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KHARIN STANISLAV NIKOLAYEVICH

(to the 80th birthday)

Stanislav Nikolayevich Kharin was born on December 4,
1938 in the village of Kaskelen, Alma-Ata region. In 1956 he
graduated from high school in Voronezh with a gold medal. In
the same year he entered the Faculty of Physics and Mathe-
matics of the Kazakh State University and graduated in 1961,
receiving a diploma with honors. After postgraduate studies he
entered the Sector (since 1965 Institute) of Mathematics and
Mechanics of the National Kazakhstan Academy of Sciences,
where he worked until 1998 and progressed from a junior re-
searcher to a deputy director of the Institute (1980). In 1968 he
has defended the candidate thesis “Heat phenomena in electrical

contacts and associated singular integral equations”, and in 1990 his doctoral thesis “Mathemat-
ical models of thermo-physical processes in electrical contacts” in Novosibirsk. In 1994 S.N.
Kharin was elected a corresponding member of the National Kazakhstan Academy of Sciences,
the Head of the Department of Physics and Mathematics, and a member of the Presidium of
the Kazakhstan Academy of Sciences.

In 1996 the Government of Kazakhstan appointed S.N. Kharin to be a co-chairman of the
Committee for scientific and technological cooperation between the Republic of Kazakhstan and
the Islamic Republic of Pakistan. He was invited as a visiting professor in Ghulam Ishaq Khan
Institute of Engineering Sciences and Technology, where he worked until 2001. For the results
obtained in the field of mathematical modeling of thermal and electrical phenomena, he was
elected a foreign member of the National Academy of Sciences of Pakistan. In 2001 S.N. Kharin
was invited to the position of a professor at the University of the West of England (Bristol,
England), where he worked until 2003. In 2005, he returned to Kazakhstan, to the Kazakh-
British Technical University, as a professor of mathematics, where he is currently working.

Stanislav Nikolayevich paid much attention to the training of young researchers. Under his
scientific supervision 10 candidate theses and 4 PhD theses were successfully defended.

Professor S.N. Kharin has over 300 publications including 4 monographs and 10 patents. He
is recognized and appreciated by researchers as a prominent specialist in the field of mathe-
matical modeling of phenomena in electrical contacts. Using models based on the new original
methods for solving free boundary problems he described mathematically the phenomena of
arcing, contact welding, contact floating, dynamics of contact blow-open phenomena, electro-
chemical mechanism of electron emission, arc-to-glow transition, thermal theory of the bridge
erosion. For these achievements he got the International Holm Award, which was presented to
him in 2015 in San Diego (USA).

Now he very successfully continues his research and the evidence of this in the new monograph
“Mathematical models of phenomena in electrical contacts” published last year in Novosibirsk.

The mathematical community, many his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal cordially congratulate Stanislav Nikolayevich on the occasion of
his 80th birthday and wish him good health, happiness and new achievements in mathematics
and mathematical education.
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Abstract. Sulaiman [10] has investigated absolute weighted mean summability theorems for
numerical and Fourier series. In the present paper, we have extended the result of Sulaiman
to the |A, pn|k summability method. Also some new and known results are obtained by using
some basic summability methods.
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1 Introduction

Let
∑
an be a given numerical series with partial sums (sn). By uαn and tαn we denote the nth

Cesàro means of order α, with α > −1, of the sequence (sn) and (nan), respectively, that is (see
[2])

uαn =
1

Aαn

n∑
v=0

Aα−1
n−vsv and tαn =

1

Aαn

n∑
v=0

Aα−1
n−vvav, (1.1)

where

Aαn =
(α + 1)(α + 2)...(α + n)

n!
= O(nα), Aα−n = 0 for n > 0. (1.2)

The series
∑
an is said to be |C, α|k summable, k ≥ 1, if (see [5],[8])

∞∑
n=1

nk−1|uαn − uαn−1|k =
∞∑
n=1

1

n
|tαn|k <∞. (1.3)

If we take α = 1, then |C, α|k summability reduces to |C, 1|k summability.
Let (pn) be a sequence of positive real numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (1.4)

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv (1.5)
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defines the sequence (tn) of the Riesz means or simply the (N̄ , pn) mean of the sequence (sn)
generated by the sequence of coefficients (pn) (see [6]).

The series
∑
an is said to be

∣∣N̄ , pn∣∣k summable, k ≥ 1, if (see [1])

∞∑
n=1

(
Pn
pn

)k−1

| tn − tn−1 |k<∞. (1.6)

In the special case when pn = 1 for all values of n (respectively k = 1),
∣∣N̄ , pn∣∣k summability is

the same as |C, 1|k (respectively | N̄ , pn |) summability.
Given a normal matrix A = (anv), i.e., a lower triangular matrix with nonzero diagonal

entries. We associate with A two lower triangle matrices Ā = (ānv) and Â = (ânv) as follows:

ānv =
n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1, v a−1,0 = 0 (1.7)

and

â00 = ā00 = a00, ânv = ∆̄ānv = ānv − ān−1,v, n = 1, 2, ... (1.8)

It should be noted that Ā and Â are the well-known matrices of series-to-sequence and series-
to-series transformations, respectively. Next, let

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav (1.9)

and

∆̄An(s) =
n∑
v=0

ânvav. (1.10)

Let A = (anv) be a normal matrix. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (sn) to As = (An(s)), where

An(s) =
n∑
v=0

anvsv n = 0, 1, ... (1.11)

The series
∑
an is said to be |A, pn|k summable, k ≥ 1, if (see [11])

∞∑
n=1

(
Pn
pn

)k−1

|An(s)− An−1(s)|k <∞, (1.12)

Note that in the special case when A is the matrix of weighted means, i.e.,

anv =

{ pv
Pn
, 0 ≤ v ≤ n

0, n > v,

then the |A, pn|k summability reduces to the | N̄ , pn |k summability, and if we take anv = pv
Pn

and
pn = 1 for all values of n reduces to the |C, 1|k summability. Also, if we take pn = 1 for all values
of n reduces to the |A|k (see [13]) summability.

For any sequence (λn) we write ∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1.
A sequence (λn) is said to be convex if ∆2λn = ∆λn −∆λn+1 ≥ 0.
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Let the formal expansion of a function f , periodic with period 2π, and integrable in the sense
of Lebesgue over [−π, π], in a Fourier trigonometric series be given by

f(x) ∼ 1

2
a0 +

∞∑
n=1

(ancosnx+ bnsinnx) =
∞∑
n=0

Cn(x),

We write

φ(u) = f(x+ u) + f(x− u)− 2f(x),

ϕ(t) =

∫ δ

t

|φ(u)|
u

du, Φ(t) =

∫ t

0

|φ(u)|du, 0 < δ ≤ π,

µn =

(
`−1∏
v=1

logvn

)
(log`n)1+ε, log`n0 > 0, ε > 0,

where

log`n = log(log`−1n), ..., log2n = loglog n.

2 The known results

Theorem 2.1 (Chow [4], 1941) If {λn} is a convex sequence and the series
∑
n−1λn is conver-

gent, then the series
∑
Cn(x)λn is |C, 1| summable for almost all values of x.

Theorem 2.2 (Cheng [3], 1948) If

Φ(t) = O(t), as t→ 0,

then the series
∞∑
n=2

Cn(x)/(log n)1+ε, ε > 0,

is |C, α| summable, α > 1.
Theorem 2.3 (Hsiang [7], 1970) If

Φ(t) = O(t), as t→ +0,

then the series
∞∑
n=0

Cn(x)/nα

where α > 0, is |C, 1| summable.
Theorem 2.4 (Pandey [9], 1978) If

ϕ(t) = O
{

(log`(1/t))η
}

as t→ +0,

then the series
∞∑
n=0

Cn(x)/µn

is |C, 1| summable for 0 < η < ε.
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Sulaiman has proved the more general theorem dealing with |N̄ , pn|k summability in the
following form, which includes the theorems of Chow and Pandey as special cases, and hence all
the previous results.
Theorem 2.5 [10] Let {|λn|} be a non-increasing numerical sequence such that

|∆λn| = O

(
|λn|
n

)
.

Let
Pn = O(npn)

and | ∆( pn
Pn

) |= O( pn
nPn

).
(A) If ∑

pnP
−1
n |λn|k <∞, (2.1)

then the series ∑
Cn(x)λn

is |N̄ , pn|k summable, 1 ≤ k < 2, for almost all values of x.
(B) If {ηn} is a sequence of positive numbers such that n−γηn → 0 as n → ∞, for some γ,
0 < γ < 1, and if

ϕ(t) = O
{
η(1/t)

}
, t→ 0 (2.2)∑

pnP
−1
n |λn|kηkn <∞, (2.3)

then the series
∑
Cn(x)λn is |N̄ , pn|k summable, 1 ≤ k <∞.

Theorem 2.6 [10] If tn is the n-th Cesàro mean of the first order of the sequence {nan} and
{εn} is a numerical sequence such that

m∑
n=1

n−1|εn|k|tn|k = O(1), m→∞, (2.4)

m∑
n=1

pnP
−1
n |εn|k|tn|k = O(1), m→∞, (2.5)

m∑
n=1

nk−1|∆εn|k|tn|k = O(1), m→∞, (2.6)

m∑
n=1

n−1Pn = O(Pm), m→∞, (2.7)

then the series
∑
anεn is summable |N̄ , pn|k, k ≥ 1.

Corollary 2.7 [10] Let tn be the n-th Cesàro mean of the first order of the sequence {nan} and

T (k)
n =

n∑
v=1

|tv|k.

Let {|εn|} be a non-increasing numerical sequence such that |∆εn| = O
(
|εn|
n

)
. Let Pn = O(npn)

and
∣∣∣∆( pnPn)∣∣∣ = O

(
pn
nPn

)
. If

m∑
n=1

pn|εn|kT (k)
n

nPn
= O(1), as m→∞, (2.8)

then the series
∑
anεn is |N̄ , pn|k summable, k ≥ 1.



84 Ş. Yıldız

3 Main results

The aim of this paper is to generalize Theorem 2.5 for |A, pn|k summability in the following form.
Theorem 3.1 Suppose that A = (anv) be a normal matrix with positive entries such that

an0 = 1, n = 0, 1, ..., (3.1)
an−1,v ≥ anv, for n ≥ v + 1, (3.2)

ann = O(
pn
Pn

), (3.3)

n−1∑
v=1

avvân,v = O(ann). (3.4)

Let {|λn|} be a non-increasing numerical sequence such that |∆λn| = O
(
|λn|
n

)
, and let

Pn = O(npn) and | ∆( pn
Pn

) |= O( pn
nPn

).
(A) If ∑

pnP
−1
n |λn|k <∞, (3.5)

then the series
∑
Cn(x)λn is |A, pn|k summable, 1 ≤ k < 2, for almost all values of x.

(B) If {ηn} is a sequence of positive numbers such that n−γηn → 0 as n → ∞, for some γ,
0 < γ < 1, and if

ϕ(t) = O
{
η(1/t)

}
, t→ 0 (3.6)∑

pnP
−1
n |λn|kηkn <∞, (3.7)

then the series
∑
Cn(x)λn is |A, pn|k summable, 1 ≤ k <∞.

The following lemmas and theorem are necessary for our aim.
Lemma 3.2 [12] Under the assumptions of Theorem 3.1, we have

n−1∑
v=1

|∆̄anv| ≤ ann, (3.8)

ân,v ≥ 0 (3.9)
m+1∑
n=v+1

ân,v+1 = O(1). (3.10)

Lemma 3.3 [10] Let rn(x) be the n-th Cesàro mean of the first order of the sequence {nCn(x)}
and R(k)

n =
n∑
v=1

|rv(x)|k. Then

R(k)
n (x) = O

{
nηkn
}
, 1 ≤ k ≤ ∞, (3.11)

provided {ηn} is a sequence of positive numbers such that n−γηn → 0 as n → ∞, for some γ,
0 < γ < 1, such that

ϕ(t) = O
{
η(1/t)

}
, t→ 0,

R(k)
n (x) = O(n), 1 ≤ k < 2, (3.12)

for almost all values of x.
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For the proof of Theorem 3.1 firstly, we generalize Theorem 2.6 for |A, pn|k summability
method in the following manner.
Theorem 3.4 Let A be a positive normal matrix satisfying conditions (3.2)-(3.5) of Theorem 3.1.
If tn is the n-th Cesàro mean of the first order of the sequence {nan} and {εn} is a numerical
sequence satisfying conditions (2.5)-(2.8) of Theorem 2.6, then the series

∑
anεn is |A, pn|k

summable, k ≥ 1.
Remark If we take anv = pv

Pn
in Theorem 3.4, we have Theorem 2.6 dealing with |N̄ , pn|k

summability.

4 Proofs of Theorems 3.4 and 3.1

Proof of Theorem 3.4. Let (In) denote the A-transform of the series
∞∑
n=1

anεn, then

∆̄In =
n∑
v=1

ân,vavεv =
n∑
v=1

v−1ân,vvavεv.

Applying Abel’s transformation to this sum, we have that

∆̄In =
n−1∑
v=1

∆v(ân,vεvv
−1)

v∑
r=1

rar + annεnn
−1

n∑
v=1

vav

=
n−1∑
v=1

(v + 1)tv(v
−1(v + 1)−1ân,vεv + (v + 1)−1∆̄anvεv + (v + 1)−1ân,v+1∆εv) +

n+ 1

n
annεntn

=
n−1∑
v=1

tv∆̄anvεv +
n−1∑
v=1

tvân,v+1∆εv +
n−1∑
v=1

v−1tvân,vεv +
n+ 1

n
annεntn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.4, by Minkowski’s inequality, it suffices to show that
∞∑
n=1

(
Pn
pn

)k−1

| In,r |k<∞, for r = 1, 2, 3, 4. (4.1)

First, by applying Hölder’s inequality with the exponents k and k′, where k > 1 and 1
k

+ 1
k′

= 1,
we have that

m+1∑
n=2

(
Pn
pn

)k−1

| In,1 |k ≤
m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

∣∣∆̄anv∣∣ |εv||tv|}k

≤
m+1∑
n=2

(
Pn
pn

)k−1 n−1∑
v=1

∣∣∆̄anv∣∣ |εv|k|tv|k ×{n−1∑
v=1

∣∣∆̄anv∣∣}k−1

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

{
n−1∑
v=1

|∆̄anv||εv|k|tv|k
}

= O(1)
m∑
v=1

|εv|k|tv|k
m+1∑
n=v+1

|∆̄anv|

= O(1)
m∑
v=1

(
pv
Pv

)
|εv|k|tv|k = O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.4 and Lemma 3.2. Now, using Hölder’s inequality we
have that

m+1∑
n=2

(
Pn
pn

)k−1

| In,2 |k≤
m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

|ân,v+1||∆εv||tv|

}k

≤
m+1∑
n=2

(
Pn
pn

)k−1 n−1∑
v=1

ân,v+1|∆εv|k|tv|ka1−k
vv ×

{
n−1∑
v=1

avvân,v+1

}k−1

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

ân,v+1|∆εv|k|tv|ka1−k
vv

= O(1)
m∑
v=1

|∆εv|k|tv|ka1−k
vv

m+1∑
n=v+1

ân,v+1

= O(1)
m∑
v=1

|∆εv|k|tv|k
(
pv
Pv

)1−k

= O(1)
m∑
v=1

|εv|k

vk
|tv|k

(
pv
Pv

)(
Pv
pv

)k
= O(1)

m∑
v=1

(
pv
Pv

)
|εv|k|tv|k

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.4 and Lemma 3.2. Next, we have that

m+1∑
n=2

(
Pn
pn

)k−1

| In,3 |k=
m+1∑
n=2

(
Pn
pn

)k−1
∣∣∣∣∣
n−1∑
v=1

ân,vεv
tv
v

∣∣∣∣∣
k

≤
m+1∑
n=2

(
Pn
pn

)k−1 n−1∑
v=1

ânv|εv|k
|tv|k

vk
a1−k
vv ×

{
n−1∑
v=1

avvânv

}k−1

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

ân,v|εv|k
|tv|k

vk

(
pv
Pv

)(
Pv
pv

)k
= O(1)

m∑
v=1

(
pv
Pv

)
|εv|k|tv|k

m+1∑
n=v+1

ân,v

= O(1)
m∑
v=1

(
pv
Pv

)
|εv|k|tv|k = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.4 and Lemma 3.2. Finally, we have that

m∑
n=1

(
Pn
pn

)k−1

|In,4|k = O(1)
m∑
n=1

(
Pn
pn

)k−1(
pn
Pn

)k
|εn|k|tn|k

= O(1)
m∑
n=1

(
pn
Pn

)
|εn|k|tn|k = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.4. So, this completes the proof of Theorem 3.4. �
Corollary 3.5 Suppose that A is a normal matrix satisfying conditions (3.2)-(3.5) of Theo-
rem 3.1. Let {εn} be a non-increasing sequence of positive numbers such that |∆εn| = O

(
|εn|
n

)
.

Let
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Pn = O(npn) and
∣∣∣∆( pnPn)∣∣∣ = O

(
pn
nPn

)
.

If

m∑
n=1

pn|εn|kT (k)
n

nPn
= O(1), as m→∞, (4.2)

where tn is the n-th Cesàro mean of the first order of the sequence {nan}, i.e.,

tn = 1
n+1

n∑
r=1

rar, and T
(k)
n =

n∑
v=1

|tv|k,

then the series
∑
anεn is |A, pn|k summable, k ≥ 1.

Proof. By Abel’s transformation and Corollary 2.7 (see [10]) it follows that,

m∑
v=1

(
pv
Pv

)
|εv|k|tv|k =

m−1∑
v=1

∆

((
pv
Pv

)
|εv|k

) v∑
r=1

|tr|k +
pm
Pm
|εm|k

m∑
r=1

|tr|k

= O(1)
m−1∑
v=1

∆

((
pv
Pv

)
|εv|k

)
T (k)
v +

pm
Pm
|εm|kT (k)

m

= O(1)

{
m∑
v=1

pv|εv|kT (k)
v

vPv

}
+ T (k)

m

pm
Pm
|λm|k.

Since

∆|εv|k ≤ k|εv|k−1∆|εv| ≤ k|εv|k−1|∆εv| = O

(
|εv|k

v

)
= O

{
m∑
v=1

pv|εv|kT (k)
v

vPv

}
,

and

T (k)
m

pm
Pm
|εm|k <

m∑
v=1

pv|εv|kT (k)
v

vPv
,

it follows that
m∑
v=1

(
pv
Pv

)
|εv|k|tv|k = O(1), as m→∞. �

Proof of Theorem 3.1 The proof of Theorem 3.1 follows immediately from Corollary 3.5 and
Lemma 3.3. �
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