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Abstract. We consider the Schwarz boundary value problem (BVP) for the inhomogeneous
Cauchy—Riemann equation in lenses and half lenses. By the technique of parqueting—reflection
and the Cauchy—Pompeiu representation formula for lenses and half lenses, the Cauchy—Schwarz
representation formula is obtained. Also, the solution of the Schwarz BVP is explicitly obtained.
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1 Introduction

A variety of BVPs for partial differential equations (PDEs) has been considered on special
domains. Those special domains include the unit disc [11], half plane [5, 12|, quarter plane
[1, 2, 6], ring [17, 18], half disc and half ring [8], quarter ring [14, 15|, lens and lune [9], half lens
and half lune [16] and some convex polygons, e.g. equilateral triangle [10] and half hexagon [15].

The Schwarz BVP is considered for an analytic function with given boundary values of its
real part. Also, the Cauchy—Schwarz representation formula is obtained by the technique of
parqueting-reflection and the Cauchy-Pompeiu representation formula, see e.g. (3, 4, 7, 19].

In particular, the solution of the Schwarz BVP in a lens is explicitly obtained in [9]. There,
a lens is defined by D = D N D,,(r), where D = {z : |z] < 1} and D,,(r) = {z: |z —m]| <
r}, 0<r<1<m, r*+1=m? In the complex plane C, a lens is formed by two arcs C; and
C5 of the two circles |z —ib| = r and |z +ib| = r. The points a and —a lie on the real axis where

the arcs C and Cy meet with the angle 7. If a and T are known, b = acot 7> and r = %=,
2

see [13].
Let D be the lens formed. It is formed by two arcs C; and Cy of the two circles |z —i| = V/2
and |z + 4| = v/2 where a = 1 and 7o = 90°. Also, Q is the half lens (Fig. 1.).

Half lens

-
i —_—

Fig. 1. The lens D and the half lens €2
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This paper is organized as follows. In Section 2, by the technique of parqueting—reflection and
the Cauchy-Pompeiu representation formula on the lens D, the Cauchy—Schwarz representation
formula is explicitly obtained. Then, the Schwarz BVP in D for the inhomogeneous Cauchy—
Riemann equation is studied. The Schwarz BVP for the half lens €2 is considered in Section 3.

2 Schwarz problem for the lens D

The point z € D is reflected at 0C; onto Zgizl, and both these points are reflected at dC5 onto

the points —2t1 and 1.
zZ—1 z

The Cauchy—Schwarz representation formula is derived by combining the Cauchy—Pompeiu
representation formula applied to the points described above.

Theorem 2.1. Any function w € C*(D;C) N C(D;C) can be represented as

w(z) :% e Rew(() {%_1_’_%_1} CEZ
| AC+i) 2D ] dC
+ 2t amao?Rew“)[ (= TG _l}g”

1 ag 1 d(
i /aDmac1 Imw(OC —i /BDmac2 Imw(OC +1

SRS [c:ﬁczz—l}

+we(Q) {—E(z —Zz)_—z iz+1  ((z +j)+—iiz — 1} }dgd”’ (2.1)

where ( = & +1n.

Proof. The Cauchy-Pompeiu formula

3t O [0 = {Zi(z)’ P )
applied to z € D and %, %, ’ZL_JZA ¢ D, respectively, gives the following four equalities
o :% aDw(QCd—Cz B %/ch(o%’ (2.3)
0 :% o Ogertimi = % we(Q) gt (2.4)
! :% | wOgs - %/D“’Z(O?iwfa (2.5)
’ :ﬁ | el - %/Jjwc(é)%- (2.6)

Taking the complex conjugate of (2.4) and (2.6), where Z appears, and adding the resulting four
relations, lead to the claimed representation formula. O

The Cauchy-Schwarz representation formula (2.1), serves to solve the Schwarz BVP for the
inhomogeneous Cauchy-Riemann equation in the lens D.
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Theorem 2.2. The Schwarz problem

ws=f, in D, Rew=rv

on 0D,
1 a1 a¢
i Jopnoos Imw(C)C —i T /8Dﬁ802 Imw(()( +i ©
with given f € L,(D;C), 2 <p, v € C(OD;R), ¢ € R is uniquely solved by
1 2C—i) . 22(C—i) ] d¢
w(z)—% aDmacly(O[C—Z - Cz—1 _1]C—i
1 2(C +1) 22(C + 1) a
"o 8Dﬁ8027(g)|:? H (z—1 _1}C+i+w
1 1 z
_;/D{f(o {C—z—i_gz—l}
O [ i z—1 Z+1i

— — dédn.
—C(z—i)—iz+1 g(z+¢)—iz—1} } &dn
Proof. The right-hand side of (2.7) up to the term

Tf(2)

1 dédn
e G

is an analytic function and 7'f(z) is a weak solution to the Cauchy-Riemann equation w; = f,

so w(z) is a weak solution of the inhomogeneous Cauchy-Riemann equation (see [19]).
Now, we consider the boundary behavior. Let

w() =1 [ {10 |72+ 7]

Tz
+1O Lg(z —Zz)_i iz +1 (= +§)tiiz - J }dfd”' (28)
For 2 € 0D NOCY, ie. (z—1i)(Z+1i) =2,
o=t 0[] Tl

Hence, Rewy(z) = 0. Similarly, for z € 0D NICy, ie. (z+1i)(Z—1i)=2

1

we) =2 [0 |5+ 5] - TO [+ 5 e

Hence, Rewy(z) = 0. In fact

I\

z

1 C—i (+i 2(C—1i)  Z(C+1) dc¢
Rew(z)—%/wma&v(() {C—Z+§—2_1+ ¢z—1 - (z—1 _1} C—1
L L 7(§)[C+i+c_i T (SO I (St

270 Jopracs, ¢

1 d¢
(—z (z—1 CZ—I_:|C+i
+ Rewy(z),

51
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where wy(2) is defined by (2.8). Therefore, on 0C}

o C—i C+i AC—i) iz—1 ] d¢
Rew(z)—%/aDmaclV(C) [C—Z+E—2_l+ 1 +<Z—1 1}<

1 (+i  —iz—1 2(C+i) —z—1 d¢
+% BDﬂBsz(C) [C—Z+ (z—1 — ¢z—1 - ¢—=z _1]C+i
+ Rewp(2).

Also, Rew(z) on 0C; could be written as

1 C—i  (+i d¢
Rew(z) " 2mi /0Dm801 7(¢) L -z - (—z N 1} '

_ ! I}(C){C'_i +—§'+i-—:q cdg‘,

% aC C—Z C—E

where

0, ¢ €0C,\ (0D NoCy).
From the properties of the Poisson kernel for C1, the equality

lim Rew(z) = 7(()

z—(

F(O) = {wo, ¢eaDnac,

follows for ¢ € 0D NAC] up to the tips +1 of the lens D, because I'; fails to be continuous there
if v does not vanish at these points. Also on 9C5, we have

1 (—1i 1z—1 2(¢ — 1) —xti d¢
Rew(z)—Q—m/aDmaqV(O {C—z+gz—1_1+ Cz—1 + (—z 1] ¢—i

1 C+i  C—i 2(C+i)  —iz—1 d¢
¥ 251 Joproc, " {c—ﬁ@_” Ge—1 G-l _1} C+i
+ Rewy(2).

Also, Rew(z) on 0C5 could be written as

1 C+i  C—i ] &
Rew(z) =55 /mcﬂ“) [< Tz 1] T+

1 C+i C—i ] d¢

- 2mi aCQFZ(C){C—Z+§—Z 1}C+i’

where

T (C) _ ’7(C)7 C € 6D N aCZ»
2 0, (€00, (0D NACy).

From the properties of the Poisson kernel for Cy as above for ( € 9D N dC5 the equality

lim Rew(z) = v(¢)

z—(

holds with the possible exception of the tips +1. In fact, we show that

lim Rew(z) = y(£1).

z—+1
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We have

1
1=—0

2 Japnac, L C —1
1 (+i  (—i 2(C+1i) | Z(C—1) d¢
+% 8Dﬁ802|:< +€t 5_1+ CZ—1+§5—1_1]C+Z"

+ -1+ =
z (z—1 (z—1

(=i (i 4<—w+z@+w_l]d<
¢

Multiplying this relation by ~(41) and subtracting the resulting quantity from Rew(z), for
z € 0D NOC,, we get

1 ) (=i C+i ] d¢
Rew(z) —y(*1) = 5 = /8,308017(0 {C—z Tz 1} ¢—i’

where ¥(¢) = v(¢) —y(£1) and (£1) = 0. So lim,_,4; Rew(z) = y(x1).
Similarly, for z € 9D N 0Cy,

1 N A
Rew(z) —v(£1) = i /8Dm8027(g) L_Z"‘C_Z 1] C+i

where 4(¢) = v(¢) —y(£1) and 4(£1) = 0. So lim,_,4; Rew(z) = y(%1). O

3 Schwarz problem for the half lens (2

e
points ==t and L. Reflection of these four points at the imaginary axis are —z, 2=, -1, — ’;:.1.
The Cauchy Schwarz representation formula is derived by combining the Cauchy-Pompeiu

representation formula applied to the points described above.

Theorem 3.1. Any function w € C*(Q;C) N C(Q; C) can be represented as

1 (V2—1)i 9 25 2(z —1) 2(z +1)
w(z) " omi —(V2-1)i Rew(?) [t —z + tz—1 * tz—i) —iz+1  tz+1) +iz+1
1 2(¢ — 1) 22(¢ —1) 2(z —i)(¢ —1)
+% amaclRew(Q[C—z _1+W_1+C(z_i)_iz+1_

20 +i)(C—19) 1] d¢

C(z+1i)+iz+1 )

1 2(¢C+19) 22(C +1) 2(z —1i)(C + 1)
+ﬁ amaCQRew(C)[ C—2 o ¢z—1 _1+<(2—i)—i2+1_

et D+ g de

C(z+1i)+iz+1 ¢+

2 d¢ 2 d¢

= I e I
- 7T/ama(11 mw(OC—i - W/amacz mw(oCJri
1 1 z zZ—1 zZ4+1
_;/S){wé(g)[(—z+gz—1+C(z—z’)—z’z+1+C(z+z’)—|—z’z+1}

—_— zZ—1 z4+1 1 z
+w<<<)[—§(z—z’)—z’z+1 T l(zti)—iz—1 _E+2_§z+1}}d§dn’ (3.1)

where ( = & +1n.
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iz—1  iz4+1 1

A R

Proof. The Cauchy-Pompeiu formula (2.2) is applied to z € Q, —z
— izl =zl ¢ ). Then we have

z+1i )
w2 =g [ w2 -1 [ uroE

“omi Joy V(-2 7w (—2
5 [ 0O 7 [ w0F,
0 :ﬁ MOl (—252—)(3; 1 %/ch(c)g(f__i;)fiji 1
=5 [, O (f;i)(jg— T %/deog(z(it)i)—dgjn_ T
Ny iy

1 zd¢ 1 . zdédn
0=om 6Qw(<)§z+1_E/Qw<(ogz+1’

1 (z414)d¢ 1 . (z 4 1)dédn
" omi aQw ) _/QwC(OC(eri)jLinrl’

((z+i)+iz+1 =
1 (z—i)dC¢ 1 / o (z—d)ddedn
we(C)
Q ¢(

Tomi Joq CGE—i)+iz—1 w Z—i)Fiz—1

(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)

(3.9)

Taking the complex conjugate of (3.3), (3.5), (3.7) and (3.9), where z appears, and adding the

resulting eight relations, lead to the claimed representation formula.

]

The Cauchy-Schwarz representation formula (3.1) serves to solve the Schwarz BVP for the

inhomogeneous Cauchy-Riemann equation in the half lens (2.

Theorem 3.2. The Schwarz problem
ws = fin Q, Rew =~ on 09, ~ <i—(\/§— 1)2) =0,

2 d 2 d
— Imw(() ¢ -+ —/ Imw(() ¢ - =,
T Joanacy C—1i 7 Jaonac, C+1
with giwen f € L,(;C), 2 <p, v€ C(O%LR), c € R is uniquely solved by
() 1 e (t)[ 2 | % 2(z — i) 2z + 1)
“omi Jomy O lE—z Tt 1 He—i)—iz 41 tHet+i)tizt1
1 2(z —1i)(¢ —1)

2(¢ —1) 22(¢ —1)

i amaClM)[ c—> ‘Tt Yoo
2(z414)(¢C—1) _1} d¢
C(z+1) +iz+1 ¢—i

1 2(¢ + 1) 22(C +1) 2(z —4)(¢ +1)
27 Joonec, | )[ =z t-o1 _1+§(2—i)—iz—|—1_
2(z +1)(¢ +1) _1} d¢
C(z+14) +iz+1 C+i
+ 1ic
1 1 z zZ—1 z41
_%/Q{f(C)[C—z—i_Cz—l+§(z—z')—iz—|—1+§(z+i)+iz+1}
—_— Z—1 z+1 1 z
* (C)[_g(z—z')—z'zﬂ_g(z+z‘)—z'z—1_¢+z_(z+1”d5d’7'

(3.10)
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Proof. Let

z zZ—1 zZ+1

1 1
wo(z):—;[){f((>[c_z+gz_1+§(z—i)—iz+1+C(z+i)+iz+1]

zZ—1 z+1 1 »
_é(Z—i)—’iZ—i—l_C_(z+@')_iz_1_€+Z_§Z+1]}d§d77- (3.11)

For z € (—(vV2—1)i, (V2 — 1)), ie. z = -2,

1 1 z Z—1 Z+1
wO(Z):_;/fz{f(C)[(—Z+CZ—1+C(z—i)—iz—i—1+§(z—|—i)—|—iz+1]
— 1 Z Z+i zZ—1
- (g)[5—2+52—1+§(2+i)+z’z+1+§(z—i)—iz+1}}d€dn'

So, Rewy(z) = 0. For z € 90N OC, ie. (z—1)(Z+1) = 2,

1 1 z z—1 zZ 41
wo(z)z—;/ﬂ{f@)[(_z+§z_1+C(z—z’)—z’z+1+C(z—|—z')—|—iz+1]
— 1 z Z+1 zZ—1
_f(o[g—erg‘z—l+g(z+z’)+z'z+1+<(z—i)—iZ+1}}d€dn'
So, Rewy(z) = 0. Similarly, for z € 9Q N ICy, i.e. (z+1)(z2 —1i) = 2,
1 1 z zZ—1 z+1
w“@:_FRL{f@Mg—z+gz—1+g@—n-wz+1+<@+w+ﬁz+ﬁ
- z 1 zZ—1 Z+1
_fKMQw—1+C—z+(@—%%%z+l+C@+U%%z+ﬁ}%&%

So, Rewy(z) = 0. In fact,

Rew(:) 1/“5—1)1‘ (t)[1 L e 2 Z—i
CW\2) =—— — —
2mi )y lt—z TT—2 a1 =1 Hz—i)—izt1
zZ+1 zZ 41 zZ—1

dt

+£(z+i)+@'z+1 t(z+i)+iz+1+t_(2—i)—i2+1

1 (—i  C+i 2(¢—i) | Z(C+1)
+% amaclﬂo[g—z—i_z_l—F Cz—1 " 55—1
-DC=i)  E+Dl+) . (=)
C(z—1i)—iz+1 ((2+4)+iz+1 C(z41i)+iz+1
(z=D)(C+1) 1) %
((z—i)—iz+1 C—i

—1

+

+

1 C+i  (—i 2(C+1i) | 2(¢C—1)
2mi amaogfy >[C—Z+C—5_1+ (z—1 i CG—1
(z=9(C+d) (z+14) (¢ —1) R G o) (e
C(z—1)—iz+1 ((z+0)+iz+1 C(z+1i)+iz+1

(2 —4)(¢C —19) d¢
+§(z—z‘)—z’z+1 _1}g+@'
+ Rewy(2),
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where wy(2) is defined by (3.11). Therefore, on 9C

1 V2D 1

B i—z z —(z+1)
R“MA_ZEh@Uﬂ%[t—z+uz—w—m+¢+}z—1 1z +14) +iz+ 1
zZ—1 —1 z 41 —Zz By
t(z—i)—iz+1+t—z+t(z+i)+z’z+1+tz—1
1 C—i C+i 2(C—i) iz—1
+% aQnaclfY(O[C—ZJFC—Z_le (z—1 +Cz—1_1
(z —1)(C— 1) 2 (z +1)(C —1)
+C(z—i)—iz+1+C(Z—i)—iz+1_1+C(z+i)—|—iz+1
. 2z _1] d¢
C(z+i)+iz+1 C—i
1 (+i —iz—1 2((+1i) —z—1i
S LG o e e oy Wl
N (z—14)(C+1) 2 . (z+14)(C+1)
C(z—i)—iz+1 ((z+i)+iz+1 ((z+1i)+iz+1
—2iz d¢
C(z—i)—iz+1 }(—I—i
+ Rewp(2).

Also, Rew(z) on 0C; could be written as

L (—i ¢+i ] d¢
Rew(2) 2w /amacl 7©) L—Z " (—2z 11 C—i
e BN e PR

270 Je, (—z (-2 -

where

(), ¢€anady,
ie) = {o, ¢ €9C\ (92N CH).

From the properties of the Poisson kernel for ', the equality

lim Rew(z) = 7(()

z—(

follows for ¢ € 9Q N AC, up to the corner points —(v/2 — 1)i and 1 of the half lens Q, because
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I'; fails to be continuous there if v does not vanish at these points. Also, on 0C5 we have

1 V2 1 —(z+1) z —z41
Rew(z) =5— H| . k.
ew(z) 2mi 7(\/571)1-7 t—=z t(z+z)—|—zz+1+tz—1+t(z—z)—zz+1
- B . 1
zZ—1 z z+1 n q

t(z—i)—iz—i—l+tz—1+t(z+i)+iz+1 t—z

1 C—i iz—1 2((—1i) —z+1
37 oo, Ot G T T s
RECEDIED) 2iz IR ()
((z—i)—iz+1 ((z+17)+iz+1 ((z+1i)+iz+1
2 d¢
+qz—o—m+1_Qg—z
1 C+i  (—i 2(C+1i) —iz—1
" 2m anaCQW(O[C—ZJFC——Z_lJF (z—1 i (z—1 !
N (z —i)(C +1) —2iz B (z+49)(C+7)
((z—i)—iz+1 ((z—1i)—iz+1 C(z+1i)+iz+1
d¢
+qz+o+n+1_]g+¢
+ Rewp(2).

Also, Rew(z) on 0C; could be written as

o
Rew(Z) L/8Qﬁ(9C' ’Y(C) |:C+Z " g : N 1:| C

- 211

(—2 (—7z C+1
1 (+i (=i ] d¢
" omi 802F2<<>|:C_Z+§_2 1}@*'@'7

where

_J(Q), € €902NACy,
m“y_{q ¢ €00, \ (92N IC).

From the properties of the Poisson kernel for Cs, the equality

lim Rew(z) = v(()

z—(

follows for ¢ € 992N AC, up to the corner points 1 and (v/2 — 1)i of the half lens 2, because I'y
fails to be continuous there if v does not vanish at these points. For ¢t € (—(v2 — 1)i, (v2 — 1)i),
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we have
1 (V2-1)i 1 1 z —z z2—1
Rew(z) =— H| _
ew(z) 27ri/_(\/§_1)i7<> t—z+t—2+t2—1+t2—1+t(z—i)—iz+1
—z+1 N Z+i —(z+1)
t(z—i)—iz+1 tlz4+i)+iz+1 tz+19)+iz+1
1 ¢—1 2 2(¢ —1)
+ — [ + - - -1+
27 6908017(0 (—2z ((z—1i)—iz+1 (z—1
N 2iz B (z —14)(¢C —1) —z+i_1
C(z+1i)+iz+1 ((z—1i)—iz+1 (—=z2

(z41)(¢ —1) iz—1 d¢
1]<

C(z4i)+iz+1 (Cz—1 1¢—i

1 ¢+ 2 2(C+1)
% 90NICs |:<—Z+C<Z+Z>+ZZ+1_1+ CZ—l
—2iz (z —1)(C +1) —iz—1
+§(z—i)—iz+1_1+C(z—i)—iz—|—1 (z—1 -1

(z +9)(C+14) +—z—z’_1] d¢
C(z4+i)+iz+1  (—z C+1
+ Rewp(2).

Also, Rew(z) for t € (—(v2 —1)i, (V2 — 1)i) could be written as

1 2 1 1
Rew(z) =— 'yt[ —|—_—_—11dt
27TZ —(\/Q—l)i t —Z t —
1 [ 1 1
= I's(t = —1|dt
270 ) i 3(){t—z+t—z } ’

where
Py) = 4 10> 1€ (V2= Di (V2= 1)i),
’ 0, teiR\ (=(vV2—1)i, (V2—1)i).

From the properties of the Poisson kernel, we have

lim Rew(z) = v({).

z—(

Now, we consider the boundary behavior at the corner points —(v/2 — 1)i and (v/2 — 1)i. Let

1 V2-Di 2 22 2(z —1) 2(z +1)
w1(2)22—m (\/ﬁl)iV(t)[t—z—f_tZ—l +t(2—i)—iz+1 t(z +d) +iz+ 11
1 2(¢ — i) 22(C — 1) 2(z —4)(¢ — 1)
wQ(Z)_ﬁ aﬂmaclv(g)[?_lJr (z—1 _1+C(Z—i>_iz+1_
C(z+i)+iz+1 J¢—70
1 2(C +1) 22(C +1) 2(z —1)(C+1)
w3(2)_% amacgvg[C—z -1 ¢z—1 C(z—i)—iz+1

2(z +9)(C+1) _1} d¢
C(z+i)+iz+1 IC+id
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We will prove that lim,_,, 5 ;) Rew(z) =~ (£(v/2 — 1)i) = 0. We have

/_m—l)z‘ ) 2(z — i)du /_—<x/§+1>z'7 (z’t - 1) (tQEZZ;(z)iiti)

(\/5_1)7: u(z — Z) — iZ + 1 - (\/i—l)i t — Z

/—W?—W (z’t - 1) 2dt
—(\/i—l-l)i t—1 t—z

/—W—l)i (z’t - 1) 2dt
+ vy : .
—(V2+1)i t—1 ) t—1

and
/W—W (@ 2(z +i)du /—W?“)i (z’t - 1) 2(—iz + 1)dt
U/ pr—
i Gt i) tir+ 1 ) my  Nt—i ) (tz— 1)t —1)
/-W-l)i (z’t - 1) 22dt
—(\/§+1)i t_fl tZ - 1
/—W—W (z’t _ 1) 2dt
+ v : .
—(V2+1)i t—1 ) t—1
Thus,
1 V2D odt 1 (V2L 22dt
wl(Z) = = Iy(t P 4(t
27TZ 7(\64»1)1' t — Z 27TZ 7(\64»1)1' tZ — 1
1 V2D s 1\ 2dt
71—7/ 7(\/§+1)Z t_Z t_'l’
where
rn - {7 (@) (VD sis—(/2-1),
(i) =
(i), ~(V2-1)<t<(vV2-1)
Also,
1 V2D 1 1 1 V2D 2 z
R - Ty(t _ dt + — T4(t _
ewi(2) = 5 /(ﬂﬂﬁ (1) [t il z] T omi | aen (1) Lz 1

So, for t € (—(V2+1)i, (V2 — 1)i),
lim Rew; (z) = T'y(¢).

z—t

In particular,

lim  Rew;(z) =7 <—(\/§ — 1)2) =0,

z——(v/2-1)i
because of the continuity of I'y at —(v/2 — 1)i.
Similarly,
I 2t 1 [V 2dt
w1 (Z) P F5(t> + — F5 (t)

:27TZ —(ﬁ—l)i tZ — 1 27'[-7/ _(\/5_1)1' t — Z
1 V2D (—z’t - 1> 2dt

+ = ; 5
T (\/ﬁ—l)i fy t+ 2 t+ (A

Jat

29
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60
where
rit) = 470 -(V2-1)<t<(vV2-1),
’ — (), (V2-1)<t<(V2+1)
Also,
1 V2 P z (V2+1)i 1 1
Rewl(z) = %/(ﬂl)z F5(t) |:  — 1 —f‘ 2_ 1:| dt+ %/(ﬁl)z F5(t) |:t— s E— Z:| dt.
So, for t € (—(V2 —1)i, (V2 + 1)i),
liLI%Rewl(z) =T'5(¢).
In particular,
i Rew(:) =1 ((v2-1ji) =0,
because of the continuity of I's at (v/2 — 1)
We have
1 C4+2—2i dC 1 —C+2—2i d(—()
wel2) = 2 amacl%o C—z (—1 2mi agmaclv(o —C_—Z —C_—i
1 (z—2z+1dC 1 —(z—2zi+1d(— C)
21 Jaanac, 70 (z—=1 (—1 " ori a0NAC, 70 —(z—1 —(—
_ b (C)C-I—z—% ¢ 1 (_§)C+z—2@ d¢
2mi amacl7 (—z (—1i 2m m7 C—z (—1
1 (z—2zi+1 d¢ 1 - Cz—2z1+1 d¢
" omi amaclv( ) (z—1 (—i 2mi mv(—@) Cz—1 (-1
1 20¢—i) ] A 1 2:(C—i) ] d¢
C2mi BCIFG(O[C—Z }C—2+2m BCIFG(O{CZ—l 1}(—@
where 00N OC, = {—(: ( € 90N AC,} and
7€), ¢ € 002N ICh,
Ts(C) = 4 —v(=¢), ¢e€dnaCy,
0, QG@Cl\aD
Also,
L (=i C+i ] d¢
Reux(2) =g [ Til0 e
1 2¢—19) | E(¢+9) d¢
" omi aclrﬁ(o{@—l " -1 ] (—i
So, for ¢ € 0D N OCY,
ll_)HéRewg(Z) = FG(C)

In particular,
lim  Rews(z) = 7 (—(\/é - 1)@) — 0,
——(v2-1)i
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because of the continuity of I's at —(v/2 — 1)i. Also, we have

lim  Rews(z) =0.

z2—(V2-1)i
Similarly,
1 C+z+2i A 1 —(+2z+2id(=()
wa(2) 270 Jpanac, 7<) (—z (+i 2mi amacQV(o —(C—z —C+i
1 (z+2z+1d¢ 1 —Cz+2zi+1d(—()
BT L e S AT AL g e
1 (g)C+z+2i ¢ 1 (—§)<+Z+2i d¢
1 (242241 d¢ 1 (x4 241 dC
"o 20NAC, 70 (z—1 C(+i %/ama@)%_o Cz—1 ¢+
1 2(¢+14) a¢ 1 22(C+14) d¢
- 2mi 802F7<O{ (=2 1}C+i+2m' a@n(o{ (z—1 1}C+Z”
where QN IC; = {—(: ¢ € 92N IC,} and
7(€), ¢ € 002N ICxy,
I7(Q) = 4 —v(=0), (€N,
0, ¢ € 0Cy\ dD.
Also,
b (+i  C—i ] d¢
Rews() =5m /302 F<) [c iz 1}

;L I'7(¢) {

211 9Cs

So, for ( € 0D N 0Cy,

In particular,

lim Rews(z) =~ ((\/5 — 1)2) =0,

z—(v/2—1)i

because of the continuity of I'; at (v/2 — 1)i. Also, we have

lim  Rews(z) =0.
2——(v/2-1)i
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Now, we show that lim, ,; Rew(z) = v(1). We have

b (ﬂ_l)i[ 1 +_1 LoE L z—1
2mi J_(ay lt—2  t—z tz—1 tz—-1 tz—i)—iz+1
Z+1 z+1 zZ—1
+dz+ﬂ+%z+1+t@+®%%z+1+ﬂz—ﬁ—wz+Jdt
1 —1 ) z(C —1 . z—1)(C —1
e e R R
GHOCH) G0 Goi€) g de
C(z+1i)+iz+1 C(z+19)+iz+1 ((z—i)—iz+1 ¢—1
1 1 —1 z 1 z zZ—1 1
e I (G
NEED S IS (T SO I R
C(z+i)+iz+1 Clz+i)+iz+1 ((2—i)—iz+1 C+i

Multiplying this relation by (1) and subtracting the resulting quantity from Rew(z), for z €
00N oC, we get

. IV d
Rew(z)—v(l):—./amac 3(¢) [g_i""gj—_l] g_(i’

271

where 7(¢) = v(¢) — v(1) and 4(1) = 0. So lim,_,; Rew(z) = ~(1).
Similarly, for z € 092 N 0C5,

1 o [C+i (=i d¢
Rew(z)—’y(l)—ﬁ/ama@’ﬂo [§—2+C—2_1} C+i'

where 4(¢) = v(¢) —v(1) and 4(1) = 0. So lim,,; Rew(z) = ~(1). O
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