
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2019, Volume 10, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Nur-Sultan, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia),
N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Cae-
tano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia),
A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Gold-
man (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kaza-
khstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kaza-
khstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner
(Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristo-
foris (Italy), V.G. Maz’ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan),
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1 Introduction

We study the potential space HG
E ≡ HG

E (Rn) on the n-dimensional Euclidean space Rn

HG
E (Rn) = {u = G ∗ f : f ∈ E(Rn)}, (1.1)

where E(Rn) is a rearrangement-invariant space (RIS) in the axiomatics of the book C. Bennet,
R. Sharpley [1]. The kernel G is called admissible if

G ∈ L1(Rn) + E ′(Rn), (1.2)

where E ′(Rn) is the associated space for an RIS E(Rn), that is, E ′(Rn) consists of all measurable
functions g for which

‖g‖E′(Rn) = sup


∣∣∣∣∣∣
∫
Rn

g fdµ

∣∣∣∣∣∣ : f ∈ E(Rn), ‖f‖E(Rn) ≤ 1

 <∞. (1.3)

For Banach spaces of measurable functions on Rn the sum of spaces A0 + A1 (as in (1.2)) is
determined in the following way:

A0 + A1 = {f = f0 + f1 : f0 ∈ A0, f1 ∈ A1} (1.4)

with
‖f‖A0+A1 = inf

f0+f1=f
{‖f0‖A0 + ‖f1‖A1} , (1.5)

where the infimum is taken over all representations f = f0 + f1, fi ∈ Ai; i = 0, 1 (see [1]).
Two types of conditions on admissible kernels will be considered that lead to the spaces of the
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generalized Bessel and Riesz potentials. These constructions generalize both classical Bessel and
Riesz potentials, studied in the books of S.M. Nikolskii [9], E.M. Stein [11], and V.G. Maz’ya
[8], as well as their generalizations, considered in [5, 6] by M.L. Goldman and in [7] by A.
Gogatishvili, H. Neves and B. Opitz.

In this paper, we develop the results obtained in our work [2]. In the general case, represen-
tation (1.1) for the potential u ∈ HG

E (Rn) may not be unique, so the norm of u is defined by the
formula

‖u‖HG
E

= inf{‖f‖E : f ∈ E(Rn), G ∗ f = u}, (1.6)

where the infimum is taken over all representations of form (1.1) for a given potential u (factor
norm). Here the convolution G ∗ f is defined in a standard way as the integral

(G ∗ f)(x) =

∫
Rn

G(x− y)f(y)dy, (1.7)

Theorem 1.1. ([5; Theorem 2.1]). Let G be an admissible kernel. Then, integral (1.7) converges
for almost all x ∈ Rn. Furthermore, HG

E (Rn) is a Banach space,

HG
E (Rn) ⊂ E(Rn) + L∞(Rn), (1.8)

‖u‖E+L∞ ≤ ‖G‖L1+E′‖u‖HG
E
, , u ∈ HG

E . (1.9)

For the case of admissible kernels, we consider the decreasing rearrangements u∗ of potentials
u with respect to the Lebesque measure in Rn, and

u∗∗(t) = t−1

t∫
0

u∗(τ)dτ, t ∈ R+ = (0,∞).

We introduce the following cones of decreasing rearrangements on (0, T ) with T ∈ (0,∞]
equipped with positively homogeneous functionals:

M(T ) = MG
E (T ) = {h(t) = u∗(t), t ∈ (0, T ) : u ∈ HG

E (Rn)}, (1.10)

ρM(T )(h) = inf{‖u‖HG
E

: u ∈ HG
E (Rn); u∗(t) = h(t), t ∈ (0, T )} (1.11)

and
M̃(T ) = M̃G

E (T ) = {h(t) = u∗∗(t), t ∈ (0, T ) : u ∈ HG
E (Rn)}, (1.12)

ρM̃(T )(h) = inf{‖u‖HG
E

: u ∈ HG
E (Rn); u∗∗(t) = h(t), t ∈ (0, T )}. (1.13)

The conesMG
E (T ) and M̃G

E (T ) define local (for T ∈ R+) or global (for T =∞) integral properties
of potentials u ∈ HG

E and of their maximal functions Mu by using the relation (Mu)∗ ∼= u∗∗, see
[1]. Thus, for RIS X(Rn) with T =∞

HG
E (Rn) ⊂ X(Rn)⇔MG

E (∞) 7→ X̃(R+). (1.14)

Here X̃(R+) is the Luxemburg representation for the RIS X(Rn) (see [1]). The embedding of
the cones in a RIS:

MG
E (T ) 7→ X̃(0, T ) (1.15)

means that h ∈ MG
E (T ) ⇒ h ∈ X̃(0, T ) and there is a constant d = d(E,G, T, X̃) ∈ R+, such

that

‖h‖X̃(0,T ) ≤ dρM(T )(h), h ∈MG
E (T ). (1.16)

It should be noted that the cones of decreasing rearrangements for potentials are very com-
plicated. Therefore, the problem of their equivalent descriptions in more transparent terms, and
the equivalent constructive conditions for embeddings of type (1.15) is of particular interest.
This work is devoted to this problem.
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2 On the covering of cones of monotonic functions on the positive
semi-axis

Let T ∈ (0,∞]. We denote by Ω(T ) the set of functions ϕ on R+ = (0,∞) with the properties1) 0 < ϕ(t) ↓, ϕ(t+ 0) = ϕ(t),
t∫

0

ϕdξ <∞, t ∈ (0, T ),

2) if T <∞, then ϕ(t) = 0, t ∈ [T,∞).

(2.1)

For n ∈ N, ϕ ∈ Ω(T ) we introduce the functions

fϕ(t, τ) = ϕ(max{t, τ}) =

{
ϕ(t), 0 < τ ≤ t,

ϕ(τ), t < τ <∞;
(2.2)

f̌ϕ(t, τ) = ϕ(max{2nt, 2nτ}) =

{
ϕ(2nt), 0 < τ ≤ t,

ϕ(2nτ), t < τ <∞;
(2.3)

f̃ϕ(t, τ) =

1
t

t∫
0

ϕ(ξ)dξ, 0 < τ ≤ t,

ϕ(τ), t < τ <∞.
(2.4)

We note that if T <∞ then

fϕ(t, τ) = 0, t ≥ T, τ ∈ R+; f̌ϕ(t, τ) = 0, t ≥ 2−nT, τ ∈ R+. (2.5)

Let Ẽ(R+) be RIS with the norm ‖ · ‖Ẽ(R+), Ẽ ′(R+) be the associated RIS, and

Ẽ↓(R+) =
{
g ∈ Ẽ(R+) : 0 ≤ g ↓; g(t+ 0) = g(t), t ∈ R+

}
, (2.6)

and if T <∞
Ẽ↓(0, T ) =

{
g ∈ Ẽ↓(R+) : g(t) = 0, t ∈ [T,∞)

}
. (2.7)

We introduce the following cones of non-negative functions on R+ :

K(T ) = Kϕ,Ẽ(T ) =

h(t) ≡ h(g; t) :=

∞∫
0

fϕ(t, τ)g(τ)dτ : g ∈ Ẽ↓(0, T )

 , (2.8)

Ǩ(T ) = Ǩϕ,Ẽ(T ) =

ȟ(t) ≡ ȟ(ǧ; t) :=

∞∫
0

f̌ϕ(t, τ)ǧ(τ)dτ : ǧ ∈ Ẽ↓(0, T )

 , (2.9)

K̃(T ) = K̃ϕ,Ẽ(T ) =

h̃(t) ≡ h̃(g̃; t) :=

∞∫
0

f̃ϕ(t, τ)g̃(τ)dτ : g̃ ∈ Ẽ↓(0, T )

 , (2.10)

equipped respectively with the positive homogeneous functionals

ρK(T )(h) = inf
{
‖g‖Ẽ(R+) : g ∈ Ẽ↓(0, T ); h(g; t) = h(t), t ∈ R+

}
(2.11)

ρǨ(T )(ȟ) = inf
{
‖ǧ‖Ẽ(R+) : ǧ ∈ Ẽ↓(0, T ); ȟ(ǧ; t) = ȟ(t), t ∈ R+

}
(2.12)
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ρK̃(T )(h̃) = inf
{
‖g̃‖Ẽ(R+) : g̃ ∈ Ẽ↓(0, T ); h̃(g̃; t) = h̃(t), t ∈ R+

}
. (2.13)

In functional (2.11), the lower bound is taken over all functions g ∈ Ẽ↓(0, T ), such that the
function h(g; t) in the form of integral (2.8) coincides with a given function h ∈ K(T ). The same
refers to functionals (2.12), (2.13).

The positive homogeneity of the functionals means that h ∈ K(T ), α ≥ 0 ⇒ ρK(T )(αh) =
αρK(T )(h); similarly for ρǨ(T ) and ρK̃(T ).

Remark 1. For ϕ ∈ Ω(T ) the following inequalities hold:

ϕ(2nt) ≤ ϕ(t); ϕ(t) ≤ 1

t

∫ t

0

ϕdξ, t ∈ R+. (2.14)

Therefore,
f̌ϕ(t, τ) ≤ fϕ(t, τ) ≤ f̃ϕ(t, τ), t, τ ∈ R+. (2.15)

Remark 2. Everywhere in this paper we require that for any t ∈ R+

fϕ(t, ·) ∈ Ẽ ′(R+), f̌ϕ(t, ·) ∈ Ẽ ′(R+), f̃ϕ(t, ·) ∈ Ẽ ′(R+). (2.16)

In the case T < ∞ conditions (2.16) hold for any ϕ ∈ Ω(T ) and for any RIS Ẽ(R+), since
in this case 0 ≤ fϕ(t, τ), f̌ϕ(t, τ), f̃ϕ(t, τ) are bounded decreasing functions of the variable τ
with a compact support. Such functions belong to L1(R+)∩L∞(R+), and, therefore, to any RIS
Ẽ ′(R+).

In the case T =∞ each conditions in (2.16) is equivalent to the fact that for t ∈ R+

ϕ(·)χ(t,∞)(·) ∈ Ẽ ′(R+). (2.17)

Conditions (2.16) imply the following estimates for t ∈ R+:

0 ≤ h(t) ≤‖ fϕ(t, ·) ‖Ẽ′(R+) ρK(T )(h), h ∈ K(T ); (2.18)

0 ≤ ȟ(t) ≤‖ f̌ϕ(t, ·) ‖Ẽ′(R+) ρǨ(T )(ȟ), ȟ ∈ Ǩ(T ); (2.19)

0 ≤ h̃(t) ≤‖ f̃ϕ(t, ·) ‖Ẽ′(R+) ρK̃(T )(h̃), h̃ ∈ K̃(T ). (2.20)

Indeed, for h ∈ K(T ) by the Hölder inequality from representation (2.8) it follows that

0 ≤ h(t) ≤‖ fϕ(t, ·) ‖Ẽ′(R+)‖ g ‖Ẽ(R+), ∀g ∈ Ẽ↓(0, T ).

Passing to the lower bound over all g ∈ Ẽ↓(0, T ) for which h(g; t) = h(t), we obtain, by (2.11),
inequality (2.18). Similarly, inequalities (2.19) and (2.20) are derived.

Remark 3. From estimates (2.18), (2.19), (2.20) it follows the non-degeneracy of functionals
(2.11), (2.12), (2.13). Indeed, if for h ∈ K(T ) we have ρK(T )(h) = 0, then from (2.18) it follows
that h(t) = 0, t ∈ R+. Similarly, for ȟ ∈ Ǩ(T ) and h̃ ∈ K̃(T ).

Suppose that on a subset L ⊂ L+
0 (R+) we introduce a partial order relation ≺, subordinate to

a pointwise estimate almost everywhere: h1, h2 ∈ L, h1 ≤ h2 a.e. on R+ implies that h1 ≺ h2.
Let K,M ⊂ L be some cones, equipped with non-degenerate positively homogeneous functionals
ρK and ρM .
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Definition 1. A cone M covers a cone K with respect to the order ≺ with covering constants
c0 ∈ (0,∞), c1 ∈ [0,∞), if for any h1 ∈ K there is h2 ∈M , such that

ρM(h2) ≤ c0ρK(h1); h1 ≺ h2 + c1ρK(h1). (2.21)

In the case when the order relation is determined by a pointwise estimate, we consider a pointwise
covering of cones with covering constants c0, c1.

Notation: K ≺ M means that a cone M covers a cone K; K ≈ M ⇔ K ≺ M ≺ K means
that equivalence of cones.

Pointwise covering: K ≤M , pointwise equivalence: K ∼= M .
In the case of a pointwise covering, relations (2.21) take the form

ρM(h2) ≤ c0ρK(h1), h1(t) ≤ h2(t) + c1ρK(h1)(a.e.). (2.21′)

For an order relation subordinated to a pointwise estimate, we have

K ≤M ⇒ K ≺M ; K ∼= M ⇒ K ≈M. (2.22)

We will be interested, first of all, in the order relation equivalent to the pointwise estimate:
for f1, f2 ∈ L+

0 (R+) we have f1 ≺ f2 ⇔ f1 ≤ f2 almost everywhere on R+.
We also consider the set L of all functions f ∈ L+

0 (R+), for which their Lebesgue distribution
functions

λf (y) = µ{x ∈ R+ : (x) > y}, y ∈ [0,∞)

are not identical to infinity, i.e. ∃y0 ∈ [0,∞) : λf (y0) <∞. For f ∈ L we introduce a decreasing
rearrangement f ∗ as a right inverse function of a decreasing function λf , i.e.

f ∗(t) = inf{y ∈ [0,∞) : λf (y) ≤ t}, t ∈ R+.

We define the order relation for f1, f2 ∈ L(R+) : we say that f1 ≺ f2, if∫ t

0

f ∗1 (τ)dτ ≤
∫ t

0

f ∗2 (τ)dτ, t ∈ R+. (2.23)

It is subordinated to the order with respect to the pointwise estimate:

0 ≤ f1 ≤ f2 a.e. on R+ ⇒ f ∗1 ≤ f ∗2 a.e. on R+ ⇒ (2.23).

We give the result on the mutual pointwise covering of cones K(T ), Ǩ(T ), K̃(T ).

Theorem 2.1. 1. In the notation and under assumptions (2.1) - (2.16) the pointwise coverings

(A) : Ǩ(T ) ≤ K(T ); K(T ) ≤ K̃(T ) (2.24)

hold with the covering constants: c0(A) = 1 + ε, ∀ε > 0; c1(A) = 0.
2. Suppose that the assumptions of Part 1 are satisfied and there is also a constant

c ∈ [1,∞), such that
ϕ(t) ≤ cϕ(2nt), t ∈ (0, 2−nT ). (2.25)

If T =∞, then (2.25) holds for any t ∈ R+. Then the covering

(B) : K(T ) ≤ Ǩ(T ) (2.26)
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takes place with the constants of covering c0(B) = c2n ‖ σ2n ‖,

c1(B) = 0, if T =∞; c1(B) =‖ fϕ(2−nT, ·) ‖Ẽ′(R+) if T <∞. (2.27)

Here for α > 0, (σαg)(τ) = g(ατ), τ ∈ R+ is an stretching operator, ‖ σ2n ‖ is the norm of
this operator σ2n : Ẽ(R+)→ Ẽ(R+).

3. Let the assumptions of Part 1 be satisfied and moreover

Aϕ ≡ Aϕ(T ) := sup
t∈(0,T )

t∫
0

ϕdτ

tϕ(t)
<∞. (2.28)

Then, we have the covering

(D) : K̃(T ) ≤ K(T ) (2.29)

with the covering constants
c0(D) = (1 + ε)Aϕ, ∀ε > 0; (2.30)

c1(D) = 0, if T =∞; c1(D) =‖ f̃ϕ(T, ·) ‖Ẽ′(R+), if T <∞. (2.31)

Remark 4. Under the assumptions of Part 3 of Theorem 2.1, estimate (2.25) holds with c =
2nAϕ and, correspondingly, there is covering (2.26) with the covering constants c0(B) = Aϕ22n ‖
σ2n ‖ and c1(B) of form (2.27).

Next, we give the result on the order covering of the cones K(T ), Ǩ(T ), K̃(T ).

Theorem 2.2. 1. In the notation and under assumptions, (2.1) - (2.16), the order covering

(E) : K(T ) ≺ Ǩ(T ) (2.32)

is valid with respect to order relation (2.23) with the constants of covering

c0(E) = 22n+1 ‖ σ2n ‖; c1(E) = 0. (2.33)

2. Suppose that the assumptions of Part 1 are satisfied and

Bϕ ≡ Bϕ(T ) := sup
t∈(0,T )


t∫

0

ϕdτ

1
t

t∫
0

ϕ(τ)τdτ

 <∞. (2.34)

Then, the order covering
(F ) : K̃(T ) ≺ K(T ) (2.35)

is valid with respect to order relation (2.23) with the constants of covering

c0(F ) = 2(Bϕ + 1)(2B2
ϕ + 1); c1(F ) = 0. (2.36)

Corollary 2.1. Under the assumptions of Part 3 of Theorem 2.1, there is a pointwise equivalence
of the cones

Ǩ(T ) ∼= K̃(T ) ∼= K(T ). (2.37)

Indeed, taking into account, Remark 4, we have the coverings

K̃(T ) ≤ K(T ) ≤ Ǩ(T ),

which together with covering (2.24) give equivalences (2.37).
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Corollary 2.2. Under the assumptions of Part 2 of Theorem 2.1, there is a pointwise equivalence
of the cones

Ǩ(T ) ∼= K(T ). (2.38)

This follows from coverings (2.24) and (2.26).

Corollary 2.3. Under the assumptions of Part 1 of Theorem 2.2. there is an order equivalence
of the cones

Ǩ(T ) ≈ K(T ) (2.39)

with respect to order relation (2.23).

This follows from the pointwise covering Ǩ(T ) ≤ K(T ) and order covering (2.32).

Corollary 2.4. Under the assumptions of Theorem 2.2, Part 2 an ordinal equivalence of the
cones

K̃(T ) ≈ K(T ) (2.40)

holds with respect to order relation (2.23).

This follows from the pointwise covering K(T ) ≤ K̃(T ) and order covering (2.35).

3 Proofs of the results of Section 2

3.1 Proof of Theorem 2.1, Part 1

We prove the first covering property in (2.24). For ȟ ∈ Ǩ(T ) for any constant c > 1 we find a
function ǧ ∈ Ẽ↓(0, T ), such that

ȟ(t) = ȟ(ǧ; t), t ∈ R+

and
‖ ǧ ‖Ẽ(R+)≤ cρǨ(T )(ȟ),

(see (2.9), (2.12)). We set h(t) := h(ǧ; t), i.e.

h(t) =

∞∫
0

fϕ(t, τ)ǧ(τ)dτ ∈ K(T ); ρK(T )(h) ≤‖ ǧ ‖Ẽ(R+)

(see (2.8), (2.11)). Thus, (2.15) implies the inequality

ȟ(t) =

∞∫
0

f̌ϕ(t, τ)ǧ(τ)dτ ≤
∫ ∞

0

fϕ(t, τ)ǧ(τ)dτ = h(t), t ∈ R+,

and moreover,
ρK(T )(h) ≤‖ ǧ ‖Ẽ(R+)≤ cρǨ(T )(ȟ).

These estimates prove the covering Ǩ(T ) ≤ K(T ) with the following covering constants: any
c0(A) > 1; c1(A) = 0.

Similarly, we prove the second covering in (2.24): K(T ) ≤ K̃(T ) with the same covering
constants (we use the second inequality in (2.15)).
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3.2 Proof of Theorem 2.1, Part 2

Let h ∈ K(T ). Then

∃g ∈ Ẽ↓(0, T ) : h(t) = h(g; t), ‖ g ‖Ẽ(R+)≤ 2ρK(T )(h).

We introduce
ǧ(τ) = c2ng(2nτ) ∈ Ẽ↓(0, 2−nT ). (3.1)

Here c ∈ [1,∞) is the constant from condition (2.25).
We have, by (2.8)

h ∈ K(T )⇒ h(t) =

∞∫
0

fϕ(t, τ)g(τ)dτ =

∞∫
0

f̌ϕ(2−nt, 2−nτ)g(τ)dτ =

2n
∞∫

0

f̌ϕ(2−nt, s)g(2ns)ds =
1

c

∞∫
0

f̌ϕ(2−nt, s)ǧ(s)ds. (3.2)

We define

ȟ(t) =

∞∫
0

f̌ϕ(t, s)ǧ(s)ds ∈ Ǩ(T ), (3.3)

then, by (3.1)

ρǨ(T )(ȟ) ≤‖ ǧ ‖Ẽ(R+)= c2n ‖ σ2n(g) ‖Ẽ(R+)

≤ c2n ‖ σ2n ‖‖ g ‖Ẽ(R+)≤ c2n+1 ‖ σ2n ‖ ρK(T )(h). (3.4)

Here σ2n : Ẽ(R+) → Ẽ(R+) is a bounded operator: ‖ σ2n ‖< ∞. Thus, for any h ∈ K(T ) we
found ȟ ∈ Ǩ(T ), such that ρǨ(T )(ȟ) ≤ c0ρK(T )(h), where

c0 = c2n+1 ‖ σ2n ‖∈ R+.

Further, it follows from (3.2) and (3.3) that

h(t) =
1

c
ȟ(2−nt) =

1

c

∞∫
0

f̌ϕ(2−nt, s)ǧ(s)ds, ∀t ∈ R+,

i.e.
1

c
ȟ(t) = h(2nt) =

∞∫
0

fϕ(2nt, τ)g(τ)dτ, t ∈ R+. (3.5)

We show that for t ∈ (0, 2−nT ) the following estimate holds for all τ ∈ R+:

fϕ(2nt, τ) ≥ 1

c
fϕ(t, τ). (3.6)

Indeed, if t ∈ (0, 2−nT ) we have

fϕ(2nt, τ) =

{
ϕ(2nt), 0 < τ ≤ 2nt

ϕ(τ), τ > 2nt

}
≥

{
1
c
ϕ(t), 0 < τ ≤ 2nt

ϕ(τ), τ > 2nt

}
≥ 1

c
fϕ(t, τ).
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It follows from (3.5) and (3.6) that

1

c
ȟ(t) ≥ 1

c

∞∫
0

fϕ(t, τ)g(τ)dτ =
1

c
h(t)

i.e.

h(t) ≤ ȟ(t), t ∈ (0, 2−nT ). (3.7)

If T = ∞ this inequality is true for all t ∈ R+. Now, let T < ∞. If t ∈ [2−nT, T ) we have
ȟ(t) = 0 (since f̌ϕ(t, τ) = 0, τ ∈ R+), and, by virtue of (2.18), for all t ∈ R+,

h(t) ≤ h(2−nT ) ≤‖ fϕ(2−nT, ·) ‖Ẽ′(R+) ρK(T )(h) = ȟ(t) + c1ρK(T )(h). (3.8)

Inequalities (3.7) with T =∞ or (3.8) with T <∞ together with (3.4) prove (2.26)-(2.27).

3.3 Proof of Theorem 2.1, Part 3

Let h̃ ∈ K̃(T ). According to (2.10), (2.13), for any ε > 0 there exists g̃ ∈ Ẽ↓(0, T ), such that

h̃(t) = h̃(g̃; t) =

∞∫
0

f̃ϕ(t, τ)g̃(τ)dτ ; ‖ g̃ ‖Ẽ(R+)≤ (1 + ε)ρK̃(T )(h̃).

We then define h ∈ K(T ) by the formula

h(t) = h(g̃; t) =

∞∫
0

fϕ(t, τ)Aϕg̃(τ)dτ.

Here Aϕg̃ ∈ Ẽ↓(0, T ) and

ρK(T )(h) ≤‖ Aϕg̃ ‖Ẽ(R+)= Aϕ ‖ g̃ ‖Ẽ(R+)≤ (1 + ε)AϕρK̃(T )(h̃). (3.9)

Let us note that Aϕ ≥ 1, by virtue of inequality (2.14), so that from (2.4) we obtain for
t ∈ (0, T )

f̃ϕ(t, τ) ≤

{
Aϕϕ(t), 0 < τ ≤ t,

ϕ(τ), t < τ <∞

}
≤ Aϕ

{
ϕ(t), 0 < τ ≤ t,

ϕ(τ), t < τ <∞

}
= Aϕfϕ(t, τ).

So if t ∈ (0, T ), then

h̃(t) =

∫ ∞
0

f̃ϕ(t, τ)g̃(τ)dτ ≤ Aϕ

∫ ∞
0

fϕ(t, τ)g̃(τ)dτ = h(t). (3.10)

The obtained estimates for T = ∞ prove the covering K̃(∞) ≤ K(∞) with the covering
constants c0 = (1 + ε)Aϕ (for any ε > 0,) c1 = 0. If T < ∞ inequality (3.10) must be
supplemented by the corresponding estimate for t ∈ [T,∞). For such values of t we have
fϕ(t, τ) = 0, τ ∈ R+, so that h(t) = 0, t ∈ [T,∞). At the same time, g̃(τ) = 0, τ ∈ [T,∞), so

that h̃(t) =
T∫
0

f̃ϕ(t, τ)g(τ)dτ . In formula (2.4) with τ ∈ (0, T ), t ∈ [T,∞) we take into account

that ϕ(ξ) = 0, ξ ∈ [T, t], so that
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f̃ϕ(t, τ) =
1

t

T∫
0

ϕ(ξ)dξ ≤ 1

T

T∫
0

ϕ(ξ)dξ = f̃ϕ(T, τ)⇒ h̃(t) ≤ h̃(T ).

From this and (2.20) it follows that for t ∈ [T,∞)

h̃(t) ≤‖ f̃ϕ(T, ·) ‖Ẽ′(R+) ρK̃(T )(h̃) = h(t)+ ‖ f̃ϕ(T, ·) ‖Ẽ′(R+) ρK̃(T )(h̃).

Together with inequality (3.10), this gives

h̃(t) ≤ h(t)+ ‖ f̃ϕ(T, ·) ‖Ẽ′(R+) ρK̃(T )(h̃), t ∈ R+. (3.11)

From (3.9) and (3.11) follows covering (2.29) with covering constants (2.30), (2.31).

3.4 Proof of Theorem 2.2, Part 1

For any h ∈ K(T ) we find g ∈ Ẽ↓(0, T ), such that (see (2.8), (2.11))

h(g; t) = h(t), t ∈ R+; ‖ g ‖Ẽ(R+)≤ 2ρK(T )(h). (3.12)

We set

ǧ(τ) = 22ng(2nτ), τ ∈ R+; ȟ(t) = ȟ(ǧ; t) =

∞∫
0

f̌ϕ(t, τ)ǧ(τ)dτ. (3.13)

Then, 0 ≤ ǧ(τ) ↓, ǧ(τ + 0) = ǧ(τ), τ ∈ R+; ǧ(τ) = 0, τ ∈ [2−nT,∞) (the latter if T <∞), and

‖ ǧ ‖Ẽ(R+)= 22n ‖ g(2n·) ‖Ẽ(R+)≤ 22n ‖ σ2n ‖‖ g ‖Ẽ(R+)≤ 22n+1 ‖ σ2n ‖ ρK(T )(h).

Thus, ǧ ∈ Ẽ↓(0, 2−nT ) and ȟ(t) = ȟ(g; t) ∈ Ǩ(T ), moreover

ρǨ(T )(ȟ) ≤‖ ǧ ‖Ẽ(R+)≤ 22n+1 ‖ σ2n ‖ ρK(T )(h). (3.14)

Further,

0 ≤ h ↓; h(t+ 0) = h(t), t ∈ R+ ⇒ h∗ = h;

0 ≤ ȟ ↓; ȟ(t+ 0) = ȟ(t), t ∈ R+ ⇒ (ȟ)∗ = ȟ.

Therefore, to prove the ordinal covering for relation of order (2.23), it suffices to verify that

t∫
0

hdξ ≤
∫ t

0

ȟdξ, t ∈ R+. (3.15)

Together with (3.11) this proves the covering K(T ) ≺ Ǩ(T ) with the covering constants c0(E) =
22n+1 ‖ σ2n ‖, c1(E) = 0 (see (2.30)).

According to (2.8), for h ∈ K(T )

H(t) :=

t∫
0

h(ξ)dξ =

∫ t

0

(∫ ∞
0

fϕ(ξ, τ)g(τ)dτ

)
dξ =



18 N.A. Bokayev, M. L. Goldman, G. Zh. Karshygina

t∫
0

 ∞∫
0

f̌ϕ(2−nξ, 2−nτ)g(τ)dτ

 dξ.

We make the substitution λ = 2−nξ; dξ = 2ndλ and s = 2−nτ, dτ = 2nds. Then, taking into
account equalities (3.10)

H(t) = 2n
2−nt∫
0

(

∞∫
0

f̌ϕ(λ, 2−nτ)g(τ)dτ)dλ = 22n

2−nt∫
0

(

∞∫
0

f̌ϕ(λ, s)g(2ns)ds)dλ =

2−nt∫
0

(

∞∫
0

f̌ϕ(λ, s)ǧ(s)ds)dλ =

2−nt∫
0

ȟ(λ)dλ.

So, for h ∈ K(T ) we find ȟ ∈ Ǩ(T ), such that estimate (3.11) holds and

t∫
0

h(ξ)dξ =

2−nt∫
0

ȟ(λ)dλ ≤
∫ t

0

ȟ(λ)dλ, t ∈ R+.

In the last estimate, we took into account that ȟ(λ) ≥ 0, λ ∈ R+. Thus, inequalities (3.11)
and (3.12) are valid, and for h ∈ K(T ), ȟ ∈ Ǩ(T ) (3.12) coincides with the condition that
h ≺ ȟ with respect to order relation (3.23). Thus, we have proved order covering (2.30) with
the covering constants

c0(E) ≤ 22n+1 ‖ σ2n ‖, c1(E) = 0.

Remark 5. Theorem 2.2, Part 2, coincides with Theorem 2 of [2], where we also give a (non-
trivial) proof of this theorem.

4 On the covering of cones of decreasing rearrangements for potentials

In this section we obtain results on equivalent descriptions for cones of decreasing rearrangements
of potentials u ∈ HG

E (Rn) in terms of the cones studied in Sections 2 and 3: K(T ), Ǩ(T ), K̃(T ).
A summary of these results is given in [2] (Section 6).

Let R ∈ (0,∞]. We introduce the class In(R) of all functions Φ on R+ with the properties:

1) 0 < Φ(r) ↓, Φ(r + 0) = Φ(r);

r∫
0

Φ(ρ)ρn−1dρ <∞, r ∈ (0, R); (4.1)

2) if R <∞, then Φ(r) = 0, r ∈ [R,∞). (4.2)

We denote
T = VnRn, if R <∞; T =∞, if R =∞. (4.3)

Here Vn is the volume of the unit ball in Rn. We also define

ϕ(t) = Φ

((
t

Vn

) 1
n

)
, t ∈ R+. (4.4)

Then,
Φ ∈ In(R)⇒ ϕ ∈ Ω(T ), (4.5)
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see (2.1).
For a basic RIS E(Rn) denote its Luxemburg representation by Ẽ(R+), (see [1]), i.e. Ẽ(R+)

is an RIS on R+, such that

‖ f ‖E(Rn)=‖ f ∗ ‖Ẽ(R+), f ∈ E(Rn), (4.6)

where f ∗ is a decreasing rearrangement of the function f with respect to the n -dimensional
Lebesgue measure. Note that the associated RIS Ẽ ′(R+) coincides with the Luxemburg repre-
sentation for the RIS E ′(Rn), associated with the RIS E(Rn).

Consider the space HG
E of potentials (1.1) - (1.3) with admissible kernels G.

Our considerations cover the generalization of the classical Riesz and Bessel potentials intro-
duced in [5, 6]. For some 0 < d0 ≤ d1 <∞ let

d0Φ(r) ≤ G(x) ≤ d1Φ(r), r = |x| ∈ (0, R); Φ ∈ In(R). (4.7)

If here R =∞, and therefore T =∞, then, in addition to (4.5), condition (2.17) is assumed
to be satisfied. In this case we call the potentials u ∈ HG

E (Rn) generalized Riesz potentials. It
follows from (4.1) and (2.17) that the kernels of generalized Riesz potentials are admissible, that
is, they satisfy the condition (1.2). The classical Riesz potentials correspond to the case

G(x) = rα−n, r = |x| ∈ R+; 0 < α < n. (4.8)

For them conditions (4.1), (4.7) are satisfied with Φ(r) = rα−n, and condition (2.17) has the
form

τ
α
n
−1χ(t,∞)(τ) ∈ Ẽ ′(R+), t ∈ R+. (4.9)

If in (4.7) R <∞, BR = {x ∈ Rn : |x| < R}, G0
R ≡ GχBR ,

G1
R ≡ GχRn\BR ∈ E ′(Rn) ∩ L1(Rn),

∫
Rn
Gdx 6= 0, (4.10)

then the potentials with such kernels G are called generalized Bessel potentials. It follows from
(4.1), (4.7) and (4.10) that the kernels of generalized Bessel potentials are admissible. The
classical Bessel potentials correspond to the case

G(x) = c(α, n)r−νKν(r), r = |x| ∈ R+, α ∈ (0, n], ν = (n− α)/2, c(α, n) ∈ R+, where
Kν are Bessel-Macdonald functions, see [8, 9]. From their asymptotics in the neighborhood of the
origin and at infinity, it follows the fulfillment of properties (4.8) with Φ(r) = rα−n, r = |x| ≤ R
and (4.10).

Theorem 4.1. In the notations and conditions (4.1)-(4.7), let the estimate

G(x) ≥ d0Φ(r), r = |x| ∈ R+ (4.11)

be valid for some d0 ∈ R+. Then, the pointwise covering takes place for cones (1.6), (2.9):

(A) : Ǩϕ,Ẽ(T ) ≤MG
E (T ), (4.12)

with the covering constants (see (2.21))

c0(A) = (1 + ε)d−1
0 , ∀ε > 0; c1(A) = 0. (4.13)
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Proof. We follow the scheme of the second step of the proof of Theorem 2.16 in [5] (see there
rephrase formulae (3.12)-(3.26)), but we substantially weaken the conditions imposed there.

Let ȟ ∈ Ǩ(T ) ≡ Ǩϕ,Ẽ(T ). There exists a function g ∈ Ẽ↓(0, T ), such that

ȟ(t) =

∞∫
0

f̌ϕ(t, τ)g(τ)dτ, ‖g‖Ẽ(R+) ≤ (1 + ε)ρǨ(T )(ȟ). (4.14)

We set
f(x) = d−1

0 g(Vnr
n), r = |x| ∈ R+. (4.15)

The function f ≥ 0, is radially symmetric, decreasing and right continuous as a function of r.
Therefore, for its symmetric rearrangement f ](r) and decreasing rearrangement f ∗(t) we have

f ](r) = d−1
0 g(Vnr

n), r ∈ R+; f ∗(t) = d−1
0 g(t), t ∈ R+. (4.16)

Therefore,
‖f‖E(Rn) = ‖f ∗‖Ẽ(R+) = d−1

0 ‖g‖Ẽ(R+) ≤ (1 + ε)d−1
0 ρǨ(T )(ȟ); (4.17)

u = G ∗ f ∈ HG
E (Rn), ‖u‖HG

E
≤ ‖f‖E(Rn) ≤ (1 + ε)d−1

0 ρǨ(T )(ȟ). (4.18)

Then, from (1.6), (1.7) it follows that

h(t) := u∗(t) ∈MG
E (T ), (4.19)

ρM(T )(h) ≤ ‖u‖HG
E
≤ (1 + ε)d−1

0 ρǨ(T )(ȟ). (4.20)

Let us estimate h(t) from below. Estimate (4.11) and the decreasing of Φ imply

G(x− y) ≥ d0Φ(|x− y|) ≥ d0Φ(|x|+ |y|), x, y ∈ Rn,

so that
u(x) =

∫
Rn

G(x− y)f(y)dy ≥ d0

∫
Rn

Φ(|x|+ |y|)f(y)dy.

Now we take into account equality (4.15) and take the spherical coordinates in the integral.
Then

u(x) ≥ cn

∞∫
0

Φ(|x|+ ρ)g(Vnρ
n)ρn−1dρ, (4.21)

where cn = 2π
n
2 /Γ(n

2
) (see for example, [4, p. 403]). The function in the right-hand side of

(4.21) is radially symmetric, nonnegative and decreasing as a function of |x|. It coincides with
its symmetric rearrangement. Thus, for r ∈ R+, (4.21) implies

u](r) ≥ cn

∞∫
0

Φ(r + ρ)g(Vnρ
n)ρn−1dρ.

Further,
r + ρ ≤ 2 max{r, ρ} ⇒ Φ(r + ρ) ≥ Φ(2 max{r, ρ});

u](r) ≥ cn

 r∫
0

Φ(2r)g(Vnρ
n)ρn−1dρ+

∞∫
r

Φ(2ρ)g(Vnρ
n)ρn−1dρ

 =
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cn
nVn

Φ(2r)

Vnrn∫
0

g(τ)dτ +

∞∫
Vnrn

Φ

(
2

(
τ

Vn

) 1
n

)
g(τ)dτ

 .
Here cn = nVn, so that for t = Vnr

n we have

Φ(2r) = Φ

(
2

(
t

V n

) 1
n

)
= ϕ(2nt); u](r) = u∗(t), (4.22)

and arrived at the estimate

u∗(t) ≥ ϕ(2nt)

t∫
0

g(τ)dτ +

∞∫
t

ϕ(2nτ)g(τ)dτ =

∞∫
0

f̌ϕ(t, τ)g(τ)dτ (4.23)

(see (2.3)), so that h(t) ≥ ȟ(t), t ∈ R+, (see (4.14), (4.19)). As a result, for every ȟ ∈ Ǩ(T ) we
find function h ∈MG

E (T ), such that estimate (4.20) holds with the constant c0 = (1+ε)d−1
0 , ∀ε >

0 and h(t) ≥ ȟ(t), t ∈ R+. It gives covering (4.12) with covering constants (4.13).

Theorem 4.2. In the notation and assumptions (4.1) - (4.4), let R ∈ (0,∞], Φ ∈ In(R), d1 ∈
R+.

1. If R =∞, we assume that

G#(r) ≤ d1Φ(r), r ∈ R+, (4.24)

and that condition (2.17) is satisfied.
2. If R <∞, then in the decomposition

G = G0
R +G1

R, G0
R = GχBR , G1

R = GχRn\BR , (4.25)

we assume that

(G)#(r) ≤ d1Φ(r), r ∈ (0, R); G1
R ∈ E ′(Rn). (4.26)

Then, there is a pointwise covering

(B) : M̃G
E (T ) ≤ K̃ϕ,Ẽ(T ) (4.27)

with covering constants:

c0(B) = d1(1 + ε), ∀ε > 0; c1(B) = 0, (4.28)

if T =∞,
and

c0(B) = d1(1 + ε), ; c1(B) = (1 + ε) ‖ G1
R ‖E′(Rn), ∀ε > 0, (4.29)

if T <∞.

Proof. Let h ∈ M̃(T ). Then, for ε > 0 there exists u = uε ∈ HG
E (Rn), such that

h(t) = u∗∗(t), t ∈ (0, T ); ‖ u ‖HG
E
≤
√

1 + ερM̃(T )(h).

For u ∈ HG
E (Rn) there exists f = fε ∈ E(Rn), such that
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u = G ∗ f ; ‖ f ‖E(Rn)≤
√

1 + ε ‖ u ‖HG
E
≤ (1 + ε)ρM̃(T )(h).

Further,

f ∈ E(Rn)⇒ f ∗ ∈ Ẽ↓(R+); ‖ f ∗ ‖Ẽ(R+)=‖ f ‖E(Rn)≤ (1 + ε)ρM̃(T )(h). (4.30)

Let g̃(τ) = f ∗(τ)χ(0,T )(τ). Then,

g̃ ∈ Ẽ↓(0, T ); ‖ g̃ ‖Ẽ(R+)≤‖ f
∗ ‖Ẽ(R+)≤ (1 + ε)ρM̃(T )(h).

We define h̃ = h̃ε by formula

h̃(t) = d1

∫ ∞
0

f̃ϕ(t, τ)g̃(τ)dτ ∈ K̃(T ). (4.31)

Then,
ρK̃(T )(h̃) ≤‖ d1g̃ ‖Ẽ(R+)= d1 ‖ g̃ ‖Ẽ(R+)≤ d1(1 + ε)ρM̃(T )(h). (4.32)

To estimate the function h(t) = u∗∗(t) = (G ∗ f)∗∗(t) from above we apply the O’Neil
inequality [10]

h(t) ≤ 1

t

 t∫
0

G∗dτ

 t∫
0

f ∗dτ

+

∞∫
t

G∗f ∗dτ, t ∈ R+. (4.33)

For R =∞ (that is, T =∞) it follows from (4.24) that for τ ∈ R+

G∗(τ) = G#

((
τ

Vn

) 1
n

)
≤ d1Φ

((
τ

Vn

) 1
n

)
= d1ϕ(τ). (4.34)

Therefore, (4.33) implies that: for t ∈ R+

h(t) ≤ d1

[(
1

t

∫ t

0

ϕdτ

)(∫ t

0

f ∗dτ

)
+

∫ ∞
t

ϕf ∗dτ

]
= d1

∫ ∞
0

f̃ϕ(t, τ)g̃(τ)dτ = h̃(t) (4.35)

(we took into account that f ∗(τ) = g̃(τ), τ ∈ R+). From (4.32) and (4.35) follows (4.27) with
covering constants (4.28).

Now let R <∞, i.e. T = VnR
n = µ(BR) <∞. Then, for t ∈ (0, T ), estimate (4.33) gives

h(t) ≤ 1

t

(∫ t

0

G∗dτ

)(∫ t

0

f ∗dτ

)
+

∫ T

t

G∗f ∗dτ +

∫ ∞
T

G∗f ∗dτ. (4.36)

For τ ∈ (0, T ) we have r = (( τ
Vn

)
1
n ) ∈ (0, R), so the first estimate in (4.26) is applicable to the

first two terms in (4.36), which gives inequality (4.34) for τ ∈ (0, T ). As a result, for t ∈ (0, T ),
instead of (4.35), we obtain

h(t) ≤ d1

∫ T

0

f̃ϕ(t, τ)g̃(τ)dτ +

∫ ∞
T

G∗f ∗dτ = h̃(t) +

∫ ∞
T

G∗(τ)f ∗(τ)dτ. (4.37)

Finally, we have to estimate the second term in the right-hand side of (4.37). We show that
for τ > T
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G∗(τ) ≤ (G1
R)∗(τ − T ). (4.38)

Decomposition (4.25) implies that

{x ∈ Rn : |G(x)| > y} = {x ∈ BR : |G0
R(x)| > y} ∪ {x ∈ Rn\BR : |G1

R| > y},

so that for the distribution functions the following estimate holds

λG(y) = µ{x ∈ Rn : |G(x)| > y} ≤ λG0
R

(y) + λG1
R

(y) ≤ T + λG1
R

(y),

since µ(BR) = VnR
n = T . Then, for τ > T we have

λG1
R

(y) ≤ τ − T ⇒ λG(y) ≤ τ ⇒ {y : λG1
R

(y) ≤ τ − T} ⊂ {y : λG(y) ≤ τ}.

Therefore,

G∗(τ) = inf{y > 0 : λG(y) ≤ τ} ≤ inf{y > 0 : λG1
R

(y) ≤ τ − T} = (G1
R)∗(τ − T ),

which gives estimate (4.38). It follows that

∞∫
T

G∗(τ)f ∗(τ)dτ ≤
∞∫
T

(G1
R)∗(τ − T )f ∗(τ)dτ

=

∞∫
0

(G1
R)∗(ξ)f ∗(ξ + T )dξ ≤

∞∫
0

(G1
R)∗(ξ)f ∗(ξ)dξ.

Hence, by Hölder inequality we obtain

∞∫
T

G∗(τ)f ∗(τ)dτ ≤‖ G1
R ‖E′(Rn)‖ f ‖E(Rn)≤‖ G1

R ‖E′(Rn) (1 + ε)ρM̃(T )(h)

(in the last inequality we apply estimate (4.30)). We substitute this estimate in (4.37):

h(t) ≤ h̃(t) + (1 + ε) ‖ G1
R ‖E′(Rn) ρM̃(T )(h), t ∈ (0, T ). (4.39)

Inequalities (4.32) and (4.39) prove covering (4.27) with covering constants (4.29).
Corollary 4.1 Suppose that in the assumptions of Theorem 4.2, R < ∞, T = VnR

n, and in
(4.25)-(4.26) G = G0

R is the kernel with support in the ball BR. Then, covering (4.27) is valid
with covering constants (4.28).

5 Criteria for embeddings of potentials in RIS

5.1 Criteria of embedding for generalized Riesz potentials

Let us describe the application of the above obtained results to the generalized Riesz potentials.
We keep the notation and the conditions (4.1) - (4.5), given in Section 4, assuming that R =∞,
condition (2.17) is satisfied, and the following two-sided estimate holds with constant 0 < d0 <
d1 <∞:

d0Φ(r) ≤ G(x) ≤ d1Φ(r), r = |x| ∈ R+. (5.1)
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Then, Theorems 4.1 and 4.2 imply the pointwise coverings of the cones (2.9), (1.6), (1.8),
and (2.10) with T =∞, namely

Ǩ(∞) ≤MG
E (∞) ≤ M̃G

E (∞) ≤ K̃(∞). (5.2)

If additionally the condition Aϕ <∞ is fulfilled, then the chain of coverings (5.2) is completed
by means of the cone K(∞) (see (2.8), (2.28), (2.29) with T =∞ and Remark 2.6):

K̃(∞) ≤ K(∞) ≤ Ǩ(∞), (5.3)

so that all these cones are pointwise equivalent. In particular, when Aϕ <∞

MG
E (∞) ∼= M̃G

E (∞) ∼= K(∞). (5.4)

From (5.4) and (1.10) we obtain the criterion for embedding of the space of generalized Riesz
potentials in the RIS X(Rn) :

HG
E (Rn) ⊂ X(Rn)⇔ K(∞) 7→ X̃(R+). (5.5)

Here X̃(R+) is the Luxemburg representation for RIS X(Rn) (see (4.6)).
We show that the results of Sections 2-4 allow us to substantially weaken the requirement

Aϕ < ∞ for obtaining criterion (5.5). Now let the condition Aϕ < ∞ with T = ∞ be replaced
by the condition Bϕ <∞ (2.34). Then, by Theorem 2.7, the order coverings of the cones hold

K̃(∞) ≺ K(∞) ≺ Ǩ(∞), (5.6)

with respect to the order relation (2.23). In addition, the chain of pointwise coverings (5.2)
implies the corresponding chain of order coverings

Ǩ(∞) ≺MG
E ≺ M̃G

E ≺ K̃(∞).

It is completed because of covering (5.6). So, when Bϕ < ∞ (with T = ∞) there is order
equivalence

MG
E (∞) ≈ M̃G

E (∞) ≈ K(∞) (5.7)

with respect to order relation (2.23). Since the norm in the RIS X(Rn) is correlated with order
relation (2.23), (see, for example, [1], Ch.2, Theorem 4.6), the embeddings of cones (5.7) in the
RIS X(Rn) are equivalent to each other, so that under condition Bϕ <∞ the validity of criterion
(5.5) follows from (1.10). These considerations yield the following result.

Theorem 5.1. Let R =∞ in the conditions and notations (4.1)-(4.5), and assumptions (2.17),
(5.1) and (2.34) with T = ∞ be satisfied. Then criterion (5.5) holds for the embedding where
K(∞) is cone (2.8) with T =∞.

5.2 The embedding criterion for generalized Bessel potentials

Let E(Rn) be an RIS, G be an admissible kernel, HG
E (Rn) be the space of potentials (1.1) - (1.3).

Moreover, we now assume that for R <∞

G0
R ≡ GχBR ∈ L1(Rn) (5.8)

G1
R ≡ GχRn\BR ∈ L1(Rn) ∩ E ′(Rn), (5.9)
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where E ′(Rn) is the associated RIS for E(Rn). Along with HG
E (Rn) we also consider the potential

space with "truncated kernels":

ḢG
E (Rn) ≡ H

G0
R

E (Rn) = {u = G0
R ∗ f : f ∈ E(Rn)}, (5.10)

‖u‖ḢG
E (Rn) = inf{‖f‖E : f ∈ E(Rn); G0

R ∗ f = u}. (5.11)

For RIS X ≡ X(Rn), we examine the problem of the criteria for embedding

HG
E (Rn) ⊂ X(Rn). (5.12)

Remark 6. In [5, Section 1.2] it is shown that for embedding (5.12) it is necessary that

E(Rn) ∩ L∞(Rn) ⊂ X(Rn). (5.13)

Theorem 5.2. Suppose that conditions (5.8), (5.9) and (5.13) are satisfied. Then, the embed-
ding (5.12) is equivalent to embedding

ḢG
E (Rn) ⊂ X(Rn). (5.14)

Proof. 1. We show that (5.14) ⇒ (5.12). For u ∈ HG
E (Rn) for any ε > 0 there exits f = fε ∈

E(Rn), such that
u = G ∗ f, ‖f‖E ≤ (1 + ε)‖u‖HG

E (Rn). (5.15)

We put

u0 = G0
R ∗ f, u1 = G1

R ∗ f. (5.16)

Then, u0 ∈ ḢG
E (Rn),

‖ u0 ‖ḢG
E
≤‖ f ‖E≤ (1 + ε) ‖ u ‖HG

E
<∞. (5.17)

From embedding (5.14) it follows that u0 ∈ X(Rn)

‖ u0 ‖X≤ c1 ‖ u0 ‖ḢG
E
≤ (1 + ε)c1 ‖ u ‖HG

E
, (5.18)

where c1 is the norm of the embedding operator (5.14). Further, condition (5.9) for the kernel
G1
R implies the estimate for u1 = G1

R ∗ f :

‖u1‖E∩L∞ ≤ ‖G1
R‖L1∩E′ ‖ f ‖E≤ (1 + ε) ‖ G1

R ‖L1∩E′ ‖u‖HG
E
<∞.

Hence embedding (5.13) implies that u1 ∈ X(Rn) and

‖u1‖X ≤ c2‖u1‖E∩L∞ ≤ (1 + ε)c2‖G1
R‖L1∩E′ ‖ u ‖HG

E
, (5.19)

where c2 is the norm of the embedding operator (5.13). Further,

u = G ∗ f = G0
R ∗ f +G1

R ∗ f = u0 + u1 ∈ X(Rn)

and by virtue of (5.18), (5.19)

‖u‖X ≤ (1 + ε)[c1 + c2‖G1
R‖L1∩E′ ]‖u‖HG

E
, ∀ε > 0.

Here u is independent of ε > 0, so that for ε→ +0 we get

‖u‖X ≤ [c1 + c2‖G1
R‖L1∩E′ ]‖u‖HG

E
, ∀u ∈ HG

E (Rn). (5.20)
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The embedding (5.12) with estimate (5.20) for the norm of the embedding operator is proved.
2. We show that (5.12) ⇒ (5.14). The reasoning is analogous to that in step 1. For

u0 ∈ ḢG
E (Rn), ∀ε > 0 there exists f0 ∈ E(Rn) :

u0 = G0
R ∗ f0, ‖f0‖E ≤ (1 + ε)‖u0‖ḢG

E
.

We put
u = G ∗ f0, u1 = G1

R ∗ f0.

Then, u ∈ HG
E ,

‖u‖HG
E
≤ ‖f0‖E ≤ (1 + ε)‖u0‖ḢG

E
<∞.

From embedding (5.12) it follows that u ∈ X(Rn), and

‖u‖X ≤ c3‖u‖HG
E
≤ (1 + ε)c3‖u0‖ḢG

E
, (5.21)

where c3 is the norm of the embedding operator (5.12). Further, similarly to (5.19), we get that
u1 ∈ X(Rn) and

‖u1‖X ≤ (1 + ε)c2‖G1
R‖L1∩E′‖u0‖ḢG

E
. (5.22)

From (5.21) and (5.22) we obtain for u0 = u− u1 the estimate analogous to (5.20):

‖u0‖X ≤ ‖u‖X + ‖u1‖X ≤ [c3 + c2‖G1
R‖L1∩E′ ]‖u0‖ḢG

E
. (5.23)

Thus, embedding (5.14) is obtained with the estimate of the norm of the embedding operator
(5.23).

Theorem 5.3. 1. Let R ∈ (0,∞), conditions (5.8), (5.9) and (5.13) be satisfied. Then,
embedding (5.12) is equivalent to embedding

M0(T ) 7→ X̃(0, T ). (5.24)

Here T = VnR
n,

M0(T ) =
{
h(t) = u∗(t), u ∈ ḢG

E , t ∈ (0, T )
}
, (5.25)

ρM0(T )(h) = inf
{
‖u‖ḢG

E
: u ∈ ḢG

E ; u∗(t) = h(t), t ∈ (0, T )
}

; (5.26)

X̃(R+) is the Luxemburg representation for RIS X(Rn); X̃(0, T ) is the restriction of X̃(R+) on
(0, T ).

Proof. Theorem 5.2 is applicable here. Therefore, it suffices to show that (5.14)⇔ (5.24).
1. First we show that (5.14)⇒ (5.24). Let h ∈M0(T ). For any ε > 0 there is u = uε ∈ ḢG

E ,
such that

h(t) = u∗(t), t ∈ (0, T ); ‖u‖ḢG
E
≤ (1 + ε)ρM0(T )(h). (5.27)

Consider the function h̃(t) = u∗(t), t ∈ R+. Then, h̃ ∈M0(∞) and

ρM0(∞)(h̃) ≤ ‖u‖ḢG
E
≤ (1 + ε)ρM0(T )(h).

Moreover, by virtue of (5.14), there exists c0 ∈ R+ such that

‖h̃‖X̃(R+) = ‖u‖X(Rn) ≤ c0‖u‖ḢG
E
≤ (1 + ε)c0ρM0(T )(h). (5.28)
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Here c0 is the norm of the embedding operator (5.14). Then h ∈ X̃(0, T ) and

‖h‖X̃(0,T ) = ‖h̃χ(0,T )‖X̃(R+) ≤ (1 + ε)c0ρM0(T )(h).

Here h does not depend on ε > 0, so that when ε→ +0 we get

‖h‖X̃(0,T ) ≤ c0ρM0(T )(h), ∀h ∈M0(T ). (5.29)

This proves embedding (5.24).
2. Now we prove that (5.24)⇒ (5.14).
Let u ∈ ḢG

E . For any ε > 0, there exists f = fε ∈ E(Rn) such that

G0
R ∗ f = u; ‖f‖E ≤ (1 + ε)‖u‖ḢG

E
. (5.30)

We set h(t) = u∗(t), t ∈ R+. Then, h ∈ M0(∞), h|(0,T ) ∈ M0(T ) and ρM0(T )(h) ≤ ‖u‖ḢG
E

(see (5.25), (5.26)). We denote by

h0(t) = u∗(t)χ(0,T )(t), h1(t) = u∗(t)χ[T,∞)(t), t ∈ R+. (5.31)

According to (5.24), denoting by c1 ∈ R+ the embedding constant, we have h|(0,T ) ∈M0(T )⇒
h|(0,T ) ∈ X̃(0, T ); ‖h̃‖X̃(0,T ) ≤ c1ρM0(T )(h). Then h0 ∈ X̃(R+),

‖h0‖X̃(R+) = ‖h‖X̃(0,T ) ≤ c1ρM0(T )(h) ≤ c1‖u‖ḢG
E

(in the last step, we take into account relation (5.26)). Further, embedding (5.13) is accompanied
by the estimate

θE X(T ) := sup
{
‖u∗χ[T,∞)‖X̃(R+) : u∗ ∈ Ẽ(R+); ‖u∗‖Ẽ(R+) ≤ 1

}
<∞ (5.32)

(see [3], and also [5, Section 4.2]). Therefore, for h1 (5.31) we have h1 ∈ X̃(R+);

‖h1‖X̃(R+) ≤ θE X(T )‖u∗‖Ẽ(R+) = θE X(T )‖u‖E(Rn). (5.33)

For u ∈ ḢG
E from equality u = G0

R ∗ f, where G0
R ∈ L1(Rn), it follows that

‖u‖E ≤ ‖G0
R‖L1‖f‖E ≤ ‖G0

R‖L1(1 + ε)‖u‖ḢG
E
.

Substituting this estimate in (5.33), we obtain

‖h1‖X̃(R+) ≤ (1 + ε)θE X(T )‖G0
R‖L1‖u‖ḢG

E
.

Here h1 and u do not depend on ε. As a result, when ε → +0, for h = h0 + h1 we get
h ∈ X̃(R+) and

‖h‖X̃(R+) ≤ ‖h0‖X̃(R+) + ‖h1‖X̃(R+) ≤ [c1 + θE X(T )‖G0
R‖L1 ]‖u‖ḢG

E
.

So for any u ∈ ḢG
E we get u∗ = h ∈ X̃(R+) i.e.

‖u‖X(Rn) = ‖h‖X̃(R+) ≤ [c1 + θE X(T )‖G0
R‖L1 ]‖u‖ḢG

E
<∞. (5.34)

This proves embedding (5.14) and gives an estimate of the norm of the embedding operator.
Thus, we established, under the conditions of Theorem 5.3 that there is an equivalence of em-
beddings:

(5.12)⇔ (5.14)⇔ (5.24).
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Theorem 5.4. Let R ∈ (0,∞), the conditions (5.9) and (5.13) be satisfied, Φ ∈ In(R) (see
(4.1), (4.2)) and the estimate

d0Φ(r) ≤ G0
R(x) ≤ d1Φ(r), r = |x| ∈ (0, R) (5.35)

hold for some 0 < d0 ≤ d1 < ∞. Suppose further that Bϕ(T ) < ∞ (see (2.34)) for T = VnR
n.

Then, embedding (5.12) is equivalent to embedding

Kϕ,Ẽ(T ) 7→ X̃(0, T ), (5.36)

where Kϕ,Ẽ(T ) is cone (2.8); Ẽ(R+), X̃(R+) are Luxemburg representations for RIS E(Rn),
and X(Rn), respectively.

Proof. From estimate (5.35) it follows for Φ ∈ In(R) that G0
R(x) ∈ L1(BR), so that by Theorem

5.3 (5.12) ⇔ (5.24). We have to prove that (5.24) ⇔ (5.36) under condition Bϕ(T ) < ∞. For
this, we apply Corollaries 2.10 and 2.11 of Theorem 2.7 Relations (2.39) and (2.40) prove the
order equivalence of cones

Ǩ(T ) ≈ K̃(T ) ≈ Kϕ,Ẽ(T ) (5.37)

with respect to order relation (2.23).
Next, inequality (5.35) is extended to any values of r ∈ R+, since for r ∈ [R,∞) which sides

are equal to 0. Then, the left-inequality in (5.35) coincides with estimate (4.11) for G = G0
R, so

that Theorem 4.1 gives a pointwise covering of cones (4.12), which for G = G0
R coincides with

Ǩ(T ) ≤M0(T ). (5.38)

The right inequality (as left-inequality above) in (5.35) leads to an estimate for the symmetric
rearrangement (G0

R)#(r) ≤ d1Φ(r), r ∈ R+, so that relations (4.26) hold withG = G0
R, G1

R = 0.
By Theorem 4.2, this implies covering (4.27), which for G = G0

R gives

M̃0(T ) ≤ K̃(T ). (5.39)

Together with the obvious coverings M0(T ) ≤ M̃0(T ). This gives a chain of pointwise covering
for the cones

Ǩ(T ) ≤M0(T ) ≤ M̃0(T ) ≤ K̃(T ), (5.40)

from which follow the order coverings

Ǩ(T ) ≺M0(T ) ≺ M̃0(T ) ≺ K̃(T ) (5.41)

with respect to the order relation (2.23). Together with (5.37), they show that all cones in chain
(5.41) are order-equivalent to the cone Kϕ,Ẽ(T ).

Thus, {
M0(T ) ≈ Kϕ,Ẽ(T )

}
⇒ {(5.24)⇔ (5.36)} .

As a result, applying Theorem 5.3, we obtain (5.12)⇔ (5.36).
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