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1 Introduction

Let us consider the dynamic viscoelastic problem based on the Maxwell model: in the
cylinder Q={D × [0 ≤ t ≤ t1]}, where D ⊂ R3 is a simply-connected domain with a suffi-
ciently smooth boundary γ. Let us denote by γt = γ × [0, t1] the column-vectors of deformation
and stress : −→ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)T , −→σ = (σ11, σ22, σ33, σ12, σ13, σ23)T , where T means
transposition, and the column-vector of velocity −→υ = (υ1, υ2, υ3)T .

As shown in work [1] the statement of the problem in tension-rates may be represented as
follows:

∂−→υ
∂t

+R∗−→σ =
−→
f , (1.1)

∂−→ε
∂t
−R
−→
V = 0, (1.2)

B
∂−→σ
∂t

+ C−→σ =
∂−→ε
∂t

. (1.3)

Here
−→
f is the vector of mass force,

B =


a1 b1 b1 0 0 0
b1 a1 b1 0 0 0
b1 b1 a1 0 0 0
0 0 0 c1 0 0
0 0 0 0 c1 0
0 0 0 0 0 c1

, C =


a2 b2 b2 0 0 0
b2 a2 b2 0 0 0
b2 b2 a2 0 0 0
0 0 0 c2 0 0
0 0 0 0 c2 0
0 0 0 0 0 c2

,

a1 =
1

E
, b1 = −

ν

E
, c1 =

2(1 + ν)

E
, a2 =

1

3Θ
, b2 = −

1

6Θ
, c2 =

1

Θ
,

E - the Young modulus , ν - the Poisson ratio. The matrices B, C are permutable and are of
the type described in work [2], R is the following linear matrix differential operator:
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R =

∇1 0 0 ∇2 ∇3 0
0 ∇2 0 ∇1 0 ∇3

0 0 ∇3 0 ∇1 ∇2

T

, R∗ = −RT , ∇i = ∂
∂xi

, i = 1, 2, 3.

Equation (1.1) expresses the law of conservation of momentum, if the volumetric density
ρ ≡ 1. Relation (1.2) is a corollary of the tension-displacement relation: −→ε = R−→u .

Here −→u = (u1, u2, u3)T is the displacement vector. The vectors of displacement −→u and
velocity −→υ are connected by the relation −→υ = ∂−→u

∂t
. Relation (1.3) is a constitutive equation for

the Maxwell viscoelastic medium. A solution to system (1.1)-(1.3) is sought in the cylinder Q
and is such that

−→u (x, 0) = −→ϕ (x),
∂−→u
∂t

(x, 0) =
−→
ψ (x), x ∈ D,

hence

−→υ (x, 0) =
−→
ψ (x), −→ε (x, 0) = R−→ϕ (x), (1.4)

The displacements −→u (x, t) are determined from the relation

−→u (x, t) = −→ϕ (x) + t
−→
ψ (x) +

t∫
0

(t− s)−→r (x, s)ds,

−→r =
−→
f −R∗−→σ .

On the lateral surface of the cylinder Q the desired solution satisfies the homogeneous bound-
ary condition

3∑
k=1

σik(x, t)nk = 0, (x, t) ∈ γt. (1.5)

Here n = (n1, n2, n3)T is the normal vector to γ.
Determination of the initial data for −→σ (x, t) is described in work [2]. Following [1] we

reformulate problem (1.1)-(1.5) in terms of tension; let us set
−→
F = R

−→
f , then

B
∂2−→σ
∂t2

+ C
∂−→σ
∂t

= −RR∗−→σ +
−→
F , (1.6)

−→σ (x, 0) = −→g (x),
∂−→σ
∂t

(x, 0) = −→p (x). (1.7)

Let us call problem (1.5) - (1.7) Problem I. Work [2] demonstrates stabilization of the solution
to Problem I to the solution of the static elasticity problem:

R∗−→σ y(x) +
−→
F (x) = 0, −→σ y(x) = B−→ε y(x),

3∑
k=1

σyik(x)nk = 0, x ∈ γ. (1.8)

Problem I behaves like a parabolic equation and it is possible to use estimates for solutions
of parabolic equations. In [2] there is the estimate

‖−→σ −−→σ y‖ ≤ e−βt ‖−→σ (x, 0)−−→σ y(x)‖ ,

where β > 0 is a constant. The equality

‖−→σ ‖2
= (B

∂−→σ
∂t

,
∂−→σ
∂t

) + β
d

dt
(B−→σ ,−→σ ) + ((A− 2α2B − αC)−→σ ,−→σ ),
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demonstrates that A− 2α2B − αC > 0, A = −RR∗.
The existence and uniqueness theorem for the solution to Problem I is proved in [3].
In accordance with the fictitious domain method [5], [6], [3], [7] let us supplement the initial

domain D with a certain domain D1, consider the domain D0 = D ∪D1 with the boundary Γ ,
Γt = Γ × [0, t1], Q1 = D1 × [0, t1] and the following auxiliary problem

Lα
−→σ α =

−→
F , (x, t) ∈ Q, Lα

−→σ α = 0, (x, t) ∈ Q1,

3∑
k=1

−→σ α
jknk = 0, (x, t) ∈ γt −→σ α(x, 0) = 0, x ∈ D1, (1.9)

−→σ α(x, 0) = −→g (x), x ∈ D, ∂−→σ α

∂t
(x, 0) = 0, x ∈ D1,

∂−→σ α

∂t
(x, 0) = −→p (x), x ∈ D,

3∑
k=1

σαik(x, t)nk = 0, (x, t) ∈ Γt.

Here

L−→σ ≡ B
∂2−→σ
∂t2

+ C
∂−→σ
∂t

= A−→σ ,A−→σ = −RR∗−→σ , Lα−→σ α ≡ B
∂2−→σ α

∂t2
+ C

∂−→σ α

∂t
= aαA−→σ α,

aα =

{
1, x ∈ D

α−2, x ∈ D1,
α > 0 - is the small parameter.

On the curve γt of discontinuity of the coefficient let us lay the matching condition

−→σ α|+γt = −→σ α|−γt ,
∂−→σ α

∂N
|+γt =

M

α

∂−→σ α

∂n
|−γt , (1.10)

where ∂
∂N

is the conormal derivative, ∂
∂n

is the normal derivative.
Signs "+" or "-" mean the limit values of the functions from inside or outside the boundary γt.

The parameter M takes values 1 or -1. Let us introduce the following series into consideration:

S1 =
∞∑
k=0

αk
−→
V k in Q, S2 =

∞∑
k=1

αk
−→
W k in Q1, (1.11)

If we substitute (1.11) in (1.9), then we get the following relations for determination of
−→
V k

and
−→
W k :

L
−→
V 0 =

−→
F , (x, t) ∈ Q, Lα

−→
W 1 = 0, (x, t) ∈ Q1,

−→
V 0(x, 0) = −→g (x),

∂
−→
V0

∂t
(x, 0) = −→p (x), x ∈ D,

−→
W 1(x, 0) = 0,

∂
−→
W 1

∂t
(x, 0) = 0, x ∈ D1,

3∑
k=1

(V0)iknk = 0, (x, t) ∈ γt,
∂
−→
W 1

∂n
=
M

α

∂
−→
V 0

∂N
, (x, t) ∈ γt,

3∑
k=1

(
−→
W 1)iknk = 0, (x, t) ∈ Γt,
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and for k ≥ 1

L
−→
V k = 0, (x, t) ∈ Q, Lα

−→
W k+1 = 0, (x, t) ∈ Q1, (1.12)

−→
V k(x, 0) = 0,

∂
−→
V k

∂t
(x, 0) = 0, x ∈ D,

−→
W k+1(x, 0) = 0,

∂
−→
W k+1

∂t
(x, 0) = 0, x ∈ D1,

−→
V k =

−→
W k, (x, t) ∈ γt,

3∑
i=1

(
−→
W k+1)mini = 0, (x, t) ∈ Γt.

We note that
−→
V k ∈ W 2,1

2 (Q), k = 0, 1... ,
−→
W k W 2,1

2 (Q1), k = 1, 2, ...

Theorem 1.1. There exists α0 such that for all 0 < α < α0, the series S1 and S2 are absolutely
convergent in the spaces W 2,1

2 (Q), W 2,1
2 (Q1) respectively, and the following equalities take place:

−→σ α = S1, (x, t) ∈ Q, −→σ α = S2, (x, t) ∈ Q1, (1.13)

where −→σ α is the solution to problem (1.9).

Proof. We have the evident a priori estimates∥∥∥−→W k

∥∥∥
W 2,1

2 (Q1)
≤ C2

∥∥∥∥∥∂
−→
Wk

∂n

∥∥∥∥∥
W

1/2,1
2 (γt)

≤ C2

∥∥∥∥∥∂
−→
V K−1

∂N

∥∥∥∥∥
W

1/2,1
2 (γt)

≤ C2C3

∥∥∥−→V k−1

∥∥∥
W 2,1

2 (Q)
, (1.14)

where C2, C3 are constants which depend on the domains D, D1 and do not depend on α. Let
us prove the convergence of the series S1 in W 2,1

2 (Q) and S2 in W 2,1
2 (Q1). We note that∥∥∥−→V k

∥∥∥
W 2,1

2 (Q)
≤ C4

∥∥∥−→V ∥∥∥
W

3/2,1
2 (γt)

= C4

∥∥∥−→W k

∥∥∥
W

3/2,1
2 (γt)

≤ C4C5

∥∥∥−→W k

∥∥∥
W 2,1

2 (Q1)
,

and using (1.8), (1.14) we have∥∥∥−→V k

∥∥∥
W 2,1

2 (Q)
≤ C6

∥∥∥−→V k−1

∥∥∥
W 2,1

2 (Q)
, k ≥ 1,

∥∥∥−→V 0

∥∥∥
W 2,1

2 (Q)
≤ C1(

∥∥∥−→F ∥∥∥
L2(Q)

+ ‖p‖L2(D) +

t1∫
0

‖g‖W 1
2 (D) dt), (1.15)

where C6 = C2C3C4C5.
Assuming that α < α0 = C−1

6 , we obtain that the series S1 converges absolutely in W 2,1
2 (Q)

and, respectivaly, the series S2 absolutely converges inW 2,1
2 (Q1). By multiplying the first equality

in (1.12) by αk and the second one by αk+1 and
−→
W k by αk and by summing over k, we have

LS1 =
−→
F , (x, t) ∈ Q, LαS2 = 0, (x, t) ∈ Q1.

Similarly we get that

S1(x, 0) = −→g (x),
∂S1

∂t
(x, 0) = −→p (x), x ∈ D, S2(x, 0) = 0,

∂S2

∂t
(x, 0) = 0, x ∈ D,

S1 = S2, (x, t) ∈ γt,
∂S2

∂n
=
M

α

∂S1

∂N
, (x, t) ∈ γt, (1.16)

S2(x, t) = 0, (x, t) ∈ Γt.
Hence we obtain that −→σ α = S1 in Q, −→σ α = S2 in Q1, if 0 < α < α0.
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From the proof of this theorem it follows that the following estimates are true∥∥−→σ −−→σ α
+

∥∥
W 2,1

2 (Q)
≤ C7α,

∥∥−→σ −−→σ α
−
∥∥
W 2,1

2 (Q)
≤ C8α. (1.17)

Here−→σ α
+ = −→σ α, if M = 1, −→σ α

− = −→σ α if M = −1, −→σ is the solution to Problem I, and
C7, C8 > 0 depend on D but do not depend on α.

Theorem 1.2. For all 0 < α < α0 the following estimates take place, where σ̄ is the solution
to Problem I, σ̄α+, σ̄α− are the solutions to auxiliary problem (1.9) for M = 1, and M = −1
respectively: ∥∥∥∥−→σ − 1

2
(−→σ α

+ +−→σ α
−)

∥∥∥∥
W 2,1

2 (Q)

≤ C9α
2, (1.18)

−→σ α = S1, (x, t) ∈ Q, −→σ α = S2, (x, t) ∈ Q1. (1.19)

where −→σ α is the solution to Problem I, and C9 > 0 depends on D but does not depend on α.

Proof. By using Theorem 1.1 we have

−→σ α
+ =

∞∑
k=0

αk
−→
V +
k , (x, t) ∈ Q, −→σ α

− =
∞∑
k=0

αk
−→
W+

k , (x, t) ∈ Q1. (1.20)

Here
−→
V +
k ,
−→
W+

k are solutions to (1.12) for M=1.
In accordance with Theorem 1.2. let us represent −→σ α

− in the following form

−→σ α
− =

∞∑
k=0

αk
−→
V −k , (x, t) ∈ Q, −→σ α

+ =
∞∑
k=0

αk
−→
W−

k , (x, t) ∈ Q1, (1.21)

where
−→
V −k ,
−→
W−

k are solutions to (1.11) for M= -1.
We obtain that

−→
V +

0 ≡
−→
V −0 ≡ −→σ is a solution to Problem I.

Let us introduce the following notation
−→
W 1 =

−→
W+

1 +
−→
W−

1 , where the function
−→
W 1 satisfies

the following conditions

Lα
−→
W 1 = 0, (x, t) ∈ Q1,

∂
−→
W 1

∂n
= 0, (x, t) ∈ γt,

−→
W 1(x, 0) = 0,

∂
−→
W 1

∂t
(x, 0) = 0, x ∈ D1,

−→
W 1(x, t) = 0, (x, t) ∈ Γt.

Hence we obtain
−→
W 1 = 0 or

−→
W+

1 = −
−→
W−

1

Further we introduce
−→
V =

−→
V +

1 +
−→
V −1 , where the function

−→
V 1 satisfies the problem

L
−→
V 1 = 0, (x, t) ∈ Q,

−→
V 1(x, 0) = 0,

∂
−→
V 1

∂t
(x, 0) = 0, x ∈ D,

−→
V 1(x, t) = 0, (x, t) ∈ Γt.

From here we have
−→
V 1 = 0, or

−→
V +

1 = −
−→
V −1 .
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By introducing next
−→
W 2 =

−→
W+

2 −
−→
W−

2 ,
−→
V 2 =

−→
V +

2 −
−→
V −2 , we obtain that

−→
W+

2 =
−→
W−

2 ,
−→
V +

2 =
−→
V −2 . (1.22)

By continuing the process we come to the equalities
−→
V +
k =
−→
V −k if k is even,

−→
V +
k = −

−→
V −k if

k is odd (1.21).
By using (1.21) and substituting (1.19),(1.20), we have

−→σ α
+ = −→σ + α

−→
V +

1 + α2−→V +
2 + ... (1.23)

−→σ α
− = −→σ − α

−→
V +

1 + α2−→V +
2 + ... (1.24)

By adding equalities (1.22),(1.23) and by using estimates (1.17) for 0 < α < α1, we obtain
that ∥∥∥∥−→σ − 1

2
(−→σ α

+ +−→σ α
−)

∥∥∥∥
W 2,1

2 (Q)

≤ α2
∥∥∥−→V +

2 + α2−→V +
4 + ...

∥∥∥
W 2,1

2 (Q)
≤ C8α

2
∥∥∥−→V +

0

∥∥∥
W 2,1

2 (Q)

≤ C9α
2,

where C8 = C2
6 .

Then for x ∈ D and 0 < α < α0 there is a pointwise two-sided inequality:

O(α2) + min
〈
σ̄α+, σ̄

α
−
〉
6 σ̄ 6 max

〈
σ̄α+, σ̄

α
−
〉

+O(α2)
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