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Abstract. We give the well-posedness conditions in L2 (−∞, +∞) for the following differential
equation

−y′′′ + p (x) y′ + q (x) y = f(x),

where p and q are continuously differentiable and continuous functions, respectively, and f ∈
L2(R). Moreover, we prove for the solution y of this equation the following maximal regularity
estimate:

‖y′′′‖2 + ‖py′‖2 + ‖qy‖2 ≤ C‖f‖2

(here ‖ · ‖2 is the norm in L2 (−∞, +∞)). We assume that the intermediate coefficient p is fast
oscillating and not controlled by the coefficient q. The sufficient conditions obtained by us are
close to necessary ones. We give similar results for the fourth-order differential equation with
singular intermediate coefficients.

DOI: https://doi.org/10.32523/2077-9879-2019-10-2-65-74

1 Introduction

In this paper we consider the solvability and smoothness properties for a solution of the following
linear third-order differential equation

Ly = −y′′′ + p (x) y′ + q (x) y = f(x) (1.1)

where x ∈ R = (−∞, +∞) , p, q and f are real-valued functions and f ∈ L2(R). We assume
that p is a continuously differentiable function and q is a continuous function. Important repre-
sentatives of such equations are the stationary Korteweg-de Vries equation and its modifications,
arising in the theory of distribution of long waves of small finite amplitudes (see, for example,
[5] and the references therein), as well as the composite type equations used in the hydrodynam-
ics and hydromechanics (see [6]). Moreover, the more general third-order equations are often
reduced to form (1.1).

The smoothness problems for solutions of equation (1.1) are of great interest. The case
of bounded domains and smooth coefficients is well understood and sufficiently well described
in the literature. In the case of unbounded domains, although the solution of the odd-order
equation (1.1) is smooth, it may not belong to any Sobolev space. Of course, this fact causes
some difficulties for study of (1.1).
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For such equations the study of separability or, in other words, the maximal regularity
problem is important. We recall that if for some C > 0 the following inequality

‖y′′′‖2 + ‖py′‖2 + ‖qy‖2 ≤ C(‖Ly‖2 + ‖y‖2)

holds for every y ∈ D(L), then the operator Ly = −y′′′ + py′ + qy (corresponding to equation
(1.1) ) is said to be separable in L2 (R) [11, 18] (in this case, the authors [9] say that the operator
L is L2 - maximally regular). Here and in the sequel we denote by C, C+, C−, Cj (j = 0, 1, 2, ...)
positive constants, which, in general, are different in different places. Solving of the maximal
regularity problem allows us to show the optimal smoothness of a solution and its behavior at
infinity. In addition, the maximal regularity makes it possible to apply the linearization method
based on the fixed point theorems to the study of nonlinear differential equations [3, 10]. In the
case p = 0 the maximal regularity problem for equation (1.1) and its quasilinear generalizations
was investigated in [2, 3, 10, 11]. Moreover, in these works the existence and uniqueness of a
solution was proved, and the important spectral and approximate properties of the resolvent L−1

were given. By perturbation theorems, these results easily can be extended to the case p 6= 0,
when the growth of p at infinity is controlled by the coefficient q.

The main purpose of our paper is to find sufficient conditions for L2-maximal regularity of
the operator L, when the intermediate coefficient p changes independently (for example, it does
not obey the potential q). For example, this is the case for a generalized stationary Korteweg-de
Vries equation. We study also the correct solvability problem for (1.1). Along with the case of
growing coefficient p, we will consider the case of the strongly oscillating p.

In Section 5 of the paper we consider the fourth-order differential equation with unbounded
coefficients and give one result on the solvability and maximal regularity of the solution.

According to the methods of investigation, this work is close to [14, 15, 16, 17].
Definition 1. A function y ∈ L2(R) is called a solution of (1.1), if there exists a sequence
{yn}∞n=1 ⊂ C

(3)
0 (R) (the set of thrice continuously differentiable functions with compact support)

such that ‖yn − y‖2 → 0 and ‖Lyn − f‖2 → 0 as n→∞.
We denote by L the closure in L2(R) of the differential expression Ly = −y′′′+p (x) y′+q(x)y

defined on C(3)
0 (R). By the definition of a closed operator, a function y ∈ L2(R) is a solution of

equation (1.1) if and only if y ∈ D(L) and Ly = f .
We present the main results. Let

αg, h, δ+(t) = ‖g‖L2(0, t)‖1/h‖L2(t−δ+,+∞) (t > 0),

βg, h, δ−(τ) = ‖g‖L2(τ, 0)‖1/h‖L2(−∞, τ+δ−) (τ < 0),

γg, h, δ+, δ− = max

(
sup
t>0

αg, h, δ+(t), sup
τ<0

βg, h, δ−(τ)

)
.

Here g and h 6= 0 are given continuous functions, аnd δ+ ≥ 0, δ− ≥ 0. For a non-negative
continuous function v(x) we define

v∗(x) = sup

d : d−1 ≥
x+d/2∫
x−d/2

v(t)dt


and

v∗n(x) = inf

d−1 : d−2n+1 ≥
x+d∫
x−d

v2(t)dt

 (n = 1, 2),
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where x ∈ R. For the first time such functions were introduced by M. Otelbaev in [1, 12, 18].
Theorem 1.1. Let p ≥ 1 be a continuously differentiable function, and q be a continuous
function and assume that the following conditions are satisfied:
(a) γ1, (

√
p)∗1, 0, 0

<∞;
(b) for a ≥ 1 and b > 0 the following estimates hold:

1

a
≤ p∗(x)

p∗(η)
≤ a ∀η ∈

(
x− b

2
p∗(x), x+

b

2
p∗(x)

)
, x ∈ R;

(c) A(p, p∗) = sup
x∈R


x+

p∗(x)
4∫

x− p
∗(x)
4

p2(t)dt

 1
2

· (p∗(x))
3
2

 <∞;

(d) ρq, p = max

[
sup
x>0
‖q‖L2(0, x)‖(p∗2)2‖L2(τ(x),+∞), sup

s<0
‖q‖L2(s, 0)‖(p∗2)2‖L2(−∞, η(s))

]
<∞, where

τ (x) = max

(
x

4
, x− 8 sup

x>0
(p∗2)2(x)

)
and

η (s) = min

(
s

4
, s+ 8 sup

s<0
(p∗2)2 (s)

)
.

Then for any f ∈ L2(R) there exists a unique solution y of equation (1.1). Moreover, there
exists C > 0 such that for any such f and y the following estimate holds:

‖y′′′‖2 + ‖py′‖2 + ‖qy‖2 ≤ C‖f‖2. (1.2)

Remark 1. Conditions (a) and (c) of Theorem 1.1 are close to being necessary. In fact:
i) if q = 0 and condition (a) is not satisfied, then for p, satisfying the condition

max

(
sup
τ<0
‖p∗1‖2

L2(−∞, τ+δ−)‖p∗1‖
−2
L2(−∞, τ), sup

x>0
‖p∗1‖2

L2(x+δ+,+∞)‖p∗1‖
−2
L2(x,+∞)

)
< +∞,

equation (1.1) does not have a solution in L2(R), therefore, the assigned problem loses its
meaning. This follows from Lemma 2.5;

ii) if q = 0, and for some C > 0 and for all f and y described above estimate (1.2) holds,
then (c) holds. This fact follows from [12, Chapter 7, Theorem 3].
Example 1. Let us consider the following equation with unbounded and fast oscillating coeffi-
cients:

−y′′′ + (1 + 20e
√

1+x2 sin2 ex
2

)y′ + x2n cos2 5x y = f(x), f ∈ L2(R), (1.3)

It is easy to verify that all conditions of Theorem 1.1 are satisfied. Therefore, equation (1.3) for
any f ∈ L2(R) has a unique solution y ∈ L2(R) and for some C > 0, for all such f and y holds
the following maximal regularity estimate:

‖y′′′‖2 + ‖(1 + 20e
√

1+x2 sin2 ex
2

)y′‖2 + ‖x2n cos2 5x y‖2 ≤ C‖f‖2.

2 Some integral inequalities

We denote by Ċ(m) [0, +∞) (respectively Ċ(m) (−∞, 0]) a set of the m times (m ∈ N) con-
tinuously differentiable on [0,+∞) (respectively (−∞, 0]) functions with compact support in
[0,+∞) (respectively in (−∞, 0]). Lemmas 2.1 and 2.2 follow from [12, Chapter 3, Theorem 8]
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and [12, Chapter 3, Theorem 9], respectively, by the same way as in Lemma 2.1 [17]. Theorems
8 and 9 from [12] are proved using results of [7, 13].
Lemma 2.1. Assume that n = 1 or n = 2, and h ≥ 0 and g are continuous functions such that

αg, h∗n, δ+ <∞ (2.1)

for some δ+ ≥ 0. Тhen for each y ∈ Ċ(2) [0, +∞) the following estimate holds: +∞∫
0

g2(t)y2(t)dt

 1
2

≤ C+

 +∞∫
0

[(
y(n+1)

)2
(t) + h2(t)y′

2
(t)
]
dt

 1
2

, (2.2)

and C+ ≤ C αg, h∗n, δ+. Conversely, if (2.2) holds with some constant C+, then αg, h∗n, 0 <∞ and
C+ ≥ C0αg, h∗n, 0, where C0 > 0 does not depend on g and h.
Lemma 2.2. Assume that n = 1 or n = 2, and h ≥ 0 and g are continuous functions such that
for some δ+ > 0 condition (2.1) and

sup
x>0

+∞∫
x−δ+

[h∗n (t)]2n dt

 +∞∫
x

[h∗n (η)]2n dη

−1

<∞. (2.3)

are fulfilled. Then inequality (2.2) holds if and only if αg, h∗n, 0 < ∞, and the minimal constant
C+ in (2.2) satisfies the following estimates:

C2αg, h∗n, 0 ≤ C+ ≤ C3αg, h∗n, 0, (2.4)

where C2, C3 > 0 are independent of g and h.
Using Lemmas 2.1 and 2.2, we prove the following Lemmas 2.3 and 2.4, respectively.

Lemma 2.3. Assume that n = 1 or n = 2, and h ≥ 0 and g are continuous functions such that

βg, h∗n, δ− <∞ (2.5)

for some δ− > 0. Then for each y ∈ Ċ(2) (−∞, 0] the following estimate holds: 0∫
−∞

g2(t)y2(t)dt


1
2

≤ C−

 0∫
−∞

[(
y(n+1)

)2
(t) + h2(t)y′

2
(t)
]

1
2

, (2.6)

where C− ≤ C̃ βg, h∗n, δ−. Conversely, if (2.6) holds with some constant C−, then βg, h∗n, 0 < ∞
and C− ≥ C1βg, h∗n, 0, where C1 > 0 does not depend on g and h.
Lemma 2.4. Assume that n = 1 or n = 2, and h ≥ 0 and g are continuous functions such that
for some δ− > 0 the conditions (2.5) and

sup
τ<0

τ+δ−∫
−∞

[h∗n (t)]2n dt

 τ∫
−∞

[h∗n (η)]2n dη

−1

<∞. (2.7)

are fulfilled. Then inequality (2.6) holds if and only if βg, h∗n, 0 < ∞, and the minimal constant
C− in (2.6) satisfies the following estimates:

C4βg, h∗n, 0 ≤ C− ≤ C5βg, h∗n, 0, (2.8)
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where C4, C5 > 0 are independent of g and h.
Lemma 2.5. Assume that n = 1 or n = 2, and h ≥ 0 and g are continuous functions such
that for some δ+ > 0 and δ− > 0 conditions (2.1), (2.3), (2.5) and (2.7) are fulfilled. Then for
y ∈ C(2)

0 (R) the inequality +∞∫
−∞

g2(t)y2(t)dt

1/2

≤ C

 +∞∫
−∞

[(
y(n+1)

)2
(t) + h2(t)y′

2
(t)
]
dt

1/2

(n = 1, 2) (2.9)

holds if and only if γg, h∗n, 0, 0 < ∞, and the minimal constant C in (2.9) satisfies the following
estimates:

C6γg, h∗n, 0, 0 ≤ C ≤ C7γg, h∗n, 0, 0, (2.10)

where C6, C7 > 0 are independent of g and h.
Proof. By Lemmas 2.2 and 2.4 and estimates (2.2) and (2.6), for y ∈ C(n+1)

0 (R) we have

‖g (t) y (t)‖2 ≤ C1 (δ) βg, h∗n, 0

(∥∥y(n+1)
∥∥2

L2(−∞, 0)
+ ‖h (t) y′‖2

L2(−∞, 0)

)1/2

+C (δ)αg , h∗n, 0

(∥∥y(n+1)
∥∥2

L2(0,+∞)
+ ‖h (t) y′‖2

L2(0,+∞)

)1/2

≤ C̃ (δ) γg, h∗n, 0, 0

(∥∥y(n+1)
∥∥2

2
+ ‖h (t) y′‖2

2

)1/2

.

Then, assuming C = C̃ (δ) γ1, h∗n, 0, 0, we obtain (2.9). Inequalities (2.4) and (2.8) imply estimates
(2.10). �

3 On the two-term differential equation

We denote by l the closure in the L2(R) of the differential expression l0y = −y′′′+p (x) y′ defined
on the set C(3)

0 (R). We consider the following degenerate differential equation

ly = −y′′′ + p (x) y′ = f. (3.1)

Definition 2. A function y ∈ L2(R) is called a solution of (3.1), if there exists a sequence
{yn}∞n=1 ⊂ C

(3)
0 (R) such that ‖yn − y ‖2 → 0 and ‖l0yn − f ‖2 → 0 as n→∞.

It is clear that a function y ∈ L2(R) is a solution of equation (3.1) if and only if y ∈ D(l)
and ly = f .
Lemma 3.1. Let p be such that

p ∈ C(1)
loc (R) , p ≥ 1, (3.2)

and
γ1, (

√
p)∗1, δ+, δ−

<∞ (3.3)

for some δ+ > 0 and δ− > 0. Then for each f ∈ L2 (R) there exists a unique solution y of
equation (3.1) and there exists C > 0 such that for any such p, δ+, δ−, f and y the following
estimate holds:

‖y′′‖2 + ‖√py′‖2 + ‖y‖2 ≤
√

3
(

1 + C2γ2
1, (
√
p)∗1, δ+, δ−

)
‖f‖2 . (3.4)
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Proof. Assuming g = 1 and h =
√
p in Lemmas 2.1 and 2.3, for y ∈ C(3)

0 (R) we have

‖y‖2 ≤ C−

 0∫
−∞

[
y′′

2
+ p(t)y′

2
]
dt


1
2

+ C+

 +∞∫
0

[
y′′

2
+ p(t)y′

2
]
dt

 1
2

≤ C γ1, (
√
p)∗1, δ+, δ−

[
‖y′′‖2 + ‖p(t)y′‖2

] 1
2 . (3.5)

Further
(ly, y′) = (−y′′′ + p (x) y′, y′) = (−y′′′, y′) + (p (x) y′, y′)

= −
∫
R

y′′′ȳ′dx+

∫
R

p |y′|2 dx =

∫
R

y′′ȳ′′dx+

∫
R

p |y′|2 dx = |y′′|22 + ‖√py′‖2

2 . (3.6)

Taking into account condition (3.2), by the Hölder inequality, we obtain

|(ly, y′)| ≤
∥∥∥∥ 1
√
p
ly

∥∥∥∥
2

‖√py′‖2 .

This inequality and (3.6) imply that ‖y′′‖2
2 +

∥∥√py′∥∥2

2
≤ ‖ly‖2

2 . By (3.5), we obtain estimate
(3.4).

We show, that estimate (3.4) is also valid for a solution of equation (3.1). Let {yn}∞n=1 be a
sequence in C(3)

0 (R) such that ‖yn − y‖2 → 0, ‖lyn − f‖2 → 0 (n→∞). By (3.4),

‖y′′n‖
2
2 + ‖√py′n‖

2

2 + ‖yn‖2
2 ≤ C1 ‖lyn‖2

2 . (3.7)

Moreover, for any n, m ∈ N we have

‖y′′n − y′′m‖
2
2 + ‖√p (y′n − y′m)‖2

2 + ‖yn − ym‖2
2 ≤ C1 ‖lyn − lym‖2

2 . (3.8)

We denote by Ẇ 2
2,
√
p(R) the completion of C(2)

0 (R) with respect to the norm

‖y‖W =
(
‖y′′‖2

2 +
∥∥√p y′ ∥∥2

2
+ ‖y‖2

2

)1/2

. According to (3.8), {yn}∞n=1 is a Cauchy sequence in

Ẇ 2
2,
√
p(R). Then there exists an element z such that ‖yn − z‖W → 0 (n→∞). By Definition 2

z is a solution of (3.1). For n→∞ from inequality (3.7) we obtain

‖z‖W ≤ C ‖f‖2 . (3.9)

By (3.9), a solution of equation (3.1) is unique: z = y.
Now, we show that for each f ∈ L2 (R) there exists a solution to equation (3.1). By Definition

2, it suffices to prove that R(l ) = L2 (R). Assume the contrary, let R(l ) 6= L2 (R). Then there
exists the non-zero element z ∈ L2 (R) such that z⊥R(l). So, (ly, z) = 0 for any y ∈ C(3)

0 (R).
On the other hand

(ly, z) =

∫
R

y
(
z
′′′ − [p (x) z]

′
)
dx, y ∈ C(3)

0 (R) .

So we obtain
z′′ − pz = C1. (3.10)

By (3.10), we have that z is a twice continuously differentiable function.
The following two cases are possible.
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1. C1 6= 0. Without loss of generality, we can assume that C1 = 1. So,

z′′ − p(x)z = 1, x ∈ R. (3.11)

The solution z of this equation can be written as

z (x) = C2z1 (x) + C3z2 (x) +

+∞∫
−∞

G (x, t) dt, (3.12)

where G (x, t) is the Green function of the Sturm-Liouville operator, and z1, z2 are two linearly
independent solutions of the following equation z′′ − p(x)z = 0. It is known that, by condition
(3.2) (see, for example [4]), z1 > 0, z2 > 0, lim

x→+∞
z1 (x) = +∞, lim

x→−∞
z1 (x) = 0,

lim
x→−∞

z2 (x) = +∞, lim
x→+∞

z2 (x) = 0 and

G (x, t) > 0,

∫
R

G (x, t) dt <∞, x ∈ R.

Therefore, by (3.12), we have C2 = 0 and C3 = 0, and (3.11) implies that z′′(x) ≥ 1 for any
x ∈ R. Then there exists ξ ∈ R such that z (ξ) = k > 0 and z′ (ξ) = m > 0. We have

z′ (x)−m = (x− ξ) +

x∫
ξ

pz (t) dt.

Taking into account condition (3.2), we obtain z − k ≥ 1/2(x − ξ)2 (x ≥ ξ). Therefore,
lim

x→+∞
z(x) = +∞, so, z /∈ L2 (R).

2. If C1 = 0, then by (3.10),

z′′(x)− p(x)z(x) = 0, x ∈ R. (3.13)

The solution z of (3.13) is represented as z = C4z1 + C5z2. As mentioned above, z1 (x)→ +∞,
z2 (x) → 0 (x→ +∞), and z2 (x) → +∞, z1 (x) → 0 (x→ −∞). Consequently, C4 = 0 and
C5 = 0. So, z = 0.

Contradictions obtained by us show that R(l) = L2(R). �
Remark 2 The condition p ≥ 1 can be replaced by p ≥ δ > 0. To show this, it is enough to
put x = δ−1/2t in equation (3.1).
Lemma 3.2. Assume that p ≥ 1 is continuously differentiable and satisfies conditions (а), (b)
and (c) of Theorem 1.1. Then there exists C > 0 such that for the solution y of equation (3.1)
the following estimate holds:

‖y′′′‖2 + ‖py′‖2 ≤ C ‖f‖2 . (3.14)

Proof. By (3.4), we have y, y′ ∈ L2 (R). Assume, that y′ = z, then the expression ly = −y′′′+py′
will take the form V z = −z′′ + pz (z ∈ L2 (R)). By [12, Chapter 7, Theorem 3], there exists
C4 > 0 such that for any z ∈ D (V ) the following inequality holds:

‖z′′‖2 + ‖pz‖2 ≤ C4 ‖V z‖2 .

Then, by Lemma 2.5 and Definition 2, we obtain the proof of lemma.
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4 Proof of Theorem 1.1

Proof. We put x = at in equation (1.1), where a > 0. If we introduce the notations

ỹ (t) = y (at) , p̃0 (t) = p (at) , q̃0 (t) = q (at) , f̃ (t) = a3f (at) ,

then (1.1) can be written in the following form:

L̃ỹ = −ỹ′′′ + a2p̃0ỹ
′ + a3q̃0ỹ = f̃(t). (4.1)

We denote by la the closure in L2(R) of the differential operator l0aỹ = −ỹ′′′ + a2p̃0(t)ỹ′ defined
on C(3)

0 (R). Since a2 |p̃0 (t)| ≥ a2, by Lemma 3.1 and Remark 2, the operator la is continuously
invertible and holds the following estimate:

‖ỹ′′′‖2 +
∥∥a2p̃0ỹ

′∥∥
2
≤ Cla ‖laỹ‖2 ∀ỹ ∈ D (la) , (4.2)

where Cla does not depend on ỹ. Taking into account condition (d), by (4.2) and [1, Theorem
6.3], we have ∥∥a3q̃0ỹ

∥∥
2
≤ a3ρq, pCla ‖laỹ‖2 . (4.3)

By (4.1), L̃ = la + a3q̃0E. If we choose a = [2ρq, pCla ]
− 1

3 , then (4.3) implies that the following
estimate holds ∥∥a3q̃0ỹ

∥∥
2
≤ α ‖laỹ‖2 , (4.4)

where α ∈
(
0, 1

2

]
. By the known perturbation theorem (see, for example, [8, Chapter 4, Theorem

1.16]) there exists the inverse operator (la + a3q̃0E)
−1 and the equality R (la + a3q̃0E) = L2 (R)

is true. So, there exists the solution ỹ of equation (4.1) and it is unique. By inequalities (4.2)
and (4.4), we obtain

‖ỹ′′′‖2 +
∥∥a2p̃0ỹ

′∥∥
2

+
∥∥a3q̃0ỹ

∥∥
2
≤
(

1

2
+ Cla

)
‖laỹ‖2 . (4.5)

Taking into account (4.4), we get

‖laỹ‖2 ≤
∥∥(la + a3q̃0E

)
ỹ
∥∥

2
+
∥∥a3q̃0ỹ

∥∥
2
≤
∥∥(la + a3q̃0E

)
ỹ
∥∥

2
+

1

2
‖laỹ‖2 ,

that implies
‖laỹ‖2 ≤ 2

∥∥(la + a3q̃0E
)
ỹ
∥∥

2
. (4.6)

By (4.5) and (4.6), we obtain that

‖ỹ′′′‖2 +
∥∥a2p̃0ỹ

′∥∥
2

+
∥∥a3q̃0ỹ

∥∥
2
≤ C

∥∥∥f̃∥∥∥
2
, C = 1 + 2Cla .

Putting t = a−1x, we get the estimate (1.2).

5 On the well-posedness and maximal regularity of solution of the
fourth-order differential equation

In this section we announce one result on the correct solvability and maximal regularity of the
following equation:

−y(4) + p (x) y′′ + s (x) y′ + θ (x) y = F, (5.1)

where x ∈ R = (−∞, +∞), and F ∈ L2(R).
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We denote by M the closure of the operator M0y = −y(4) +p (x) y′′+s (x) y′+θ (x) y defined
on the set C(4)

0 (R) of four times continuously differentiable functions with compact support. We
say that y is a solution of (5.1), if y ∈ D(M) and My = F. We define

νg, h, δ+(t) =

 t∫
0

g2(ξ)dξ

1/2
 +∞∫
t−δ+

ξh−2(ξ)dξ


1/2

(t > 0),

µg, h, δ−(τ) =

 0∫
τ

g2(ζ)dζ

1/2 τ+δ−∫
−∞

ζh−2(ζ)dζ

1/2

(τ < 0),

and
ωg, h, δ+, δ− = max

(
sup
t>0

νg, h, δ+(t), sup
τ<0

µg, h, δ−(τ)

)
.

Teorem 5.1. Let p ≥ 1 be a twice continuously differentiable function that satisfies conditions
(b) and (c) of Theorem 1.1 and ω

1, (√p)
∗
1
, 0, 0

< +∞. Assume that s is a continuously differentiable

function, and θ is a continuous function such that max
[
ωθ, p∗2, δ+, δ− , γs, p∗2, δ+, δ−

]
< +∞ for some

δ+ > 0 and δ− > 0. Then for any f ∈ L2(R) there exists the unique solution y of equation (5.1).
Moreover, the following estimate holds:

‖y(4)‖2 + ‖py′′‖2 + ‖sy′‖2 + ‖θy‖2 ≤ C‖f‖2,

where C > 0 does not depend on y.
This theorem is proved similarly to the proof of Theorem 1.1 using Lemma 2.5, [1, Theo-

rem 6.1] (for cases n = 2 and k = 1, 2) and [12, Theorem 3].
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