ISSN (Print): 2077-9879 ISSN (Online): 2617-2658

Eurasian Mathematical Journal

2019, Volume 10, Number 1

Founded in 2010 by the L.N. Gumilyov Eurasian National University in cooperation with the M.V. Lomonosov Moscow State University the Peoples' Friendship University of Russia (RUDN University) the University of Padua

Starting with 2018 co-funded by the L.N. Gumilyov Eurasian National University and the Peoples' Friendship University of Russia (RUDN University)

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy Vice–Editors–in–Chief

K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), D. Suragan (Kazakhstan), I.A. Taimanov (Russia), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no degrees). It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.

References. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

Authors' data. The authors' affiliations, addresses and e-mail addresses should be placed after the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journalauthors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http : //publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.

1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.

1.7. A positive review is not a sufficient basis for publication of the paper.

1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.

1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

2.1. In the title of a review there should be indicated the author(s) and the title of a paper.

2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.

2.3. A review should cover the following topics:

- compliance of the paper with the scope of the EMJ;

- compliance of the title of the paper to its content;

- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);

- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ) The Astana Editorial Office The L.N. Gumilyov Eurasian National University Building no. 3 Room 306a Tel.: +7-7172-709500 extension 33312 13 Kazhymukan St 010008 Astana, Kazakhstan

The Moscow Editorial Office The Peoples' Friendship University of Russia (RUDN University) Room 515 Tel.: $+7-495-9550968$ 3 Ordzonikidze St 117198 Moscow, Russia

KHARIN STANISLAV NIKOLAYEVICH

(to the 80th birthday)

Stanislav Nikolayevich Kharin was born on December 4, 1938 in the village of Kaskelen, Alma-Ata region. In 1956 he graduated from high school in Voronezh with a gold medal. In the same year he entered the Faculty of Physics and Mathematics of the Kazakh State University and graduated in 1961, receiving a diploma with honors. After postgraduate studies he entered the Sector (since 1965 Institute) of Mathematics and Mechanics of the National Kazakhstan Academy of Sciences, where he worked until 1998 and progressed from a junior researcher to a deputy director of the Institute (1980). In 1968 he has defended the candidate thesis "Heat phenomena in electrical

contacts and associated singular integral equations", and in 1990 his doctoral thesis "Mathematical models of thermo-physical processes in electrical contacts" in Novosibirsk. In 1994 S.N. Kharin was elected a corresponding member of the National Kazakhstan Academy of Sciences, the Head of the Department of Physics and Mathematics, and a member of the Presidium of the Kazakhstan Academy of Sciences.

In 1996 the Government of Kazakhstan appointed S.N. Kharin to be a co-chairman of the Committee for scientific and technological cooperation between the Republic of Kazakhstan and the Islamic Republic of Pakistan. He was invited as a visiting professor in Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, where he worked until 2001. For the results obtained in the field of mathematical modeling of thermal and electrical phenomena, he was elected a foreign member of the National Academy of Sciences of Pakistan. In 2001 S.N. Kharin was invited to the position of a professor at the University of the West of England (Bristol, England), where he worked until 2003. In 2005, he returned to Kazakhstan, to the Kazakh-British Technical University, as a professor of mathematics, where he is currently working.

Stanislav Nikolayevich paid much attention to the training of young researchers. Under his scientific supervision 10 candidate theses and 4 PhD theses were successfully defended.

Professor S.N. Kharin has over 300 publications including 4 monographs and 10 patents. He is recognized and appreciated by researchers as a prominent specialist in the field of mathematical modeling of phenomena in electrical contacts. Using models based on the new original methods for solving free boundary problems he described mathematically the phenomena of arcing, contact welding, contact floating, dynamics of contact blow-open phenomena, electrochemical mechanism of electron emission, arc-to-glow transition, thermal theory of the bridge erosion. For these achievements he got the International Holm Award, which was presented to him in 2015 in San Diego (USA).

Now he very successfully continues his research and the evidence of this in the new monograph "Mathematical models of phenomena in electrical contacts" published last year in Novosibirsk.

The mathematical community, many his friends and colleagues and the Editorial Board of the Eurasian Mathematical Journal cordially congratulate Stanislav Nikolayevich on the occasion of his 80th birthday and wish him good health, happiness and new achievements in mathematics and mathematical education.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879 Volume 10, Number 1 (2019), 80 – 88

A NEW RESULT ON MATRIX SUMMABILITY FACTORS OF FOURIER SERIES

¸S. Yıldız

Communicated by N.A. Bokayev

Key words: summability factors, absolute matrix summability, numerical series, Fourier series, Hölder's inequality, Minkowski's inequality, sequence space.

AMS Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99, 42A24, 46A45.

Abstract. Sulaiman [10] has investigated absolute weighted mean summability theorems for numerical and Fourier series. In the present paper, we have extended the result of Sulaiman to the $|A, p_n|_k$ summability method. Also some new and known results are obtained by using some basic summability methods.

DOI: https://doi.org/10.32523/2077-9879-2019-10-1-80-88

1 Introduction

Let $\sum a_n$ be a given numerical series with partial sums (s_n) . By u_n^{α} and t_n^{α} we denote the nth Cesaro means of order α , with $\alpha > -1$, of the sequence (s_n) and (na_n) , respectively, that is (see [2])

$$
u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v \quad \text{and} \quad t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} v a_v,\tag{1.1}
$$

where

$$
A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)...(\alpha+n)}{n!} = O(n^{\alpha}), \qquad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0. \tag{1.2}
$$

The series $\sum a_n$ is said to be $|C,\alpha|_k$ summable, $k \geq 1$, if (see [5],[8])

$$
\sum_{n=1}^{\infty} n^{k-1} |u_n^{\alpha} - u_{n-1}^{\alpha}|^k = \sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}|^k < \infty.
$$
 (1.3)

If we take $\alpha = 1$, then $|C, \alpha|_k$ summability reduces to $|C, 1|_k$ summability.

Let (p_n) be a sequence of positive real numbers such that

$$
P_n = \sum_{v=0}^{n} p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).
$$
 (1.4)

The sequence-to-sequence transformation

$$
t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \tag{1.5}
$$

defines the sequence (t_n) of the Riesz means or simply the (\bar{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) (see [6]).

The series $\sum a_n$ is said to be $|\bar{N}, p_n|_k$ summable, $k \ge 1$, if (see [1])

$$
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty.
$$
 (1.6)

In the special case when $p_n = 1$ for all values of n (respectively $k = 1$), $|\bar{N}, p_n|_k$ summability is the same as $|C,1|_k$ (respectively $| \bar{N}, p_n |$) summability.

Given a normal matrix $A = (a_{nv})$, i.e., a lower triangular matrix with nonzero diagonal entries. We associate with A two lower triangle matrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ as follows:

$$
\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}, \quad n, v = 0, 1, \dots \quad \bar{\Delta} a_{nv} = a_{nv} - a_{n-1}, v \quad a_{-1,0} = 0 \tag{1.7}
$$

and

$$
\hat{a}_{00} = \bar{a}_{00} = a_{00}, \quad \hat{a}_{nv} = \bar{\Delta}\bar{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, \quad n = 1, 2, ... \tag{1.8}
$$

It should be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and seriesto-series transformations, respectively. Next, let

$$
A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \bar{a}_{nv} a_v
$$
\n(1.9)

and

$$
\bar{\Delta}A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v.
$$
\n(1.10)

Let $A = (a_{nv})$ be a normal matrix. Then A defines the sequence-to-sequence transformation, mapping the sequence $s = (s_n)$ to $As = (A_n(s))$, where

$$
A_n(s) = \sum_{v=0}^{n} a_{nv} s_v \quad n = 0, 1, ... \tag{1.11}
$$

The series $\sum a_n$ is said to be $|A, p_n|_k$ summable, $k \ge 1$, if (see [11])

$$
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |A_n(s) - A_{n-1}(s)|^k < \infty,\tag{1.12}
$$

Note that in the special case when A is the matrix of weighted means, i.e.,

$$
a_{nv} = \begin{cases} \frac{p_v}{P_n}, & 0 \le v \le n \\ 0, & n > v, \end{cases}
$$

then the $|A, p_n|_k$ summability reduces to the $| \bar{N}, p_n |_k$ summability, and if we take $a_{nv} = \frac{p_v}{P_n}$ $\frac{p_v}{P_n}$ and $p_n = 1$ for all values of n reduces to the $|C, 1|_k$ summability. Also, if we take $p_n = 1$ for all values of *n* reduces to the $|A|_k$ (see [13]) summability.

For any sequence (λ_n) we write $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. A sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1} \geq 0$.

Let the formal expansion of a function f, periodic with period 2π , and integrable in the sense of Lebesgue over $[-\pi, \pi]$, in a Fourier trigonometric series be given by

$$
f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} C_n(x),
$$

We write

$$
\phi(u) = f(x+u) + f(x-u) - 2f(x),
$$

\n
$$
\varphi(t) = \int_t^\delta \frac{|\phi(u)|}{u} du, \quad \Phi(t) = \int_0^t |\phi(u)| du, \quad 0 < \delta \le \pi,
$$

\n
$$
\mu_n = \left(\prod_{v=1}^{\ell-1} \log^v n\right) (\log^{\ell} n)^{1+\epsilon}, \quad \log^{\ell} n_0 > 0, \quad \epsilon > 0,
$$

where

$$
log\elln = log(log\ell-1n), ..., log2n = loglog n.
$$

2 The known results

Theorem 2.1 (Chow [4], 1941) If $\{\lambda_n\}$ is a convex sequence and the series $\sum n^{-1}\lambda_n$ is convergent, then the series $\sum C_n(x)\lambda_n$ is $|C,1|$ summable for almost all values of x. Theorem 2.2 (Cheng [3], 1948) If

$$
\Phi(t) = O(t), \quad as \quad t \to 0,
$$

then the series

$$
\sum_{n=2}^{\infty} C_n(x) / (\log n)^{1+\epsilon}, \quad \epsilon > 0,
$$

is $|C, \alpha|$ summable, $\alpha > 1$. Theorem 2.3 (Hsiang [7], 1970) If

$$
\Phi(t) = O(t), \quad \text{as} \quad t \to +0,
$$

then the series

$$
\sum_{n=0}^{\infty} C_n(x)/n^{\alpha}
$$

where $\alpha > 0$, is $|C, 1|$ summable. Theorem 2.4 (Pandey [9], 1978) If

$$
\varphi(t)=O\left\{(\log^\ell(1/t))^\eta\right\}\quad\text{ as }\quad t\to +0,
$$

then the series

$$
\sum_{n=0}^{\infty} C_n(x)/\mu_n
$$

is $|C, 1|$ summable for $0 < \eta < \epsilon$.

Sulaiman has proved the more general theorem dealing with $|\bar{N}, p_n|_k$ summability in the following form, which includes the theorems of Chow and Pandey as special cases, and hence all the previous results.

Theorem 2.5 [10] Let $\{|\lambda_n|\}$ be a non-increasing numerical sequence such that

$$
|\Delta\lambda_n|=O\left(\frac{|\lambda_n|}{n}\right).
$$

Let

$$
P_n = O(np_n)
$$

and $\vert \Delta(\frac{p_n}{P_n}) \vert = O(\frac{p_n}{nP_n})$ $\frac{p_n}{nP_n}$). (A) If

$$
\sum p_n P_n^{-1} |\lambda_n|^k < \infty,\tag{2.1}
$$

then the series

 $\sum C_n(x)\lambda_n$

is $|\bar{N}, p_n|_k$ summable, $1 \leq k < 2$, for almost all values of x. (B) If $\{\eta_n\}$ is a sequence of positive numbers such that $n^{-\gamma}\eta_n \to 0$ as $n \to \infty$, for some γ , $0 < \gamma < 1$, and if

$$
\varphi(t) = O\left\{\eta_{(1/t)}\right\}, \quad t \to 0 \tag{2.2}
$$

$$
\sum p_n P_n^{-1} |\lambda_n|^k \eta_n^k < \infty,\tag{2.3}
$$

then the series $\sum C_n(x)\lambda_n$ is $|\bar{N}, p_n|_k$ summable, $1 \leq k < \infty$.

Theorem 2.6 [10] If t_n is the n-th Cesaro mean of the first order of the sequence $\{na_n\}$ and $\{\epsilon_n\}$ is a numerical sequence such that

$$
\sum_{n=1}^{m} n^{-1} |\epsilon_n|^k |t_n|^k = O(1), \quad m \to \infty,
$$
\n(2.4)

$$
\sum_{n=1}^{m} p_n P_n^{-1} |\epsilon_n|^k |t_n|^k = O(1), \quad m \to \infty,
$$
\n(2.5)

$$
\sum_{n=1}^{m} n^{k-1} |\Delta \epsilon_n|^k |t_n|^k = O(1), \quad m \to \infty,
$$
\n(2.6)

$$
\sum_{n=1}^{m} n^{-1} P_n = O(P_m), \quad m \to \infty,
$$
\n(2.7)

then the series $\sum a_n \epsilon_n$ is summable $|\bar{N}, p_n|_k$, $k \geq 1$. **Corollary 2.7** [10] Let t_n be the n-th Cesaro mean of the first order of the sequence $\{na_n\}$ and

$$
T_n^{(k)} = \sum_{v=1}^n |t_v|^k.
$$

Let $\{|\epsilon_n|\}$ be a non-increasing numerical sequence such that $|\Delta \epsilon_n| = O\left(\frac{|\epsilon_n|}{n}\right)$ $\left(\frac{n}{n}\right)$. Let $P_n = O(np_n)$ $and \vert$ $\Delta\left(\frac{p_n}{P}\right)$ P_n $\Big) \Big| = O \left(\frac{p_n}{n P_n} \right)$ nP_n). If \sum_{m} $n=1$ $p_n|\epsilon_n|^kT_n^{(k)}$ nP_n $= O(1), \quad \text{as} \quad m \to \infty,$ (2.8)

then the series $\sum a_n \epsilon_n$ is $|\bar{N}, p_n|_k$ summable, $k \geq 1$.

3 Main results

The aim of this paper is to generalize Theorem 2.5 for $|A, p_n|_k$ summability in the following form. **Theorem 3.1** Suppose that $A = (a_{nv})$ be a normal matrix with positive entries such that

$$
\overline{a}_{n0} = 1, \ n = 0, 1, \dots,
$$
\n(3.1)

$$
a_{n-1,v} \ge a_{nv}, \text{ for } n \ge v+1,
$$
\n(3.2)

$$
a_{nn} = O(\frac{p_n}{P_n}),\tag{3.3}
$$

$$
\sum_{v=1}^{n-1} a_{vv} \hat{a}_{n,v} = O(a_{nn}).
$$
\n(3.4)

Let $\{|\lambda_n|\}$ be a non-increasing numerical sequence such that $|\Delta\lambda_n|=O\left(\frac{|\lambda_n|}{n}\right)$ $\left(\frac{\lambda_n|}{n}\right)$, and let $P_n = O(np_n)$ and $\vert \Delta(\frac{p_n}{P_n}) \vert = O(\frac{p_n}{nP_n})$ $\frac{p_n}{nP_n}$). (A) If

$$
\sum p_n P_n^{-1} |\lambda_n|^k < \infty,\tag{3.5}
$$

then the series $\sum C_n(x)\lambda_n$ is $|A, p_n|_k$ summable, $1 \leq k < 2$, for almost all values of x. (B) If $\{\eta_n\}$ is a sequence of positive numbers such that $n^{-\gamma}\eta_n \to 0$ as $n \to \infty$, for some γ , $0 < \gamma < 1$, and if

$$
\varphi(t) = O\left\{\eta_{(1/t)}\right\}, \quad t \to 0 \tag{3.6}
$$

$$
\sum p_n P_n^{-1} |\lambda_n|^k \eta_n^k < \infty,\tag{3.7}
$$

then the series $\sum C_n(x)\lambda_n$ is $|A, p_n|_k$ summable, $1 \leq k < \infty$.

The following lemmas and theorem are necessary for our aim. **Lemma 3.2** [12] Under the assumptions of Theorem 3.1, we have

$$
\sum_{v=1}^{n-1} |\bar{\Delta} a_{nv}| \le a_{nn},\tag{3.8}
$$

$$
\hat{a}_{n,v} \ge 0 \tag{3.9}
$$

$$
\sum_{n=v+1}^{m+1} \hat{a}_{n,v+1} = O(1). \tag{3.10}
$$

Lemma 3.3 [10] Let $r_n(x)$ be the n-th Cesaro mean of the first order of the sequence $\{nC_n(x)\}$ and $R_n^{(k)} = \sum_{n=1}^{\infty}$ $v=1$ $|r_v(x)|^k$. Then

$$
R_n^{(k)}(x) = O\left\{n\eta_n^k\right\}, \quad 1 \le k \le \infty,
$$
\n
$$
(3.11)
$$

provided $\{\eta_n\}$ is a sequence of positive numbers such that $n^{-\gamma}\eta_n \to 0$ as $n \to \infty$, for some γ , $0 < \gamma < 1$, such that

$$
\varphi(t) = O\left\{\eta_{(1/t)}\right\}, \quad t \to 0,
$$

\n
$$
R_n^{(k)}(x) = O(n), \quad 1 \le k < 2,
$$
\n(3.12)

for almost all values of x.

For the proof of Theorem 3.1 firstly, we generalize Theorem 2.6 for $|A, p_n|_k$ summability method in the following manner.

Theorem 3.4 Let A be a positive normal matrix satisfying conditions (3.2) - (3.5) of Theorem 3.1. If t_n is the n-th Cesaro mean of the first order of the sequence $\{na_n\}$ and $\{\epsilon_n\}$ is a numerical sequence satisfying conditions (2.5)-(2.8) of Theorem 2.6, then the series $\sum a_n \epsilon_n$ is $|A, p_n|_k$ summable, $k \geq 1$.

Remark If we take $a_{nv} = \frac{p_v}{P_v}$ $\frac{p_v}{P_n}$ in Theorem 3.4, we have Theorem 2.6 dealing with $|\bar{N}, p_n|_k$ summability.

4 Proofs of Theorems 3.4 and 3.1

Proof of Theorem 3.4. Let (I_n) denote the A-transform of the series $\sum_{n=1}^{\infty}$ $n=1$ $a_n \epsilon_n$, then

$$
\bar{\Delta}I_n = \sum_{v=1}^n \hat{a}_{n,v} a_v \epsilon_v = \sum_{v=1}^n v^{-1} \hat{a}_{n,v} v a_v \epsilon_v.
$$

Applying Abel's transformation to this sum, we have that

$$
\bar{\Delta}I_n = \sum_{v=1}^{n-1} \Delta_v(\hat{a}_{n,v} \epsilon_v v^{-1}) \sum_{r=1}^v r a_r + a_{nn} \epsilon_n n^{-1} \sum_{v=1}^n v a_v
$$
\n
$$
= \sum_{v=1}^{n-1} (v+1) t_v (v^{-1}(v+1)^{-1} \hat{a}_{n,v} \epsilon_v + (v+1)^{-1} \bar{\Delta} a_{nv} \epsilon_v + (v+1)^{-1} \hat{a}_{n,v+1} \Delta \epsilon_v) + \frac{n+1}{n} a_{nn} \epsilon_n t_n
$$
\n
$$
= \sum_{v=1}^{n-1} t_v \bar{\Delta} a_{nv} \epsilon_v + \sum_{v=1}^{n-1} t_v \hat{a}_{n,v+1} \Delta \epsilon_v + \sum_{v=1}^{n-1} v^{-1} t_v \hat{a}_{n,v} \epsilon_v + \frac{n+1}{n} a_{nn} \epsilon_n t_n
$$
\n
$$
= I_{n,1} + I_{n,2} + I_{n,3} + I_{n,4}.
$$

To complete the proof of Theorem 3.4, by Minkowski's inequality, it suffices to show that

$$
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,r}|^k < \infty, \quad \text{for} \quad r = 1, 2, 3, 4. \tag{4.1}
$$

First, by applying Hölder's inequality with the exponents k and k', where $k > 1$ and $\frac{1}{k} + \frac{1}{k}$ $\frac{1}{k'} = 1,$ we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,1}|^k \le \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left\{\sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\epsilon_v||t_v|\right\}^k
$$

$$
\le \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\epsilon_v|^k |t_v|^k \times \left\{\sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| \right\}^{k-1}
$$

$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \left\{\sum_{v=1}^{n-1} |\bar{\Delta}a_{nv}| |\epsilon_v|^k |t_v|^k \right\}
$$

$$
= O(1) \sum_{v=1}^{m} |\epsilon_v|^k |t_v|^k \sum_{n=v+1}^{m+1} |\bar{\Delta}a_{nv}|
$$

$$
= O(1) \sum_{v=1}^{m} \left(\frac{p_v}{P_v}\right) |\epsilon_v|^k |t_v|^k = O(1) \text{ as } m \to \infty,
$$

by virtue of the hypotheses of Theorem 3.4 and Lemma 3.2. Now, using Hölder's inequality we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,2}|^k \le \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left\{\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta \epsilon_v||t_v|\right\}^k
$$

\n
$$
\le \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \sum_{v=1}^{n-1} \hat{a}_{n,v+1} |\Delta \epsilon_v|^k |t_v|^k a_{vv}^{1-k} \times \left\{\sum_{v=1}^{n-1} a_{vv} \hat{a}_{n,v+1}\right\}^{k-1}
$$

\n
$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} \hat{a}_{n,v+1} |\Delta \epsilon_v|^k |t_v|^k a_{vv}^{1-k}
$$

\n
$$
= O(1) \sum_{v=1}^{m} |\Delta \epsilon_v|^k |t_v|^k a_{vv}^{1-k} \sum_{n=v+1}^{m+1} \hat{a}_{n,v+1}
$$

\n
$$
= O(1) \sum_{v=1}^{m} |\Delta \epsilon_v|^k |t_v|^k \left(\frac{p_v}{P_v}\right)^{1-k}
$$

\n
$$
= O(1) \sum_{v=1}^{m} \frac{|\epsilon_v|^k}{v^k} |t_v|^k \left(\frac{p_v}{P_v}\right) \left(\frac{P_v}{p_v}\right)^k
$$

\n
$$
= O(1) \sum_{v=1}^{m} \left(\frac{p_v}{P_v}\right) |\epsilon_v|^k |t_v|^k
$$

\n
$$
= O(1) \text{ as } m \to \infty,
$$

by virtue of the hypotheses of Theorem 3.4 and Lemma 3.2. Next, we have that

$$
\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,3}|^k = \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left|\sum_{v=1}^{n-1} \hat{a}_{n,v} \epsilon_v \frac{t_v}{v}\right|^k
$$

\n
$$
\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \sum_{v=1}^{n-1} \hat{a}_{nv} |\epsilon_v|^k \frac{|t_v|^k}{v^k} a_{vv}^{1-k} \times \left\{\sum_{v=1}^{n-1} a_{vv} \hat{a}_{nv}\right\}^{k-1}
$$

\n
$$
= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} \hat{a}_{n,v} |\epsilon_v|^k \frac{|t_v|^k}{v^k} \left(\frac{p_v}{P_v}\right) \left(\frac{P_v}{p_v}\right)^k = O(1) \sum_{v=1}^{m} \left(\frac{p_v}{P_v}\right) |\epsilon_v|^k |t_v|^k \sum_{n=v+1}^{m+1} \hat{a}_{n,v}
$$

\n
$$
= O(1) \sum_{v=1}^{m} \left(\frac{p_v}{P_v}\right) |\epsilon_v|^k |t_v|^k = O(1) \text{ as } m \to \infty,
$$

by virtue of the hypotheses of Theorem 3.4 and Lemma 3.2. Finally, we have that

$$
\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,4}|^k = O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} \left(\frac{p_n}{P_n}\right)^k |\epsilon_n|^k |t_n|^k
$$

= $O(1) \sum_{n=1}^{m} \left(\frac{p_n}{P_n}\right) |\epsilon_n|^k |t_n|^k = O(1)$ as $m \to \infty$,

by virtue of the hypotheses of Theorem 3.4. So, this completes the proof of Theorem 3.4. \Box **Corollary 3.5** Suppose that A is a normal matrix satisfying conditions $(3.2)-(3.5)$ of Theorem 3.1. Let $\{\epsilon_n\}$ be a non-increasing sequence of positive numbers such that $|\Delta \epsilon_n| = O\left(\frac{|\epsilon_n|}{n}\right)$ $\frac{\mathbb{E}_n |}{n}$. Let

A new result on matrix summability factors of Fourier series 87

$$
P_n = O(np_n) \text{ and } \left| \Delta \left(\frac{p_n}{P_n} \right) \right| = O\left(\frac{p_n}{n P_n} \right).
$$

If

$$
\sum_{n=1}^{m} \frac{p_n |\epsilon_n|^k T_n^{(k)}}{n P_n} = O(1), \quad \text{as} \quad m \to \infty,
$$
\n
$$
(4.2)
$$

where t_n is the n-th Cesaro mean of the first order of the sequence $\{na_n\}$, i.e.,

$$
t_n = \frac{1}{n+1} \sum_{r=1}^n r a_r
$$
, and $T_n^{(k)} = \sum_{v=1}^n |t_v|^k$,

then the series $\sum a_n \epsilon_n$ is $|A, p_n|_k$ summable, $k \geq 1$. Proof. By Abel's transformation and Corollary 2.7 (see [10]) it follows that,

$$
\sum_{v=1}^{m} \left(\frac{p_v}{P_v}\right) |\epsilon_v|^k |t_v|^k = \sum_{v=1}^{m-1} \Delta \left(\left(\frac{p_v}{P_v}\right) |\epsilon_v|^k \right) \sum_{r=1}^{v} |t_r|^k + \frac{p_m}{P_m} |\epsilon_m|^k \sum_{r=1}^{m} |t_r|^k
$$

= $O(1) \sum_{v=1}^{m-1} \Delta \left(\left(\frac{p_v}{P_v}\right) |\epsilon_v|^k \right) T_v^{(k)} + \frac{p_m}{P_m} |\epsilon_m|^k T_m^{(k)}$
= $O(1) \left\{ \sum_{v=1}^{m} \frac{p_v |\epsilon_v|^k T_v^{(k)}}{v P_v} \right\} + T_m^{(k)} \frac{p_m}{P_m} |\lambda_m|^k.$

Since

$$
\Delta |\epsilon_v|^k \le k |\epsilon_v|^{k-1} \Delta |\epsilon_v| \le k |\epsilon_v|^{k-1} |\Delta \epsilon_v| = O\left(\frac{|\epsilon_v|^k}{v}\right)
$$

= $O\left\{\sum_{v=1}^m \frac{p_v |\epsilon_v|^k T_v^{(k)}}{v P_v}\right\},$

and

$$
T_m^{(k)} \frac{p_m}{P_m} |\epsilon_m|^k < \sum_{v=1}^m \frac{p_v |\epsilon_v|^k T_v^{(k)}}{v P_v},
$$

it follows that

$$
\sum_{v=1}^{m} \left(\frac{p_v}{P_v}\right) |\epsilon_v|^k |t_v|^k = O(1), \quad \text{as} \quad m \to \infty.
$$

Proof of Theorem 3.1 The proof of Theorem 3.1 follows immediately from Corollary 3.5 and Lemma 3.3.

References

- [1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos Soc. 97 (1985), 147–149.
- [2] E. Cesàro, Sur la multiplication des sèries, Bull. Sci. Math. 14 (1890), $114-120$.
- [3] M.T. Cheng, Summability factors of Fourier series, Duke Math. J. 15 (1948), 17–27.
- [4] H.C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 165 (1941), 215–226.
- [5] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957), 113–141.
- [6] G.H. Hardy, Divergent Series, Oxford Univ. Press, Oxford (1949).
- [7] F.C. Hasiang, On $|C, 1|$ summability factors of Fourier series at a given point, Pacific J. Math. 33 (1970), 139–147.
- [8] E. Kogbetliantz, Sur l`es series absolument sommables par la methode des moyennes arithmetiques, Bull. Sci. Math. 49 (1925), 234–256.
- [9] G.S. Pandey, *Multipliers for* $|C, 1|$ summability of Fourier series, Pacific J. Math. 79 (1978), 177–182.
- [10] W.T. Sulaiman, On $|\bar{N}, p_n|_k$ summability factors of Fourier series, Portugaliae Math. 45, (1988), 115–124.
- [11] W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series, IV. Indian J. Pure Appl. Math. 34 11 (2003), 1547–1557.
- [12] W.T. Sulaiman, Some new factor theorem for absolute summability, Demonstr. Math. XLVI 1 (2013), 149– 156.
- [13] N. Tanovič-Miller, On strong summability, Glas. Mat. Ser III. 14 (34) (1979), 87–97.

¸Sebnem Yıldız Department of Mathematics Kır¸sehir Ahi Evran University Kırşehir, Turkey E-mails: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

> Received: 11.04.2016 Revised version: 12.02.2018