
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2019, Volume 10, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Nur-Sultan, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia),
N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Cae-
tano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia),
A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Gold-
man (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kaza-
khstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kaza-
khstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner
(Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristo-
foris (Italy), V.G. Maz’ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan),
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Abstract. In this paper, we consider complex-valued metric space and prove some coincidence
point and common fixed point theorems involving two pairs of self-mappings satisfying the
contraction condition with complex coefficients in these spaces. In this paper, we generalize,
improve and simplify the proofs of some existing results.
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1 Introduction with preliminaries

The concept of complex-valued metric spaces was introduced and studied by Azam et al. [1]
and Rouzkard et al. [5]. Naturally, this new idea can be utilized to define complex-valued
normed spaces and complex-valued inner product spaces, which in turn, offer a wide scope for
further investigations. Though complex-valued metric spaces form a special class of cone metric
spaces, they are intended to define rational expressions which are not meaningful in cone metric
spaces, and thus many results of analysis cannot be generalized to cone metric spaces. Indeed,
the definition of a cone metric space is based on the underlying Banach space which is not a
division ring. However, in complex-valued metric spaces we can study improvements of a lot of
results of analysis involving divisions.

In this paper, we prove coincidence points and common fixed points theorems involving two
pairs of weakly compatible mappings satisfying certain inequalities in a complex-valued metric
space.

To begin with, we collect some definitions and basic facts on complex-valued metric spaces,
which will be needed in the sequel.

Let C be the set of all complex numbers and z1, z2 ∈ C. Define the partial order - on C as
follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
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In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied and
we write z1 ≺ z2 if only (iii) is satisfied. Notice that 0 - z1 � z2 ⇒ |z1| < |z2|, and
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

We denote by C+ the following set

C+ = {z ∈ C : 0 - z}.

Definition 1. [5]) Let X be a nonempty set. Suppose that the mapping d : X × X → C,
satisfies the following conditions:

(d1) 0 - d(x, y) x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) x, y ∈ X;
(d3) d(x, y) - d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a complex-valued metric on X, and (X, d) is called a complex-valued metric
space.

Example 1. Let X = X1 ∪X2 where

X1 = {z ∈ C : Re(z) ≥ 0 and Im(z) = 0} and X2 = {z ∈ C : Re(z) = 0 and Im(z) ≥ 0}.

Define d : X ×X → C, as follows

d(z1, z2) =


2
3
|x1 − x2|+ i

2
|x1 − x2| if z1, z2 ∈ X1;

1
2
|y1 − y2|+ i

3
|y1 − y2| if z1, z2 ∈ X2;

(2
3
x1 + 1

2
y2) + i(1

2
x1 + 1

3
y2) if z1 ∈ X1, z2 ∈ X2;

(1
2
y1 + 2

3
x2) + i(1

3
y1 + 1

2
x2) if z1 ∈ X2, z2 ∈ X1;

where z1 = x1 + iy1, z2 = x2 + iy2 ∈ X. Then (X, d) is a complex-valued metric space.

Definition 2. Let (X, d) be a complex-valued metric space and B ⊆ X. We recall the following
definitions:

(i) b ∈ B is called an interior point of the set B whenever there is 0 ≺ r ∈ C such that

N(b, r) ⊆ B,

where N(b, r) = {y ∈ X : d(b, y) ≺ r}.

(ii) A point x ∈ X is called a limit point of B whenever for every 0 ≺ r ∈ C,

N(x, r) ∩ (B\X) 6= ∅.

(iii) A subset A ⊆ X is called open whenever each element of A is an interior point of A.

(iv) A subset B ⊆ X is called closed whenever each limit point of B belongs to B.
The family F = {N(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a topology on X. We denote this
complex topology by τc. Note that, the topology τc is Hausdorff.

Definition 3. Let (X, d) be a complex-valued metric space and {xn}n≥1 be a sequence in X
and x ∈ X. We say that
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(i) the sequence{xn}n≥1 converges to x if for every c ∈ C with 0 ≺ c there is n0 ∈ N such
that for all n > n0, d(xn, x) ≺ c. We denote this by limn xn = x, or xn → x, as n→∞,

(ii) the sequence{xn}n≥1 is a Cauchy sequence if for every c ∈ C with 0 ≺ c there is n0 ∈ N
such that for all n > n0 and m ∈ N, d(xn, xn+m) ≺ c,

(iii) the metric space (X, d) is a complete complex-valued metric space if every Cauchy
sequence is convergent.

Definition 4. [2] Two families of self-mappings {Ti}mi=1 and {Si}ni=1 (i.e {Ti}, {Si} : X → X)
are said to be pairwise commuting if:

(i) TiTj = TjTi, i, j ∈ {1, 2, ...m}.

(ii) SiSj = SjSi, i, j ∈ {1, 2, ...n}.

(iii) TiSj = SjTi, i ∈ {1, 2, ...m}, j ∈ {1, 2, ...n}.

Definition 5. [3] Let S and I be self-mappings of a set X. If w = Sx = Ix for some x ∈ X,
then x is called a point of coincidence of S and I, and w is called a point of coincidence of S
and I.

Definition 6. [4] Let S and T be two self-mappings defined on a set X. S and T are said to be
weakly compatible if they commute at their coincidence points.

In [1], Azam et al. established the following two lemmas.

Lemma 1.1. [1] Let (X, d) be a complex-valued metric space and let {xn} be a sequence in X.
Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 1.2. [1] Let (X, d) be a complex-valued metric space and let {xn} be a sequence in X.
Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as m,n→∞.

2 Main result

In this section, we give the unique point of coincidence and unique common fixed point theorems
in complex-valued metric spaces.

Our first main result is the following theorem.

Theorem 2.1. Let S, T, I and J be self-mappings defined on a complex-valued metric space
(X, d) satisfying TX ⊆ IX, SX ⊆ JX and

λd(Sx, Ty) - Ad(Ix, Jy) +B
d(Jy, Sx)d(Ix, Ty)

1 + d(Ix, Jy) + d(Ix, Sx) + d(Jy, Ty)
(2.1)

for all x, y ∈ X, where λ,A,B ∈ C+ and 0 ≺ A + B ≺ λ. If one of SX, TX, IX or JX is a
complete subspace of X, then

(a) both pairs {S, I} and {T, J} have a unique point of coincidence in X,

(b) if both pairs {S, I} and {T, J} are weakly compatible, then S, T, I and J have a unique
common fixed point in X.
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Proof. Let x0 be an arbitrary point in X. Since SX ⊆ JX, we find a point x1 in X such that
Sx0 = Jx1. Also, since TX ⊆ IX, we choose a point x2 with Tx1 = Ix2. Thus, in general, for
the point x2n−2 one can find a point x2n−1 such that Sx2n−2 = Jx2n−1 and then a point x2n with
Tx2n−1 = Ix2n for n = 1, 2, . . . . Repeating such arguments one can construct sequences {xn}
and {yn} in X such that,

y2n−1 = Sx2n−2 = Jx2n−1, y2n = Tx2n−1 = Ix2n, n = 1, 2, . . .

Using inequality (2.1), we have

λd(Sx2n, Tx2n+1) - Ad(Ix2n, Jx2n+1)

+B
d(Jx2n+1, Sx2n)d(Ix2n, Tx2n+1)

1 + d(Ix2n, Jx2n+1) + d(Ix2n, Sx2n) + d(Jx2n+1, Tx2n+1)

or

λd(y2n+1, y2n+2) - Ad(y2n, y2n+1)

+B
d(y2n+1, y2n+1)d(y2n, y2n+2)

1 + d(y2n, y2n+1) + d(y2n, y2n+1) + d(y2n+1, y2n+2)
,

so that

|λ||d(y2n+1, y2n+2)| ≤ |A||d(y2n, y2n+1)|,

therefore

|d(y2n+1, y2n+2)| ≤ |A
λ
||d(y2n, y2n+1)|.

We rewrite this in the form

|d(y2n+1, y2n+2)| ≤ h1|d(y2n, y2n+1)|, (2.2)

where h1 = |A
λ
|.

Since λ,A ∈ C+ and 0 ≺ A ≺ λ then h1 = |A
λ
| < 1.

Again, using inequality (2.1),

λd(Sx2n, Tx2n−1) - Ad(Ix2n, Jx2n−1)

+B
d(Jx2n−1, Sx2n)d(Ix2n, Tx2n−1)

1 + d(Ix2n, Jx2n−1) + d(Ix2n, Sx2n) + d(Jx2n−1, Tx2n−1)
,

or

λd(y2n+1, y2n) - Ad(y2n, y2n−1)

+B
d(y2n−1, y2n+1)d(y2n, y2n)

1 + d(y2n, y2n−1) + d(y2n, y2n+1) + d(y2n−1, y2n)
,

therefore,

|d(y2n+1, y2n)| ≤ h1|d(y2n, y2n−1)|, (2.3)

where h1 = |A
λ
|.



Common fixed point theorems for two pairs of self-mappings 79

Combining (2.2) and (2.3), we have

|d(y2n+1, y2n+2)| ≤ h|d(y2n, y2n−1)|,

where h = h2
1.

Continuing this process, we get

|d(y2n+1, y2n+2)| ≤ h1|d(y1, y2)|. (2.4)

By using inequality (2.1), we have

|d(y2n+3, y2n+2)| ≤ |A
λ
||d(y2n+2, y2n+1)| = h1|d(y2n+2, y2n+1)|. (2.5)

Combining (2.4) and (2.5), we have

|d(y2n+2, y2n+3)| ≤ h2n+1
1 |d(y1, y2)|. (2.6)

From (2.4) and (2.6), we get

|d(yn, yn+1)| ≤ max{1, h1}
h2

1

hn1 |d(y1, y2)|, for n = 2, 3, . . .

Since 0 < h1 < 1, for m,n(m > n), we have

|d(yn, ym)| ≤ [
h1

n

h1
2(1− h1)

]max{1, h1}|d(y1, y2)| → 0 as m,n→∞.

In view of Lemma 1.2, the sequence {yn} is a Cauchy sequence in (X, d). Now suppose IX is a
complete subspace of X, then the subsequence y2n = Tx2n−1 = Ix2n converges to some u in IX.
That is,

y2n = Ix2n = Tx2n−1 → u as n→∞. (2.7)

As {yn} is a Cauchy sequence which contains a convergent subsequence {y2n}, we can find v ∈ X
such that

Iv = u. (2.8)

We claim that Sv = u. Using inequalities (2.1) and (2.8), we have

λd(Sv, y2n) = λd(Sv, Tx2n−1) - Ad(Iv, Jx2n−1)

+B
d(Jx2n−1, Sv)d(Iv, Tx2n−1)

1 + d(Iv, Jx2n−1) + d(Iv, Sv) + d(Jx2n−1, Tx2n−1)

= Ad(u, y2n−1) +B
d(y2n−1, Sv)d(u, y2n)

1 + d(u, y2n−1) + d(u, Sv) + d(y2n−1, y2n)
.

Letting n→∞ in the above inequality, using (2.7), we have

λd(Sv, u) - 0.

since 0 ≺ λ, this implies that d(Sv, u) = 0, that is,

Sv = u. (2.9)
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Now, combining (2.8) and (2.9), we have

Iv = Sv = u,

that is, u is a point of coincidence of I and S.

Since u = Sv ∈ SX ⊆ JX, there exists w ∈ X such that

u = Jw. (2.10)

We claim that Tw = u. Using inequality (2.1), we have

λd(u, Tw) = λd(Sv, Tw) - Ad(Iv, Jw) +B
d(Jw, Sv)d(Iv, Tw)

1 + d(Iv, Jw) + d(Iv, Sv) + d(Jw, Tw)
,

or

λd(u, Tw) - 0,

which, by using 0 ≺ λ, implies that d(u, Tw) = 0, that is

u = Tw. (2.11)

Combining (2.10) and (2.11), we have

u = Jw = Tw,

that is, u is a point of coincidence of J and T.
Now, suppose that u′ is another point of coincidence of I and S, that is,

u′ = Iv′ = Sv′,

for some v′ ∈ X. Using inequality (2.1), we have

λd(u′, u) = λd(Sv′, Tw) - Ad(Iv′, Jw) +B
d(Jw, Sv′)d(Iv′, Tw)

1 + d(Iv′, Jw) + d(Iv′, Sv′) + d(Jw, Tw)
,

which implies (by using 0 ≺ λ) that d(u′, u) = 0, that is, u′ = u. Therefore, we proved that u is
a unique point of coincidence of {I, S} and {J, T}.

Now, we prove that S, T, I and J have a unique common fixed point.

Since {I, S} and {J, T} are weakly compatible, and u = Iv = Sv = Jw = Tw, we can write

Su = S(Iv) = I(Sv) = Iu = w1 (say)

and
Tu = T (Jw) = J(Tw) = Ju = w2 (say).

By using inequality (2.1), we get

λd(w1, w2) = λd(Su, Tu) - Ad(Iu, Ju) +B
d(Ju, Su)d(Iu, Tu)

1 + d(Iu, Ju) + d(Iu, Su) + d(Ju, Tu)
,

which implies (by using 0 ≺ λ) that w1 = w2, that is,

Su = Iu = Tu = Ju,
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which by using inequality (2.1) implies that

λd(Sv, Tu) - Ad(Iv, Ju) +B
d(Ju, Sv)d(Iv, Tu)

1 + d(Iv, Ju) + d(Iv, Sv) + d(Ju, Tu)
.

Hence, we deduce (by using 0 ≺ λ) that Sv = Tu, that is, u = Tu. This implies that

u = Su = Iu = Tu = Ju.

So, u is a unique common fixed point of S, I, J and T. The proofs for the cases in which SX, JX
and TX are complete are similar, and are omitted.

Putting I = J = IX , where IX is the identity mapping from X into X in Theorem 2.1, we
get the following corollary.

Corollary 2.1. Let S, T be self-mappings defined on a complex-valued metric space (X, d) sat-
isfying

λd(Sx, Ty) - Ad(x, y) +B
d(y, Sx)d(x, Ty)

1 + d(x, y) + d(x, Sx) + d(y, Ty)
(2.12)

for all x, y ∈ X, where λ,A,B ∈ C+ and 0 ≺ A + B ≺ λ. If one of SX or TX is a complete
subspace of X, then S and T have a unique common fixed point in X.

Corollary 2.2. Let {Ti}m1 ,{Ji}
p
1 and {Si}l1,{Ii}n1 be two finite pairwise commuting families of

self-mappings defined on a complex-valued metric space (X, d) such that the mappings S,T ,I
and J (with T = T1T2...Tm, J = J1J2...Jp, I = I1I2...In and S = S1S2...Sl) satisfy TX ⊂ IX,
SX ⊂ JX and inequality (2.1). If one of TX, SX, IX or JX is a complete subspace of X, then
the component maps of the two families {Ti}m1 ,{Ji}

p
1 and {Si}l1,{Ii}n1 have a unique common

fixed point.

Proof. Appealing to the componentwise commutativity of various pairs, one immediately con-
cludes that SI = IS and TJ = JT and, hence, obviously both pairs (S, I) and (T, J) are weakly
compatible. Note that all conditions of Theorem (2.1) (for mappings S, T, I and J) are satisfied
ensuring the existence of a unique common fixed point u in X, i.e. Su = Tu = Iu = Ju = u.We
are required to show that u is a common fixed point of all the component maps of the families.
For this, consider

S(Sku) = ((S1S2...Sl)Sk)u = (S1S2...Sl−1)((SlSk)u)

= (S1...Sl−2)(Sl−1Sk(Slu)) = (S1...Sl−2)(SkSl−1(Slu)) = ...

= S1Sk(S2S3S4...Slu) = SkS1(S2S3S4...Slu) = Sk(Su) = Sku.

Similarly one can show that

Tku = TkJu = JTku, Tku = TkTu = TTku,

Jku = TJku = JJku, Sku = ISku = SSku,

Iku = IIku = SIku, Tku = TTku = JTku,

which implies that (for every k) Sku, Tku, Iku and Jku are other fixed points of S, T, I and J .

By using the uniqueness of a common fixed point for S, T, I and J , we can write Sku = Tku =
Iku = Jku = u (for every k) which shows that u is a common fixed point of the families {Ti}m1 ,
{Si}l1, {Ii}

p
1 and {Ji}n1 . This completes the proof of the theorem.
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Theorem 2.2. Let S, T, I and J be self-mappings defined on complex-valued metric space (X, d)
satisfying TX ⊆ IX, SX ⊆ JX and

λd(Sx, Ty) - A
d(Ix, Sx)d(Jy, Ty)

1 + d(Ix, Jy) + d(Ix, Sx) + d(Jy, Ty)
(2.13)

for all x, y ∈ X, where λ,A ∈ C+ and 0 ≺ A ≺ λ. If one of SX, TX, IX or JX is a complete
subspace of X, then

(a) both pairs {S, I} and {T, J} have a unique point of coincidence in X,

(b) if both pairs {S, I} and {T, J} are weakly compatible, then S, T, I and J have a unique
common fixed point in X.

Proof. The proof of this theorem is identical to that of Theorem 2.1.

Corollary 2.3. Let {Ti}m1 ,{Ji}
p
1 and {Si}l1,{Ii}n1 be two pairwise commuting families of self-

mappings defined on a complex-valued metric space (X, d) such that the mappings S, T , I and
J (with T = T1T2...Tm, J = J1J2...Jp, I = I1I2...In and S = S1S2...Sl) satisfy TX ⊂ IX,
SX ⊂ JX and inequality (2.13). If one of TX, SX, IX or JX is a complete subspace of X,
then the component maps of the two families {Ti}m1 ,{Ji}

p
1 and {Si}l1,{Ii}n1 have a unique common

fixed point.

Proof. The proof of this Corollary is identical to that of Corollary 2.2.
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