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1 Introduction

Let X be a nonempty set, numbers q0 ≥ 1, q1 ≥ 1, q2 ≥ 1 be given.

Definition 1. A function ρ : X × X → R+ is called a (q1, q2)-quasimetric if the following
properties hold:

• ρ(x, y) = 0⇔ x = y ∀ x, y ∈ X (the identity axiom);

• ρ(x, z) ≤ q1ρ(x, y) + q2ρ(y, z) ∀x, y, z ∈ X (the (q1, q2)-generalized triangle inequality).

If ρ is a (q1, q2)-quasimetric, then the space (X, ρ) is called a (q1, q2)-quasimetric space. A
(q1, q2)-quasimetric is called weakly symmetric if the following property holds:

• for every point x ∈ X, for every sequence {xn} ⊂ X, if ρ(x, xi)→ 0, then ρ(xi, x)→ 0.

A (q1, q2)-quasimetric is called q0-symmetric if the following property holds:

• ρ(x, y) ≤ q0ρ(y, x) ∀ x, y ∈ X (the q0-symmetry axiom).

A (1, 1)-quasimetric space is called a quasimetric space. A quasimetric space is called a metric
space if it is 1-symmetric.

The study of spaces endowed with a distance functions satisfying various properties goes
back to M. Fréchet [12] and F. Hausdorff [14] and was continued in multiple papers (see, for
example, [13, 15] as well as [6] and the references therein). The concept of (q1, q2)-quasimetric
space was introduced and studied in the papers [4, 5]. In [6], a natural generalization of the
(q1, q2)-quasimetric spaces – f -quasimetric spaces, were studied. In [4, 5], fixed point theorems
and coincidence point theorems for mappings acting between (q1, q2)-quasimetric spaces were
obtained. In this paper, we investigate the problem of the existence of points of minimum for
functions defined on (q1, q2)-quasimetric spaces. This kind of propositions are used to derive
sufficient conditions for existence of solutions to various abstract equations and inclusions (see,
for example, Theorem 7 in [1]). The results on the existence of minima of specific functions
and related results on solvability of certain types of equations and inclusions can be applied to
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various problems arising in optimization (see, for example, [2, 7]), set-valued analysis (see, for
example, [17]) and control theory (see, for example, [11]). Moreover, they are closely related to
covering mappings theory and coincidence points theorems, (see, for example, [3, 8, 9]).

Let us briefly describe the content of the paper. In Section 2, we recall some known topological
properties of (q1, q2)-quasimetric spaces and propositions on the existence of minima for functions
defined on metric and quasimetric spaces. In Section 3, we present a sufficient condition for the
existence of points of minimum for functions defined on (q1, q2)-quasimetric spaces. In Section
4, we discuss the obtained result and compare it with some known analogous results.

2 Preliminaries

Let (X, ρ) be a (q1, q2)-quasimetric space. First, let us recall the topological properties of (q1, q2)-
quasimetric spaces.

Given a point x ∈ X and a number r > 0, denote

O(x, r) = {y ∈ X : ρ(x, y) < r}, B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

The set O(x, r) is called an open ball centered at x with radius r, the set B(x, r) is called a
closed ball centered at x with radius r.

Define a topology τ on X as follows. The set A ⊂ X is called open if for every point a ∈ A
there exists r > 0 such that OX(a, r) ⊂ A. It is a straightforward task to ensure that the system
τ of all such sets is a topology.

Note that unless the ball O(x, r) is called “open”, it may be not open in the sense of topology
τ (see Example 3.4 in [5]). The same remark is valid for the closed ball.

The convergence of a sequence {xn} ⊂ X to a point x ∈ X with respect to this topology
is equivalent to the fulfilment of the equality lim

n→∞
ρ(x, xn) = 0. Moreover, it is obvious that

lim
n→∞

ρ(x, xn) = 0 if and only if ∀ ε > 0 ∃ N : xn ∈ O(x, ε) ∀ n ≥ N.

Note that the first axiom of countability holds for τ (see Corollary 1.3 in [6]). Hence, a set
A ⊂ X is closed if and only if it coincides with the set of all limit points of A, and for every set
A ⊂ X, its closure clA coincides with the set of all limit points of A. The topology τ may not
satisfy the T2 axiom. Hence, the limit of a convergent sequence may be not unique.

A function U : X → R is called lower semicontinuous at a point x0 ∈ X if for every ε > 0,
inequality f(x0) ≤ f(x) + ε holds for every point x in a neighbourhood of x0. Hence, U is lower
semicontinuous at a point x0 ∈ X if and only if

∀ ε > 0 ∃ δ > 0 : f(x0) ≤ f(x) + ε ∀x ∈ O(x0, δ).

The function U is called lower semicontinuous if it is lower semicontinuous at every point x ∈ X.
A function U : X → R is called proper if there exists x ∈ X such that U(x) < +∞.

Let us now recall metric properties of (q1, q2)-quasimetric space.

Definition 2. A sequence {xi} ⊂ X is called a Cauchy sequence if

∀ ε > 0 ∃N ∈ N : ρ(xi, xi+j) < ε ∀ i, j ∈ N, i ≥ N, j ≥ 1.

The space (X, ρ) is called complete if each Cauchy sequence in X has at least one limit.

Note that unlike metric spaces, a convergent sequence may be not fundamental in (q1, q2)-
quasimetric spaces.

Let us recall some minimum existence theorems. Let (X, ρ) be a complete metric space,
U : X → R be a proper lower semicontinuous function bounded below by a given number γ, i.e.
U(x) ≥ γ for all x ∈ X.
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Theorem 2.1. (Theorem 3 in [1]) Assume that a function U satisfies the Caristi-like condition
with some k > 0, i.e.

∀x ∈ X : γ < U(x) ∃x′ ∈ X \ {x} : U(x′) + kρ(x, x′) ≤ U(x). (2.1)

Then for every point x0 ∈ X there exists a point x̄ ∈ X, such that the function U attains its
minimum at x̄ and

U(x̄) = γ, ρ(x0, x̄) ≤ U(x0)− γ
k

. (2.2)

The term “Caristi-like condition” was introduced in [1]. In [10], a generalization of this
concept was used to derive modifications of Ekeland’s variational principle.

Let us recall a similar result for quasimetrics from [16]. Let (X, ρ) be a complete metric
space, U : X → R be a proper lower semicontinuous function bounded below. Set

γ := inf
x∈X

U(x).

Theorem 2.2. (Theorem 2.5 in [16]) Assume that a quasimetric ρ is lower semicontinuous in the
second variable, i.e. for every y ∈ X the function x 7→ ρ(y, x), x ∈ X, is lower semicontinuous.
If

∀x ∈ X : U(x) > γ ∃x′ ∈ X \ {x} : U(x′) + ρ(x, x′) ≤ U(x),

then U has a point of minimum.

In the following section we derive an analogous proposition on the existence of minima for
functions defined on (q1, q2)-quasimetric spaces.

3 Main result

Let q1 ≥ 1, q2 ≥ 1, γ ∈ R, k > 0 be given, (X, ρ) be a complete (q1, q2)-quasimetric space,
U : X → R be a proper lower semicontinuous function such that

U(x) ≥ γ ∀x ∈ X.

If (X, ρ) is a compact space, then U attains its minimum. Below we provide sufficient conditions
for the existence of minima of the function U without prior compactness assumption similar to
those in Theorems 2.1 and 2.2.

Definition 3. We say that a function U satisfies the Caristi-like condition with the constant
k > 0 if

∀x ∈ X : γ < U(x) ∃x′ ∈ X : q2U(x′) + kq1ρ(x, x′) ≤ U(x) + (q2 − 1)γ. (3.1)

Obviously, if (X, ρ) is a metric space, then we can take q1 = q2 = 1. In this case, conditions
(3.1) and (2.1) coincide. The same remark is valid if (X, ρ) is a quasimetric space. Taking
q1 = q2 = 1 and k = 1, we observe that condition (3.1) coincides with the sufficient condition
for minima existence in Theorem 2.2.

Theorem 3.1. Assume that q2 > 1 and a function U : X → R+ satisfies the Caristi-like
condition with the constant k > 0. Then for every point x0 ∈ X, there exists a point x̄ ∈ X, such
that the function U attains its minimum at x̄ and

U(x̄) = γ, x̄ ∈ clB

(
x0,

U(x0)− γ
k

)
. (3.2)
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Proof. Without loss of generality we assume that γ = 0 and k = 1.

Take an arbitrary point x0 ∈ X such that U(x0) < +∞. Let us show that there exists a
sequence {xn} ⊂ X such that

U(xi) ≤
U(x0)

qi2
∀ i = 1, 2, ..., (3.3)

B(xi, U(xi)) ⊂ B(xi−1, U(xi−1)) ∀ i = 1, 2, ... (3.4)

Applying the Caristi-like condition at the point x = x0 we obtain a point x1 ∈ X such that

q2U(x1) + q1ρ(x0, x1) ≤ U(x0).

This inequality implies that

U(x1) ≤ U(x0)

q2

and for every x ∈ B(x1, U(x1)) the relation

ρ(x0, x) ≤ q1ρ(x0, x1) + q2ρ(x1, x) ≤ (U(x0)− q2U(x1)) + q2U(x1) = U(x0)

holds. Hence, conditions (3.3) and (3.4) hold for i = 1.

Assume now that for some number k ∈ N conditions (3.3) and (3.4) hold for i = k. Applying
the Caristi-like condition at the point x = xk we obtain a point xk+1 ∈ X such that

q2U(xk+1) + q1ρ(xk, xk+1) ≤ U(xk). (3.5)

Inequalities (3.5) and (3.3) imply that

U(xk+1) ≤ U(xk)

q2

≤ U(x0)

qk+1
2

.

Inequality (3.5) implies that for every x ∈ B(xk+1, U(xk+1)) the relation

ρ(xk, x) ≤ q1ρ(xk, xk+1) + q2ρ(xk+1, x) ≤ (U(xk)− q2U(xk+1)) + q2U(xk+1) = U(xk)

holds. Hence, conditions (3.3) and (3.4) hold for i = k + 1. The inductive construction of a
sequence {xi} satisfying (3.3) and (3.4) is complete.

Since q2 > 1, inequality (3.3) implies that U(xi)→ 0 as i→∞. Inclusions (3.4) imply that

B(xi+j, U(xi+j)) ⊂ B(xi, U(xi)) ∀ i, j ∈ N.

Therefore,
xi+j ∈ B(xi, U(xi)) ∀ i, j ∈ N.

Since U(xi) → 0 as i → ∞, the sequence {xi} is a Cauchy one. Hence, the completeness of
(X, ρ) implies that there exists x̄ ∈ X such that xi → x̄ as i→∞.

So, U is lower semicontinuous, xi → x̄ as i → ∞, U(xi) → 0 as i → ∞ and U(x) ≥ 0 for
every x ∈ X. Therefore, U(x̄) = 0. Moreover, x̄ ∈ clB(x0, U(x0)), since by virtue of (3.4) we
have xi ∈ B(x0, U(x0)) for every i ∈ N.
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4 Discussion of main results

First, let us discuss the proposition of Theorem 3.1.
Inclusion in (3.2) cannot be replaced by the inclusion

x̄ ∈ B
(
x0,

U(x0)− γ
k

)
. (4.1)

Consider an appropriate example.

Example 1. Let X = R, q ≥ 1,

ρ(x, y) =

{
|x− y|, if (x− y) ∈ Q;
q|x− y|, if (x− y) ∈ R \Q.

It is a straightforward task to ensure that ρ is (q, q)-quasimetric, the space (X, ρ) is complete,
the topology of (X, ρ) coincides with the standard topology of the real line.

Consider the function
U : X → R, U(x) := |x|, x ∈ X.

It satisfies the Caristi-like condition with k = 1 and γ = 0. The only point of minimum for U is
the point x̄ = 0. However, if q0 > 1, then inclusion (4.1) fails to hold for x0 :=

√
2, since

ρ(x0, x̄) = q0

√
2 >
√

2 =
U(x0)− γ

k
.

If the space (X, ρ) is weakly symmetric, then inclusion in (3.2) implies that

ρ(x0, x̄) ≤ q1
U(x0)− γ

k
.

This fact is a corollary of the following assertion.

Proposition 4.1. If a (q1, q2)-quasimetric space (X, ρ) is weakly symmetric, then

clB(x0, r) ⊂ B(x0, q1r) ∀x0 ∈ X, ∀ r > 0.

Proof. Take an arbitrary sequence {xj} ⊂ B(x0, r) convergent to a point x̄ as j →∞. We have

ρ(x0, x̄) ≤ q1ρ(x0, xj) + q2ρ(xj, x̄) ≤ q1r + q2ρ(xj, x̄) ∀ j.

Since xj → x̄ as j → ∞ and the space (X, ρ) is weakly symmetric, we have ρ(xj, x̄) → 0
as j → ∞. Therefore, passing to the limit as j → ∞ in the inequality above, we obtain
ρ(x0, x̄) ≤ q1r.

Assume now that the function x 7→ ρ(y, x), x ∈ X, is lower semicontinuous for every y ∈ X.
In this case, the inclusion in (3.2) is equivalent to inclusion (4.1). This fact is a corollary of the
following assertion.

Proposition 4.2. Let (X, ρ) be a (q1, q2)-quasimetric space. If the function x 7→ ρ(y, x), x ∈ X,
is lower semicontinuous for every y ∈ X, then

clB(x0, r) = B(x0, r) ∀x0 ∈ X, ∀ r > 0.

Proof. Take an arbitrary point x0 ∈ X, a number r > 0 and a sequence {xj} ⊂ B(x0, r)
convergent to a point x̄ as j →∞. Since the function x 7→ ρ(x0, x) is lower semincontinuous and
ρ(x0, xj) ≤ r, we have ρ(x0, x̄) ≤ r.
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Let us now show that the assumption q2 > 1 is essential in Theorem 3.1.

Example 2. Let X = {(n1, n2) : n1, n2 ∈ N}. Define the function ρ : X ×X → R+ as follows:

ρ((n1, n2), (m1,m2)) =



1

m2

, if n1 > m1;

1, if n1 < m1;

1, if n1 = m1, n2 > m2;
m2 − n2

n2m2

· 1

n1(n1 + 1)
, if n1 = m1, n2 < m2;

0, if n1 = m1, n2 = m2.

I. Let us show that ρ is a quasimetric. Obviously it suffices to verify the triangle inequality

ρ(a, c) ≤ ρ(a, b) + ρ(b, c) ∀ a = (n1, n2), b = (m1,m2), c = (k1, k2). (4.2)

If at least two out of three points a, b or c coincide, or ρ(a, b) = 1, or ρ(b, c) = 1, then the
triangle inequality holds. Thus, we assume that a, b and c are pairwise distinct, ρ(a, b) < 1 and
ρ(b, c) < 1. Then the definition of ρ implies that one of the following relations holds:

(i) n1 > m1 and m1 > k1;
(ii) n1 > m1, m1 = k1 and m2 < k2;
(iii) n1 = m1, n2 < m2 and m1 > k1;
(iv) n1 = m1, n2 < m2, m1 = k1 and m2 < k2.

If (i) holds, then n1 > m1 and n1 > k1. Hence, ρ(a, c) = ρ(b, c) =
1

k2

, which implies (4.2). If (ii)

holds, then n1 > k1 and m2 < k2. Thus, ρ(a, c) =
1

k2

<
1

m2

= ρ(a, b), which implies (4.2). If (iii)

holds, then n1 > k1 and m1 > k1. Thus, ρ(a, c) = ρ(b, c) =
1

k2

, which implies (4.2). If (iv) holds,

then n1 = k1 and n2 < k2. Hence,

ρ(a, c) =
k2 − n2

k2n2

1

n1(n1 + 1)
=

(
m2 − n2

m2n2

+
k2 −m2

k2m2

)
1

n1(n1 + 1)
= ρ(a, b) + ρ(b, c),

which completes the proof of inequality (4.2).
II. Let us show that (X, ρ) is complete. Let {xi} ⊂ X, xi = (ni1, n

i
2), i = 1, 2, ... be a Cauchy

sequence. Then for ε = 1 there exists N ∈ N such that ρ(xi, xj) < 1∀j > i > N. Therefore,
ni1 ≥ ni+1

1 ∀ i > N and hence for i > N the sequence {ni1} decreases. Therefore, the sequence
{ni1} is stationary, i.e. there exist numbers N and n1 such that ni1 = n1 ∀i ≥ N .

The sequence {ni2} increases when i is sufficiently large, i.e. there exists a number N such
that if j ≥ i ≥ N, then ni2 ≤ ni+1

2 . Indeed, since the sequence {ni1} is stationary and ρ(xi, xj) < 1
for sufficiently large i and j such that j ≥ i, it follows that ni2 ≤ nj2 by definition of ρ.

Let us show that the sequence {xi} converges. Obviously, if {xi} is stationary, then it
converges. Assume that {xi} is not stationary. Since {ni1} is stationary and {ni2} increases for
sufficiently large i, then ni2 →∞ as i→∞. Therefore, for an arbitrary point (m1,m2) ∈ X such
that m1 > n1, for sufficiently large i we have

ρ((m1,m2), (ni1, n
i
2)) =

1

ni2
→ 0 as i→∞.

Therefore, xi → (m1,m2) as i→∞. Hence, (X, ρ) is complete.



90 R. Sengupta, S.E. Zhukovskiy

III. Consider the function U : X → R,

U(n1, n2) =
1

n1 + 1
+

1

n1(n1 + 1)n2

, (n1, n2) ∈ X. (4.3)

It is obvious that inf
x∈X

U(x) = 0 and U does not attain its minimum. The Caristi-like condition

with k = 1 and γ = 0 holds for the function U, since for every x = (n1, n2) ∈ X, the inequality
in (3.1) holds with x′ = (n1, n2 + 1).

IV. Let us show that every point x̂ ∈ X is a point of strict local minimum of the function
U, i.e.

∀ x̂ ∈ X ∃ r > 0 : U(x) > U(x̂) ∀x ∈ B(x̂, r) \ {x̂}. (4.4)

Take an arbitrary point x̂ = (n1, n2). Let us show that U(x) > U(x̂) for any x ∈ B(x̂, r),

x 6= x̂, where r ∈
(

0,
1

n1n2(1 + n1)(1 + n2)

)
.

Since ρ(x̂, x) ≤ r < 1, the definition of ρ implies that either n1 > m1 or n1 = m1 and
n2 < m2. The second case is impossible, since otherwise

ρ(x̂, x) = ρ((n1, n2), (m1,m2)) =
m2 − n2

n2m2

· 1

n1(n1 + 1)
=

=

(
1

n2

− 1

m2

)
1

n1(1 + n1)
≥
(

1

n2

− 1

n2 + 1

)
1

n1(1 + n1)
=

1

n1n2(1 + n1)(1 + n2)
> r

which contradicts the choice of r. Hence, n1 > m1. Therefore,

U(x̂) =
1

1 + n1

+
1

n1(n1 + 1)n2

≤ 1

1 + n1

+
1

n1(n1 + 1)
=

=
1

n1

≤ 1

1 +m1

<
1

1 +m1

+
1

m1(m1 + 1)m2

= U(x).

V. Let us summarize the above. In I and II, it is shown that (X, ρ) is a complete (1, 1)-
quasimetric space. In III, it is shown that the function U satisfies the Caristi-like condition with
k = 1 and γ = 0. It follows from IV that U is lower semicontinuous. Hence, all the assumptions
of Theorem 3.1 hold except the assumption q2 > 1.

Note that Example 2 also shows that the assumption of lower semicontinuity of quasimet-
ric ρ in the second argument is essential in Theorem 2.2. In this example all the assumptions
of Theorem 2.2 hold except for the lower semicontinuity of ρ in the second argument. In-
deed, the function ρ((2, 2), ·) in Example 2 is not lower semicontinuous, since (1, n) → (2, 1),
ρ((2, 2), (1, n))→ 0 as n→∞ and ρ((2, 2), (2, 1)) > 0.

Let us now compare Theorem 3.1 with the analogous results from [1] and [16]. It is obvious
that Theorem 2.1 (Theorem 3 in [1]) does not follow from Theorem 3.1 because of the assumption
q2 > 1 in Theorem 3.1 which never holds in metric space. Conversely, Theorem 3.1 does not
follow from Theorem 2.1, since Theorem 2.1 is not applicable to (q1, q2)-quasimetric spaces when
q2 > 1. The same remark is valid for Theorem 2.2 (Theorem 2.5 in [16]).
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