F, then GF ≤ GH;
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3 Finite groups with propermutable Sylow, Hall and maximal subgroups

Recall that AG = 〈Ag | g ∈ G〉 is the smallest normal subgroup of G containing A.
Basic properties of propermutable subgroups are given in [16]. Some of them are presented in the

following lemma.

Lemma 3.1. ([16]) Let A and B be subgroups of G and let N be a normal subgroup of G.
(1) If A is propermutable in G, then AN/N is propermutable in G/N .
(2) If AB = BA and G = NG(A)B, then AG = A(AG ∩B).

It is clear that the following lemma is true.

Lemma 3.2. Let A be a subgroup of G. If A is propermutable in G, then A is seminormal in AG.
In particular, if AG = G, then A is seminormal in G.

Lemma 3.3. 1. Let A be a subgroup of G. If A is propermutable in G, then AG is soluble in each of
the following cases:

(1.1) A is 2-nilpotent;
(1.2) A is soluble and 3 6∈ π(A).
2. Let p be the smallest prime divisor of the order of G. If A is propermutable in G and p does

not divide the order of A, then p does not divide the order of AG.
3. Let A be propermutable in a soluble group G and let r be the largest in π(G). If A is r-closed,

then Ar is subnormal in G.

Proof. 1. Let us prove both assertions 1 and 2 at once. By Lemma 3.2, A is seminormal in AG. Then
by [8, Lemmas 10–11], AAG is either soluble or a p′-group. Since AAG is subnormal in G, it follows
that by [10, Theorem 5.31], (AA

G
)G = AG is either soluble or a p′-group.

3. By Lemma 3.2, A is seminormal in AG. Then Ar is subnormal in AG by [13, Lemma 1.8].
Hence, Ar is subnormal in G.

The following theorem generalizes some results of the papers [8, 9, 13].

Theorem 3.1. 1. Let H be a Hall π-subgroup of G. Suppose that H is propermutable in G. Then
G is π-soluble in each of the following cases:

(1.1) H is 2-nilpotent;
(1.2) H is soluble and 3 6∈ π.
2. Let P be a Sylow p-subgroup of G. If P is propermutable in G, then G is p-soluble.
3. Let p be the largest prime in π(G) and let P be a Sylow p-subgroup in G. If P is propermutable

in G, then P is normal in G.
4. If all Sylow subgroups in G are propermutable, then G is supersoluble.
5. If all maximal subgroups in G are propermutable, then G is supersoluble.

Proof. 1. By Lemma 3.3 (1), HG is soluble. Since G/HG is π′-group, it follows that G is π-soluble.
2. Since P is 2-nilpotent then from Step 1, G is p-soluble.
3. By Lemma 3.2, P is seminormal in PG. Then P is normal in PG by [13, Lemma 1.8]. Hence,

P is normal in G, because P is subnormal in G.
4. Assume that the statement is not true and let G be a counterexample of minimal order. Let

N be an arbitrary nontrivial normal subgroup in G and let S/N be a Sylow s-subgroup of G/N .
Then S/N = S1N/N , where S1 is a Sylow s-subgroup of G. Since S1 is propermutable in G, we have
by Lemma 3.1 (1), S/N is propermutable in G/N . Thus, the condition of the lemma holds for the
quotient group and by induction, G/N is supersoluble and G is primitive by Lemma 2.2.
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From Step 2 it follows that G is p-soluble for every p ∈ π(G). Hence, G is soluble. By Lemma 2.3,
G has a unique minimal normal subgroup N , N = F (G) = Op(G) = CG(N), N is an elementary
abelian subgroup of order pn and G = N oM , where M is a maximal subgroup of G with trivial
core. From Step 3 follows that p is the largest prime in π(G) and N = P , where P is a Sylow
p-subgroup of G. It is clear that M is a Hall p′-subgroup of G.

Let N1 ≤ N = P such that |N1| = p, and Q is a Sylow q-subgroups of M . Since Q is prop-
ermutable in G, we have G = NG(Q)Y and QX is a subgroup of G for every subgroup X of Y .
By Lemma 3.1 (2), QG = Q(QG ∩ Y ). Because N ≤ QG, it follows that N ≤ QG ∩ Y ≤ Y and
QN1 ≤ G by Lemma 3.2. Since G is p-closed, Q ≤ NG(N1). Hence, M ≤ NG(N1) and N1 is normal
in G = NM . Then N1 = N and by Lemma 2.1 (3), G is supersoluble, a contradiction.

5. Let M be a maximal subgroup of G. By Lemma 3.2, M is seminormal in MG. Since M is
maximal in G, we have either MG = M or MG = G. If MG = M , then M is normal in G and
|G : M | is prime. If MG = G, then M is seminormal in G. By [13, Lemma 1.4], |G : M | is prime.
By Lemma 2.1 (6), G is supersoluble.

4 Finite factorizable groups with propermutable factors

Theorem 4.1. Assume that A and B are propermutable subgroups of a group G and G = AB. Then
the following statements hold.

1. Let F be a saturated formation such that U ⊆ F. If A,B ∈ F and the derived subgroup G′ is
nilpotent, then G ∈ F.

2. If A and B are supersoluble, then GU = (G′)N.
3. If A and B have Sylow towers of supersoluble type, then G has a Sylow tower of supersoluble

type.
4. If A is nilpotent and B is supersoluble, then G is supersoluble.
5. If A is supersoluble and B is a normal siding subgroup of G, then G is supersoluble.

Proof. 1. Assume that the claim is false and let G be a minimal counterexample. If N is a non-
trivial normal subgroup of G, then the subgroups AN/N and BN/N are propermutable in G/N by
Lemma 3.1 (1) and belong to F. Since

(G/N)′ = G′N/N ' G′/G′ ∩N,

it follows that the derived subgroup (G/N)′ is nilpotent. Consequently, G/N satisfies the hypothesis
of the theorem and by induction, G/N ∈ F. Then G is primitive by Lemma 2.2. Since G is soluble,
therefore we apply Lemma 2.3. We save to G the notation of this lemma, in particular, N = G′ and
G/N is abelian.

If AG = G and BG = G, then by Lemma 3.2, the subgroups A and B are seminormal in G. By [15,
Corollary 3.1 (2)], G ∈ F. Suppose that AG < G. Since AN is normal in G, we have AG ≤ AN .
On the other hand, AN ≤ AG, because N is the unique minimal normal subgroup of G. Hence,
AN = AG. By Lemma 3.2, A is seminormal in AG, hence AG ∈ F by induction. If BG < G, then by
analogy, BG ∈ F and G = AB = AGBG ∈ F by [15, Corollary 3.1 (2)].

If BG = G, then by Lemma 3.2, B is seminormal in G. Then G = AB = AGB ∈ F by [15,
Corollary 3.1 (2)].

2. LetH = (G′)N. Then the derived subgroup (G/H)′ = G′H/H = G′/H is nilpotent. From Step
1 it follows that G/H is supersoluble. Therefore, GU ≤ H. Because U ⊆ NA, we have G(NA) =
(GA)N = (G′)N = H ≤ GU. Hence, GU = H.

3. We proceed by induction on |G|. Since A is 2-nilpotent, it follows that by Lemma 3.3 (1), AG
is soluble and G = AGB is soluble. Let r ∈ π(G) and let r be the largest. It is clear that a Sylow r-
subgroup Ar is normal in A. By Lemma 3.3 (3), Ar is subnormal in G. Similarly, a Sylow r-subgroup
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Br of B is subnormal in G. Since R = ArBr is a Sylow subgroup of G, we have G is r-closed. The
subgroups AR/R ' A/A ∩R and BR/R ' B/B ∩R are propermutable in G/R = (AR/R)(BR/R)
and have Sylow towers of supersoluble type. By induction, G/R has an Sylow tower of supersoluble
type, hence G has an Sylow tower of supersoluble type.

4. Assume that the claim is false and let G be a minimal counterexample. If N is a non-
trivial normal subgroup of G, then the subgroups AN/N and BN/N are propermutable in G/N
by Lemma 3.1 (1), AN/N ' A/A ∩ N is nilpotent and BN/N ' B/B ∩ N is supersoluble. Then
by induction, G/N = (AN/N)(BN/N) is supersoluble and G is primitive by Lemma 2.2. By
Lemma 2.1 (4) and from Step 3, G has an Sylow tower of supersoluble type and therefore we apply
Lemma 2.3. We save to G the notation of this lemma, in particular, N = Gp is the Sylow p-subgroup
for the largest p ∈ π(G). Since G = AB, it follows that N = ApBp, where Ap and Bp are Sylow
p-subgroups of A and B respectively, see [7, VI.4.6]. Since A is propermutable in G, G = NG(A)Y
and AX ≤ G for all subgroups X of Y .

Suppose that Ap = 1. Then N = Bp ≤ B. We choose a minimal normal subgroup N1 of B such
that N1 ≤ N . Since B is supersoluble, we have |N1| = p by Lemma 2.1 (2). By Lemma 3.1 (2),
AG = A(AG ∩ Y ). Since Ap = 1 and N ≤ AG, we have N1 ≤ N ≤ Y and there exists a subgroup
AN1 = N1 oA by Lemma 3.2. Hence, N1 is normal in G. Therefore, N1 = N and by Lemma 2.1 (3),
G is supersoluble, a contradiction. Thus, the assumption Ap = 1 is false and Ap 6= 1.

Assume that Bp = 1. Hence, N = Ap ≤ A and N = A by Lemma 2.3 (2). Then B ∩N = 1 and
B is maximal in G. By Lemma 3.2, B is seminormal in BG. Since B is maximal in G, we have either
BG = B or BG = G. If BG = B, then B is normal in G and |G : B| is prime. If BG = G, then B is
seminormal in G. By [13, Lemma 1.4], |G : B| is prime. Hence, |N | = p and by Lemma 2.1 (3), G is
supersoluble, a contradiction. Thus, the assumption Bp = 1 is false and Bp 6= 1.

Let Y1 be a Hall p′-subgroup of Y . Then AY1 is a subgroup of G and Y1 ≤ NG(Ap), because
Ap is normal in AY1. Since N is abelian, a Sylow p-subgroup Yp of Y centralizes Ap. Because Ap
is characteristic in A and A is normal in NG(A), we have Ap is normal in NG(A). Hence, Ap is
normal in G = NG(A)Y = NG(A)YpY1 and Ap = N . Because A is nilpotent and by Lemma 2.3 (2),
it follows that A = N . Since B is supersoluble, we have Bp is normal in B. In this case, Bp is normal
in N = A and therefore is normal in G. Thus Bp = N and G = AB = NB = B is supersoluble, a
contradiction.

5. If AG = G, then by Lemma 3.2, A is seminormal in G. Then G is supersoluble by [13,
Corollary 2.2]. Hence, AG < G. By Dedekind’s identity, AG = A(AG ∩ B). Since A is seminormal
in AG by Lemma 3.2 and AG∩B is a normal siding subgroup of AG, it follows that AG is supersoluble
by indution. Then by [13, Corollary 2.2], G = AGB is supersoluble.

In monograph [4, p. 149], it is presented the following definition: two subgroups A and B of a
group G are said to be mutually permutable if UB = BU and AV = V A for all U ≤ A and V ≤ B.

Since every normal subgroup and every subgroup of prime index are seminormal and therefore
are propermutable in a group, the following corollary holds.

Corollary 4.1. Let A and B be supersoluble subgroups of G and G = AB.
1. Suppose that A is nilpotent. Then G is supersoluble in each of the following cases:
(1.1) A and B are mutually permutable, see [2, Theorem 3.2];
(1.2) A and B are seminormal in G, see [13, Theorem 2.1];
(1.3) the indices of A and B in G are prime, see [12, Theorem A];
2. If G′ is nilpotent, then G is supersoluble in each of the following cases:
(2.1) A and B are normal in G, see [3];
(2.2) A and B are mutually permutable, see [2, Theorem 3.8];
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(2.3) A and B are seminormal in G, see [13, Theorem 2.2];
(2.4) the indices of A and B in G are prime, see [12, Corollary 3.6].
3. If B is normal and siding, then G is supersoluble in each of the following cases:
(3.1) A is normal in G and B is a soluble T-group, see [11, Theorem 3];
(3.2) A is seminormal in G, see [13, Corollary 2.2];
(3.3) the indices of A and B in G are prime, see [12, Theorem B];
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