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1 Introduction

States onMV -algebras were introduced by Mundici [22] with the intent of measuring the average
truth-value of propositions in the  Lukasiewicz logic, which are generalizations of probability
measures on Boolean algebras, states onMV -algebras have been deeply investigated by Flaminio
and Montagna [16] and consequently, state pseudo MV -algebras (or state GMV -algebras) were
introduced by Rachunek and Šalounova [24]. The concept of a state BL-algebra was introduced
by Ciungu et al. [6] as an extension of the concept of a state MV -algebra. Subsequently, this
concept was extended by Dvurecenskij et al. [10] to RL-monoids (not necessarily commutative).
In Dvurecenskij [11] there are descriptions of completely subdirectly irreducible state-morphism
BL-algebras and this generalizes an analogous result for state-morphismMV -algebras presented
in Di Nola and Dvurecenskij [7] and Di Nola et al. [9]. Afterwards, Botur and Dvurecenskij [2]
presented a complete description of subdirectly irreducible state BL-algebras and general theory
of state-morphism algebras, that is, algebras of general type with state-morphism which is a
fixed idempotent endomorphism.

In this paper, we introduce some concepts of state ideals in a state MV -algebra, such as:
Boolean state ideals, primary state ideals and obstinate state ideals in a state MV -algebra
(A, σ) and give some of their properties. We present characterizations of obstinate state ideals
and primary state ideals. We study relations between obstinate state ideals and the other state
ideals in state MV -algebra (A, σ). We introduce state local, state locally finite, state chain and
state simple MV -algebras. Also, we show that M is a maximal state ideal of (A, σ) if and only
if (A/M, σ) is state locally finite, if I is an obstinate state ideal of (A, σ), then (A/I, σ) is a
state locally finiteMV -algebra, I is a primary state ideal of (A, σ) if and only if (A/I, σ) is state
local and if P is a prime state ideal of (A, σ), then (A/P, σ) is a state chain. Finally, we give a
characterization of state simple MV -algebras.

Definition 1. [3] An MV -algebra is a structure (A, ⊕, *, 0) where ⊕ is a binary operation,
* is a unary operation, and 0 is a constant such that the following axioms are satisfied for any
a, b ∈ A :
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(MV 1) (A, ⊕, 0) is an abelian monoid,
(MV 2) (a∗)∗ = a,
(MV 3) 0∗ ⊕ a = 0∗,
(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Note that 1 = 0∗ and the auxiliary operation � is as follow:

x� y = (x∗ ⊕ y∗)∗.

We say that the element x ∈ A has order n and we write ord(x) = n, if n is the smallest
natural number such that nx = 1, where nx := x ⊕ · · · ⊕ x (n-times). In this case we say that
the element x has a finite order, and write ord(x) < ∞. An MV -algebra A is locally finite if
every non-zero element of A has a finite order. We recall that the natural order determines a
bounded distributive lattice structure such that

x ∨ y = x⊕ (x∗ � y) = y ⊕ (x� y∗) and x ∧ y = x� (x∗ ⊕ y) = y � (y∗ ⊕ x).

Lemma 1.1. [4] In each MV -algebra, the following relations hold for all x, y, z ∈ A:
(1) x ≤ y if and only if y∗ ≤ x∗,
(2) if x ≤ y, then x⊕ z ≤ y ⊕ z and x� z ≤ y � z,
(3) x ≤ y if and only if x∗ ⊕ y = 1 if and if x� y∗ = 0,
(4) x, y ≤ x⊕ y and x� y ≤ x, y, x ≤ nx = x⊕ x⊕ · · · ⊕ x and xn = x� x� · · · � x ≤ x,
(5) x⊕ x∗ = 1 and x� x∗ = 0,
(6) if x ∈ B(A), then x ∧ y = x� y and x ∨ y = x⊕ y, for any y ∈ A,
(7) nx ∧my ≤ nm(x ∧ y),
(8) if x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t,
(9) x ∧ (x1 ⊕ x2 ⊕ · · · ⊕ xn) ≤ (x ∧ x1)⊕ · · · ⊕ (x ∧ xn),
(10) (x� y∗) ∧ (y � x∗) = 0,
where B(A) is the set of all complemented elements of L(A) such that L(A) is distributive lattice
with 0 and 1 on A.

Definition 2. [3] An ideal of an MV -algebra A is a nonempty subset I of A satisfying the
following conditions:
(I1) if x ∈ I , y ∈ A and y ≤ x then y ∈ I,
(I2) if x, y ∈ I, then x⊕ y ∈ I.

We denote by Id(A) the set of all ideals of an MV -algebra A.

Definition 3. [4] Let I be an ideal of an MV -algebra A. Then I is a proper ideal if I 6= A. A
proper ideal I is a prime ideal if and only if for all x, y ∈ A, x ∧ y ∈ I implies x ∈ I or y ∈ I.
• [1] An ideal I is called a Boolean ideal if x ∧ x∗ ∈ I, for all x ∈ A.

• [1] A proper ideal I is called a primary ideal if for every a, b ∈ A such that a � b ∈ I, there
exists an integer n > 0 such that an ∈ I or bn ∈ I.

• [13] A proper ideal I of A is called an obstinate ideal of A if x, y /∈ I imply x � y∗ ∈ I and
y � x∗ ∈ I, for all x, y ∈ A.

In an MV -algebra M , the distance function is defined as

d : M ×M −→M, d(x, y) := (x� y∗)⊕ (y � x∗).

Suppose that I is an ideal of an MV -algebra A. Define x ∼I y if and only if d(x, y) ∈ I if
and only if x � y∗ ∈ I and y � x∗ ∈ I. Then ∼I is a congruence relation on A. The set of all
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congruence classes is denoted by A/I, so A/I = {[x] : x ∈ A}, where [x] = {y ∈ A : x ∼I y}. We
can easily see that x ∈ I if and only if x/I = 0/I. The MV -algebra operations on A/I, given
by x/I ⊕ y/I = (x ⊕ y)/I and (x/I)∗ = x∗/I, are well defined. Hence (A/I,⊕, ∗, [0]) becomes
an MV -algebra [4, 23].

Definition 4. [15] A state MV -algebra is a pair (A, σ) such that A is an MV -algebra and σ is
a unary operation on A satisfying the following conditions:
(1) σ(1) = 1,
(2) σ(x∗) = σ(x)∗,
(3) σ(x⊕ y) = σ(x)⊕ σ(y 	 (x� y)),
(4) σ(σ(x)⊕ σ(y)) = σ(x)⊕ σ(y).

Lemma 1.2. [15] In a state MV -algebra (A, σ) the following conditions hold:
(a) σ(0) = 0,
(b) if x ≤ y, then σ(x) ≤ σ(y).
(c) σ(x⊕ y) ≤ σ(x)⊕ σ(y), and if x� y = 0, then σ(x⊕ y) = σ(x)⊕ σ(y),
(d) σ(x	 y) ≥ σ(x)	 σ(y) and if y ≤ x, then σ(x	 y) = σ(x)	 σ(y),
(e) letting d(x, y) = (x	 y)⊕ (y 	 x), we have that d(σ(x), σ(y)) ≤ σ(d(x, y)),
(f) σ(x)� σ(y) ≤ σ(x� y). Thus if x� y = 0, then σ(x)� σ(y) = 0,
(g) σ(σ(x)) = σ(x),
(h) σ(σ(x)� σ(y)) = σ(x)� σ(y),
(i) the image σ(A) of A under σ is the domain of an MV -subalgebra of A.

Definition 5. [15] A σ-ideal (or state ideal) of a stateMV -algebra (A, σ) is anMV -ideal closed
under σ. We will denote the set of all σ-ideals of (A, σ) by Iσ(A).

A proper state ideal of (A, σ) is called a maximal state ideal if it not strictly contained in
any proper state ideal of (A, σ).

Let Mlσ(A) be the set of all maximal state ideals of A. We set

Radσ(A) =
⋂
{I ∈Mlσ(A)}.

Lemma 1.3. [7] A state ideal I is a maximal state ideal if and only if for any a /∈ I there exists
an integer n > 0 such that (nσ(a))∗ = σ(a∗)n ∈ I.

Lemma 1.4. [7] Let (A, σ) be a state MV -algebra, I be a state ideal of A and a /∈ I. The state
ideal generated by I and a is the set

(I, a]σ = {x ∈ A : x ≤ i⊕ n(a⊕ σ(a)), i ∈ I, n ≥ 1}.

In particular, (a]σ = {x ∈ A : x ≤ n(a⊕ σ(a)), n ≥ 1}.

Definition 6. [14] A proper σ-ideal P of (A, σ) is called a prime σ-ideal (prime state ideal), if
for any a, b ∈ A such that (a⊕ σ(a)) ∧ (b⊕ σ(b)) ∈ P , a ∈ P or b ∈ P .

2 Obstinate state ideals of a state MV -algebra

We firstly present some definitions related to state ideals of a state MV -algebra.

Definition 7. A proper ideal I of A is called an obstinate state ideal of A if x, y /∈ I imply
σ(x)� σ(y)∗ ∈ I and σ(y)� σ(x)∗ ∈ I, for all x, y ∈ A.
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The following example shows that there exist obstinate state ideals and a state ideal may
not be an obstinate state ideal of (A, σ).

Example 1. Let A = {0, a, b, 1}, where 0 < a, b < 1. Define �, ⊕ and ∗ as follows:

� 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

∗ 0 a b 1
1 b a 0

Then (A,⊕,�, ∗, 0, 1) is an MV -algebra [23].
(i) Define

σ(x) =


1 if x = 1
b if x = a
a if x = b
0 if x = 0

We can easily prove that (A, σ) is a state MV -algebra, I = {0} and all A are state ideals of
(A, σ). Since b = b � b = σ(a) � σ(b)∗ /∈ I and a = a � a = σ(b) � σ(a)∗ /∈ I, hence I is not
obstinate state ideal of (A, σ).
(ii) Define

σ(x) =

{
1 if x = 1, or a
0 if x = 0, or b

We can easily show that (A, σ) is a state MV -algebra. Also, I1 = {0}, I2 = {0, b} and all A are
state ideals of (A, σ). We can check that I2 = {0, b} is an obstinate state ideal of (A, σ).

In the following proposition, we give necessary and sufficient conditions on a proper state
ideal to be an obstinate state ideal.

Proposition 2.1. A proper state ideal I of A is an obstinate state ideal if and only if for any
x ∈ A if x /∈ I there exists n ≥ 1 such that nσ(x)∗ ∈ I.

Proof. Suppose that I is a proper obstinate state ideal and x /∈ I. Since 1 /∈ I, then 0 =
σ(x)� σ(1)∗ ∈ I and σ(x)∗ = σ(1)� σ(x)∗ ∈ I. So nσ(x)∗ ∈ I, for n = 1.
Conversely, let x, y /∈ I. We show that σ(x)� σ(y)∗ ∈ I and σ(y)� σ(x)∗ ∈ I.
By hypothesis nσ(x)∗ ∈ I and mσ(y)∗ ∈ I, for some n,m ≥ 1. We know that σ(x)∗ ≤ nσ(x)∗

and σ(y)∗ ≤ nσ(y)∗. By ideal property σ(x)∗ ∈ I and σ(y)∗ ∈ I. Since σ(y) � σ(x)∗ ≤ σ(x)∗

and σ(x)� σ(y)∗ ≤ σ(y)∗, then σ(x)� σ(y)∗ ∈ I and σ(y)� σ(x)∗ ∈ I.

Theorem 2.1. Let I be an obstinate state ideal of (A, σ). Then I is a maximal state ideal of
(A, σ).

Proof. Let I be an obstinate state ideal which is not a maximal. So there exists a proper state
ideal J such that I ⊂ J . Suppose that a ∈ J \ I. Then by Proposition 2.1, nσ(a)∗ ∈ I for some
n ≥ 1. We know that σ(a)∗ ≤ nσ(a)∗. By the ideal property σ(a)∗ ∈ I and also σ(a)∗ ∈ J .
Since a ∈ J , so σ(a) ∈ J , hence σ(a)⊕ σ(a)∗ = 1 ∈ J , which is a contradiction.

In the following example we show that the converse of the above theorem may not hold.

Example 2. In Example 1 (i), we can check that I = {0} is a maximal state ideal. But I is
not an obstinate state ideal of (A, σ).
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Lemma 2.1. Let I be a proper state ideal of (A, σ). Then I is an obstinate state ideal if and
only if either x ∈ I or σ(x)∗ ∈ I for all x ∈ A.

Proof. Assume that I is an obstinate state ideal and x /∈ I. By Proposition 2.1, we get that
nσ(x)∗ ∈ I, for some n ≥ 1. We know that σ(x)∗ ≤ nσ(x)∗, then σ(x)∗ ∈ I and obtain the
result.
Conversely, let x /∈ I. We need to show that nσ(x)∗ ∈ I, for some n ≥ 1. By hypothesis, we get
that 1σ(x)∗ ∈ I. Hence I is an obstinate state ideal of (A, σ).

Definition 8. A state ideal I of (A, σ) is called Boolean state ideal of (A, σ) if (x ⊕ σ(x)) ∧
(x∗ ⊕ σ(x∗)) ∈ I.

Definition 9. A state MV -algebra (A, σ) is called a state Boolean algebra if for x, y ∈ A,
σ(x) ∧ σ(x∗) = 0 or σ(x) ∨ σ(x∗) = 1.

The following example shows that there exist a Boolean state ideals and a state ideal may
not be a Boolean state of (A, σ).

Example 3. Let A = {0, a, b, c, d, 1}, where 0 < a, b < c < 1 and 0 < b < d < 1. Define ⊕, �
and ∗ as follows:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

∗ 0 a b c d 1
1 d c b a 0

Then (A,⊕, ∗, 0, 1) is an MV -algebra [18]. Define

σ(x) =

{
0 if x = 0, b, or d
1 if x = 1, c, or a

We can easily check that (A, σ) is a state MV -algebra and I1 = {0}, I2 = {0, b, d} and A are
state ideals of (A, σ). Routine calculation shows that I2 is a Boolean state ideal of (A, σ) but
{0} is not Boolean state ideal of (A, σ), because (c⊕ σ(c)) ∧ (b⊕ σ(b)) = b /∈ {0}.

Proposition 2.2. If (A, σ) is state MV -algebra, then (A/I, σ) is a state MV -algebra, where
σ(x/I) = σ(x)/I.

Proof. First, we show that σ is well defined. Suppose that x/I = y/I. Then d(x, y) ∈ I. Since
I is a state ideal of (A, σ), σ(d(x, y)) ∈ I. It follows from Lemma 1.2 (e) that d(σ(x), σ(y)) ≤
σ(d(x, y)) ∈ I, hence d(σ(x), σ(y)) ∈ I. Thus σ(x)/I = σ(y)/I. Therefore σ(x/I) = σ(y/I).
Now, we prove that (A/I, σ) is a stateMV -algebra. Since (A, σ) is a stateMV -algebra, we have
(1) σ(1/I) = σ(1)/I = 1/I.
(2) σ((x/I)∗) = σ(x∗/I) = σ(x∗)/I = (σ(x))∗/I = (σ(x)/I)∗ = (σ(x/I))∗,
(3) σ((x ⊕ y)/I) = σ(x ⊕ y)/I = (σ(x) ⊕ σ(y 	 (x � y)))/I = σ(x)/I ⊕ σ(y 	 (x � y))/I =
σ(x/I)⊕ σ((y 	 (x� y))/I),
(4) σ(σ(x/I) ⊕ σ(y/I)) = σ(σ(x)/I ⊕ σ(y)/I) = σ((σ(x) ⊕ σ(y))/I) = (σ(σ(x) ⊕ σ(y)))/I =
(σ(x)⊕ σ(y))/I = σ(x)/I ⊕ σ(y)/I = σ(x/I)⊕ σ(y/I).
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Lemma 2.2. If I is a Boolean state ideal of (A, σ), then (A/I, σ) is a state Boolean algebra.

Proof. Let I be a state Boolean ideal. Then (x ⊕ σ(x)) ∧ (x∗ ⊕ σ(x∗)) ∈ I. It follows that
σ(x)/I ∧ σ(x∗)/I ≤ (x⊕ σ(x))/I ∧ (x∗ ⊕ σ(x∗))/I = 0/I. Hence σ(x)/I ∧ σ(x∗)/I = 0/I. Thus
(A/I, σ) is a state Boolean algebra.

Theorem 2.2. Let I be a prime and Boolean state ideal of (A, σ). Then I is an obstinate state
ideal of (A, σ).

Proof. Let I be a prime and Boolean state ideal of (A, σ). Then we have (x⊕σ(x)∧(x∗⊕σ(x)∗) ∈
I, for any x ∈ A. Since I is prime state, it follows that x ∈ I or x∗ ∈ I. So x ∈ I or σ(x)∗ ∈ I.
By Lemma 2.1, I is an obstinate state ideal of (A, σ).

Corollary 2.1. (Extension property for obstinate state ideals) Suppose that I and J are two
proper state ideals such that I ⊆ J . If I is an obstinate state ideal, then J is also an obstinate
state ideal of (A, σ).

Proof. Let I be an obstinate state ideal and I ⊆ J . Then by Theorem 2.1, I is a maximal
state ideal. Since J is a proper ideal, we get that I = J . Hence J is an obstinate state ideal of
(A, σ).

Remark 1. Let I and J be state ideals of A. We have

I ∨ J = (I ∪ J ] = {a ∈ A : a ≤ b⊕ c, for some b ∈ I and c ∈ J}.

It is a state ideal of (A, σ). If I or J is an obstinate state ideal, then by Corollary 2.1, we get
that I ∨ J is an obstinate state ideal (A, σ).

Lemma 2.3. {0} is an obstinate state ideal of (A, σ) if and only if every state ideal I of (A, σ)
is an obstinate state ideal.

Proof. Suppose that I is a arbitrary state ideal of (A, σ). Since {0} ⊆ I and {0} is an obstinate
state, then by Corollary 2.1, I is an obstinate state ideal of (A, σ). The converse is clear.

Definition 10. A state MV -algebra (A, σ) is called state locally finite if for every non-zero
element a ∈ A, σ(a) has a finite order.

Example 4. State MV -algebra (A, σ) of Example 1 (i) is state locally finite.

Theorem 2.3. M is a maximal state ideal of (A, σ) if and only if (A/M, σ) is state locally finite.

Proof. Let M is a maximal state ideal of (A, σ). We prove that for every nonzero element a/M ,
σ(a/M) has a finite order. Let a/M 6= 0/M . Then a /∈ M . So there is n ∈ N such that
(nσ(a))∗ = σ(a∗)n ∈M . We deduce that σ(a∗)n/M = 0/M , so (σ(a∗)n/M)∗ = 1/M . We obtain
nσ(a)/M = 1/M , hence nσ(a/M) = 1/M . Hence σ(a/M) has a finite order. Thus (A/M, σ) is
state locally finite.
Conversely, let I 6= M be a state ideal of (A, σ) such that M ⊂ I and consider a ∈ I \M . Since
a/M 6= 0/M , hence we have nσ(a/M) = 1/M , for some n ∈ N, so nσ(a)/M = 1/M , hence
(nσ(a))∗/M = 0/M , so (nσ(a))∗ ∈M ⊆ I. We have nσ(a), (nσ(a))∗ ∈ I. Thus I = A and M is
a maximal state ideal of (A, σ).

Corollary 2.2. Let I be an obstinate state ideal of (A, σ). Then (A/I, σ) is state locally finite.

Proof. Using Theorem 2.1, we obtain I is a maximal state ideal of (A, σ). Also, by Theorem
2.3, we deduce that A/I is state locally finite.
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Lemma 2.4. If {0} is an obstinate state ideal of (A, σ), then (A, σ) is a state locally finite
MV -algebra.

Proof. Suppose that {0} is an obstinate state ideal of (A, σ). It follows that from Theorem 2.1,
{0} is a maximal state ideal of A. Hence A/{0} ' A is state locally finite.

In the following example, we show that the converse of the above lemma is not true.

Example 5. Let A = {0, 1, 2}, where 0 < 1 < 2. Define �, ⊕ and ∗ as follows:

� 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

⊕ 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

∗ 0 1 2
2 1 0

Then (A,⊕, ∗, 0, 2) is a locally finite MV -algebra. Let σ be the identity on A. Then (A, σ) is a
state MV -algebra. But I = {0} is not an obstinate state ideal of (A, σ), since 2� 1∗ = 2� 1 =
1 /∈ I.

We recall that An MV -algebra A is said to be state semisimple if and only if it is nontrivial
and Radσ(A) = {0} [14].

Corollary 2.3. If {0} is an obstinate state ideal of (A, σ), then (A, σ) is a state semisimple .

Proof. Since {0} is an obstinate state ideal of (A, σ), it follows that from Theorem 2.1, {0}
is a maximal state ideal of (A, σ). Hence Radσ(A) = {0}. Thus (A, σ) is a state semisimple
MV -algebra.

In the following example, we show that the converse of the above corollary may not hold.

Example 6. In Example 1 (i), we have I = {0} is a state ideal of (A, σ) such that Radσ(A) =
{0}. Hence (A, σ) is a state semisimple MV -algebra but I = {0} is not an obstinate state ideal
of (A, σ).

Theorem 2.4. Let I be a state ideal of (A, σ). Then I is an obstinate state ideal if and only if
every ideal of A/I is an obstinate state ideal.

Proof. Assume that I is an obstinate state ideal of (A, σ). Let x/I /∈ {[0]}, from Lemma 2.1,
it is suffices to show (σ(x)/I)∗ ∈ {[0]}. Since x/I /∈ {[0]}, x/I 6= 0/I, hence x /∈ I. We
apply the hypothesis and obtain σ(x∗) ∈ I, then σ(x∗) = d(σ(x∗), 0) ∈ I. On the other hand
σ(x∗)/I = 0/I or σ((x/I)∗) = σ(x∗)/I ∈ {[0]}. Hence {[0]} is an obstinate state ideal of A/I.
Hence by Lemma 2.3, we coclude that every ideal of A/I is an obstinate state ideal.
Conversely, assume that every state ideal of the quotient algebra (A/I, σ) is an obstinate state
ideal and x ∈ A such that x /∈ I.
We must show that σ(x∗) ∈ I. By hypothesis, we get that x/I 6= 0/I, hence x/I /∈ {[0]}. Since
{[0]} is a state ideal of (A/I, σ). By hypothesis, {[0]} is an obstinate state ideal. Therefore
σ(x/I)∗ = σ(x∗)/I ∈ {[0]}, then σ(x∗)/I = 0/I. So σ(x∗) ∈ I. Hence I is an obstinate state
ideal of (A, σ).

Definition 11. A state MV -algebra (A, σ) is called local if it has only a maximal state ideal.

Definition 12. A proper σ-ideal I of (A, σ) is called a primary state ideal if for every a, b ∈ A
for which a� b ∈ I, there is n ≥ 1 such that σ(a)n ∈ I or σ(b)n ∈ I.
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Example 7. (i) Consider state MV -algebra of Example 3. Since I2 = {0, b, d} is only maximal
state ideal of (A, σ), hence (A, σ) is a local state MV -algebra. We can easily show that I2 is a
primary state ideal of (A, σ).
(ii) Consider the state MV -algebra in Example 1 (i). I = {0} is not a primary state ideal of
(A, σ), because a� b = 0 ∈ I but b = σ(a)n /∈ I and a = σ(b)n /∈ I.

Proposition 2.3. A state MV -algebra (A, σ) is local if and only if
ordσ(x) <∞ or ord(σ(x∗)) <∞, for every x ∈ A.

Proof. Let (A, σ) be local. Then it has only a maximal state ideal I. Let x ∈ A and ord(σ(x)) =
ord(σ(x∗)) = ∞. If (x]σ = A, then there is n ≥ 1 such that 1 = n(x ⊕ σ(x)), so 1 = σ(1) =
σ(n(x ⊕ σ(x)), and since 1 = σ(n(x ⊕ σ(x)) ≤ 2nσ(x), it follows that 2nσ(x) = 1, which is a
contradiction. Thus (x]σ is proper. Similarly, (x∗]σ is proper. Then (x]σ, (x

∗]σ ⊆ I, so x, x∗ ∈ I,
which is a contradiction. Conversely, suppose that there are I1, I2 ∈ Mlσ(A), I1 6= I2 and let
a ∈ I1 \ I2, for example. Then from Lemma 1.3, there is n ≥ 1 such that (nσ(a))∗ ∈ I2, so
σ(nσ(a))∗) ∈ I2. Let x = nσ(a). Since σ(x∗) ∈ I2, we deduce that ord(σ(x∗)) = ord(σ(x)∗) =∞
and from hypothesis, it follows that ord(σ(x)) < ∞, so there is m ≥ 1 such that mσ(x) = 1,
that is, mσ(nσ(a)) = 1. Since mσ(nσ(a)) ≤ m(nσ(σ(a)), we get that mnσ(a) = 1. But a ∈ I1,
thus 1 = mnσ(a) ∈ I1, which is a contradiction. Thus (A, σ) has only a maximal state ideal and
so (A, σ) is local.

Theorem 2.5. Let (A, σ) be a state MV -algebra. Then the following statements are equivalent:
(i) (A, σ) is local, (ii) every proper σ-ideal of (A, σ) is a primary σ-ideal.

Proof. (i)⇒ (ii) Suppose that (A, σ) is local and let I0 be the only maximal σ-ideal, let I be a
proper σ-ideal of (A, σ) and a, b ∈ A such that a� b ∈ I . Since I ⊆ I0, it follows that a� b ∈ I0.
So (a� b)∗ /∈ I0, thus a∗ /∈ I0 or b∗ /∈ I0, (because if a∗ ∈ I0, then b ≤ a∗ ⊕ (a� b) = a∗ ∨ b ∈ I0,
so b ∈ I0. Hence b∗ /∈ I0). Suppose that a∗ /∈ I0. Then I0 $ (a∗]σ, so (a∗]σ = A, so there is n ≥ 1
such that 1 = n(a∗ ⊕ σ(a∗)). Since 1 = σ(1) = σ(n(a∗ ⊕ σ(a∗)) ≤ 2nσ(a∗), we conclude that
2nσ(a∗) = 1, that is (2nσ(a∗))∗ = 0 ∈ I, hence (σ(a))2n ∈ I. Similarly, if b∗ /∈ I0, there is n ≥ 1
such that (σ(b))2n = 0 ∈ I. Thus I is a primary σ-ideal.
(ii)⇒ (i) Let I = {0} be a proper σ-ideal of (A, σ) and x ∈ A. Then x� x∗ = 0 ∈ I, so there is
n ≥ 1 such that σ(x)n ∈ I or σ(x∗)n ∈ I, that is (σ(x)n)∗ = 1 or(σ(x∗)n)∗ = 1. These mean that
nσ(x∗) = 1 or nσ(x) = 1. Thus ord(σ(x)) < ∞ or ord(σ(x)∗) = ord(σ(x∗)) < ∞. It follows by
Proposition 2.3 that (A, σ) is local.

Theorem 2.6. I is a primary state ideal of (A, σ) if and only if (A/I, σ) is state local.

Proof. Let I be a primary state ideal. By Proposition 2.3, it is sufficient to show that
ord(σ(x/I)) < ∞ or ord(σ(x∗/I)) < ∞, for every x/I ∈ A/I. Suppose that there exists
a/I ∈ A/I, such that ord(σ(a/I)) = ord(σ(a∗/I)) = ∞. We have a � a∗ = 0 ∈ I and since
I is a primary state ideal of (A, σ), there is n ≥ 1 such that σ(a)n ∈ I or σ(a∗)n ∈ I. Hence
σ(a)n/I = 0/I or σ(a∗)n/I = 0/I. It follows that nσ(a∗/I) = nσ(a∗)/I = (σ(a)n)∗/I = 1/I or
nσ(a/I) = nσ(a)/I = (σ(a∗)n)∗/I = 1/I, which is a contradiction.

Conversely, let (A/I, σ) be a locall state MV -algebra and a � b ∈ I such that σ(a)n /∈ I,
for all n ∈ N. Hence σ(a)n/I 6= 0/I, for all n ∈ N. Thus (σ(a)n/I)∗ 6= 1/I. It follows that
nσ(a∗/I) = nσ(a∗)/I 6= 1/I, for all n ∈ N, and so ord(σ(a∗/I)) = ∞. Since (A/I, σ) is a local
state MV -algebra, by Proposition 2.3, we conclude that ord(σ(a/I)) < ∞. This means there
exists m ∈ N such that mσ(a/I) = 1/I. Hence mσ(a)/I = 1/I and so(mσ(a)/I)∗ = 0/I. It
follows that σ(a∗)m/I = 0/I. We get σ(a∗)m ∈ I, for some m ∈ N. Thus I is a primary state
ideal of (A, σ).
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Theorem 2.7. If P is an obstinate state ideal of (A, σ), then P is a primary state ideal of
(A, σ).

Proof. Let a� b ∈ P such that for every n ≥ 1, σ(a)n /∈ P . Since P is an obstinate state ideal
and we have a /∈ P and 1 6∈ P , so σ(1)� σ(a)∗ ∈ P and σ(a)� σ(1)∗ ∈ P . Hence σ(a)∗ ∈ P , for
every n ≥ 1. By Lemma 1.2 (f), we have σ(a) � σ(b) ≤ σ(a � b) ∈ P . Hence σ(a) � σ(b) ∈ P
and so, σ(a∗)⊕ (σ(a)�σ(b) ∈ P . On the other hand σ(b) ≤ σ(a)∗∨σ(b) ∈ P . Hence σ(b)1 ∈ P ,
for n = 1. Therefore P is a primary state ideal of (A, σ).

The following example shows that a primary state ideal may not be an obstinate state ideal.

Example 8. Let A = {0, a, b, c, d, 1}. where 0 < a, c < d < 1 and 0 < a < b < 1. Define �, ⊕
and ∗ as follows:
� 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

⊕ 0 a b c d 1
0 0 a b c d 1
a a b b d 1 1
b b b b 1 1 1
c c d 1 c d 1
d d 1 1 d 1 1
1 1 1 1 1 1 1

∗ 0 a b c d 1
1 d c b a 0

Then (A,⊕,�, ∗, 0, 1) is an MV -algebra. Suppose that σ is identity, and so (A, σ) is a state
MV -algebra. It is clear that I = {0, c} is a primary state ideal but I is not an obstinate state
ideal, since if a, b /∈ I, we have b� a∗ = b� d = a /∈ I.

Definition 13. A stateMV -algebra (A, σ) is called a state chain, if for any x, y ∈ A, σ(x) ≤ σ(y)
or σ(y) ≤ σ(x).

Theorem 2.8. If P is a prime state ideal of (A, σ), then (A/P, σ) is a state chain.

Proof. Let P be a prime state ideal of (A, σ). Let x/P, y/P ∈ A/P . We show that σ(x/P ) ≤
σ(y/P ) or σ(y/P ) ≤ σ(x/P ). This means σ(x)/P ≤ σ(y)/P or σ(y)/P ≤ σ(x)/P , that is
σ(x)� σ(y)∗ ∈ P or σ(y)� σ(x)∗ ∈ P .

Consider a = σ(x) � σ(y)∗ and b = σ(y) � σ(x)∗. By Lemma 1.2 (h), we can easily show
that σ(a) = a and σ(b) = b, and so (a ⊕ σ(a)) ∧ (b ⊕ σ(b)) = 2a ∧ 2b ≤ 4(a ∧ b) = 0 ∈ P , by
hypothesis, we obtain a ∈ P or b ∈ P , that is σ(x)�σ(y)∗ ∈ P or σ(y)�σ(x)∗ ∈ P . This means
σ(x)/P ≤ σ(y)/P or σ(y)/P ≤ σ(x)/P . Thus (A/P, σ) is a state chain.

Proposition 2.4. Let (A, σ) be a state MV -algebra.
(i) If I is an obstinate ideal of σ(A), then σ−1(I) is an obstinate state of (A, σ).
(ii) If I is an obstinate state ideal of (A, σ), then σ(I) is an obstinate ideal of σ(A).

Proof. (1) If I is an ideal of σ(A), then by Proposition 4.6 in [7], it is proved that σ−1(I) is a
state ideal of A.
Now, suppose that I is an obstinate ideal of σ(A). Let a /∈ σ−1(I), so σ(a) /∈ I. Since I is an
obstinate ideal, we have σ(σ(a)∗) = σ(σ(a))∗ = σ(a)∗ ∈ I. Hence σ(a)∗ ∈ σ−1(I). Thus σ−1(I)
is an obstinate state ideal of (A, σ).
(2) Let I be a state obstinate ideal of (A, σ). By Proposition 4.6, [7], we have σ(I) = I ∩ σ(A).
Let σ(a) /∈ σ(I). Since σ(a) ∈ σ(A) and σ(I) = I ∩ σ(A), so σ(a) /∈ I, hence a /∈ I. Also,
since I is an obstinate state ideal of (A, σ), so σ(a)∗ ∈ I and hence σ(a)∗ = σ(a∗) = σ(σ(a∗)) =
σ(σ(a)∗) ∈ σ(I). Thus σ(I) is an obstinate state ideal of σ(A).
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Now, we introduce another kind of state MV -algebras and give a characterization of it.

Definition 14. A state MV -algebra (A, σ) is called state simple if it has exactly two ideals:{0}
and A.

We recall that for any state operator σ of A, the kernel of σ is the set Ker(σ) = {x ∈
A|σ(x) = 0}. A state operator σ on A is called faithful if Ker(σ) = {0}.

Theorem 2.9. Let (A, σ) be a state MV -algebra. Then the following are equivalent:
(1) (A, σ) is state simple,
(2) σ(A) is simple and σ is faithful.

Proof. (1) ⇒ (2) Let I be an ideal of σ(A) and I 6= {0}. It follows by Proposition 2.4 (1)
that σ−1(I) is a state ideal of (A, σ). Since (A, σ) is state simple, we have σ−1(I) = {0} or
σ−1(I) = A. We know that I ⊆ σ−1(I) (if x ∈ I, then σ(x) = x, that is, x ∈ σ−1(I)), we obtain
σ−1(I) 6= {0}. Thus σ−1(I) = A. Then 1 ∈ σ−1(I), that is 1 = σ(1) ∈ I. So we get I = σ(A) .
Thus σ(A) is simple.
Now, we prove that σ is faithful. We know thatKer(σ) is a state ideal of (A, σ) andKer(σ) 6= A.
It follows that Ker(σ) = {0}. Thus σ is faithful.
(2)⇒ (1) Let I be a state ideal of (A, σ) and I 6= {0}. By Proposition 2.4 (2), we have σ(I) is
an ideal of σ(A). Since σ(A) is simple, we obtain that σ(I) = {0} or σ(I) = σ(A). Since σ is
faithful and I 6= {0}, we obtain σ(I) 6= {0}. Thus σ(I) = σ(A). Then 1 ∈ σ(I), that is, 1 ∈ I.
It follows that I = A. Thus (A, σ) is state simple.

The following example shows that if σ(A) is simple it does not necessarily mean that σ is
faithful and (A, σ) is state simple.

Example 9. Let Ω = {1, 2} and A = P (Ω) = {{1}, {2}, {1, 2}, ∅}, with operations ⊕ = ∪,
� = ∩ and A∗ = Ω − A, for any A ∈ A be an MV -algebra. Define σ(A) = ∅, if A = ∅, {1}
and σ(A) = {1, 2}, if A = {2}, {1, 2}, for all A ∈ A. We can easily check that (A, σ) is a state
MV -algebra. Clearly σ(A) = {∅,Ω} is simple. But (A, σ) is not state simple, because {∅, {1}}
and {∅} are state ideals of (A, σ). Also, σ is not faithful.
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