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KHARIN STANISLAV NIKOLAYEVICH

(to the 80th birthday)

Stanislav Nikolayevich Kharin was born on December 4,
1938 in the village of Kaskelen, Alma-Ata region. In 1956 he
graduated from high school in Voronezh with a gold medal. In
the same year he entered the Faculty of Physics and Mathe-
matics of the Kazakh State University and graduated in 1961,
receiving a diploma with honors. After postgraduate studies he
entered the Sector (since 1965 Institute) of Mathematics and
Mechanics of the National Kazakhstan Academy of Sciences,
where he worked until 1998 and progressed from a junior re-
searcher to a deputy director of the Institute (1980). In 1968 he
has defended the candidate thesis “Heat phenomena in electrical

contacts and associated singular integral equations”, and in 1990 his doctoral thesis “Mathemat-
ical models of thermo-physical processes in electrical contacts” in Novosibirsk. In 1994 S.N.
Kharin was elected a corresponding member of the National Kazakhstan Academy of Sciences,
the Head of the Department of Physics and Mathematics, and a member of the Presidium of
the Kazakhstan Academy of Sciences.

In 1996 the Government of Kazakhstan appointed S.N. Kharin to be a co-chairman of the
Committee for scientific and technological cooperation between the Republic of Kazakhstan and
the Islamic Republic of Pakistan. He was invited as a visiting professor in Ghulam Ishaq Khan
Institute of Engineering Sciences and Technology, where he worked until 2001. For the results
obtained in the field of mathematical modeling of thermal and electrical phenomena, he was
elected a foreign member of the National Academy of Sciences of Pakistan. In 2001 S.N. Kharin
was invited to the position of a professor at the University of the West of England (Bristol,
England), where he worked until 2003. In 2005, he returned to Kazakhstan, to the Kazakh-
British Technical University, as a professor of mathematics, where he is currently working.

Stanislav Nikolayevich paid much attention to the training of young researchers. Under his
scientific supervision 10 candidate theses and 4 PhD theses were successfully defended.

Professor S.N. Kharin has over 300 publications including 4 monographs and 10 patents. He
is recognized and appreciated by researchers as a prominent specialist in the field of mathe-
matical modeling of phenomena in electrical contacts. Using models based on the new original
methods for solving free boundary problems he described mathematically the phenomena of
arcing, contact welding, contact floating, dynamics of contact blow-open phenomena, electro-
chemical mechanism of electron emission, arc-to-glow transition, thermal theory of the bridge
erosion. For these achievements he got the International Holm Award, which was presented to
him in 2015 in San Diego (USA).

Now he very successfully continues his research and the evidence of this in the new monograph
“Mathematical models of phenomena in electrical contacts” published last year in Novosibirsk.

The mathematical community, many his friends and colleagues and the Editorial Board of the
Eurasian Mathematical Journal cordially congratulate Stanislav Nikolayevich on the occasion of
his 80th birthday and wish him good health, happiness and new achievements in mathematics
and mathematical education.
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Abstract. We consider a special class of convex ordered normed cones CONC. For such
structures we obtain Hahn-Banach type theorems on functional separation for points. On the
base of a Hahn-Banach type theorem on functional separation for points we prove a sublinear
version of the Rädström embedding theorem for the class CONC. Some analogues of Hahn-
Banach separation theorem for some type of sets in CONC are obtained.
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1 Introduction

The theory of so-called abstract convex normed cones is actively developed in recent decades
(see, e.g., [7, 9, 13, 16, 17, 18, 23]). In particular, such known mathematicians as J.Rädström,
K.Keimel, W.Roth, R.Tix and others were engaged in this theory.

The special types of convex cones in some functional spaces were studied by M.L.Goldman,
P. P. Zabreiko and E.G.Bakhtigareeva (see, e.g., [1, 2, 8]). Recently, in connection with some
problems of nonsmooth analysis, the so-called subnormed cones were considered by I.V.Orlov
(see, e.g., [10, 11, 12]). For the cone of convex compact subsets of a normed space E with a
separable conjugate space E∗ a new analogue of the Shauder fixed-point theorem was proved
by us in [19]. Sublinear versions of the Banach-Alaoglu theorem and Banach-Mazur theorem in
normed cones were proved by us recently [20, 21].

Generally, norm in a cone may not be a trace of the usual norm (or seminorm) in any linear
space. In particular, it holds for each linear space with the so-called asymmetric norm (see, e.g.
[3, 4]). We note some applications of asymmetric normed spaces to theoretical computer science
[6, 15, 18] and approximation theory [5, 14].

In this paper we obtain new Hahn-Banach type theorems on functional separation for points
and sets in a special class of abstract convex cones with a norm. Note that in [9, 16, 17, 18, 23]
some Hahn-Banach type theorems on functional separation by linear bounded functionals were
considered for different types of normed cones. However, in this aspect there is such a problem: in
contrast to the class of normed spaces the boundedness of a linear functional ` : X → R does not
imply the boundedness of the functional −` : X → R in a cone. Corresponding examples (see,
e.g. [3]) are known even in linear spaces with asymmetric norm, which can also be considered
as convex normed cones. In connection with this problem known analogues of the Hahn-Banach
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separation theorem are obtained only in special classes of normed cones using non-negative
monotonic linear functionals (see, e.g. [4, 16, 17, 18, 23]). However, this approach leads to some
problems. In particular, such functionals may not separate points in a normed cone [16]. We
suggest considering not only non-negative linear functionals and we introduce a conjugate cone
as a set of linear upper bounded (or semi-bounded) functionals, which are non-negative at some
non-zero points. This allows us proving the existence of a sublinear isometric embedding into a
linear normed space for a wider class of normed cones without specific conditions of monotony
(see Theorem 1).

Many results of the theory of convex normed cones are related to the possibility of endowing
them with a metric structure (a metric or some analogue of it). Note the well-known J.Rädström
theorem [13] on the linear isometric embedding of a cone in a normed space with homogeneous
and shift invariant metric d : X ×X −→ R+:

d(λx, λy) = λd(x, y) d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X,λ > 0.

In recent works [4, 7, 16] it was shown how one can introduce in cones the so-called quasi-
metric q : X ×X −→ R+, which can be asymmetric (generally, q(x, y) 6= q(y, x)). It is possible
that q(x, y) = +∞ and q(x, y) = 0 for some x 6= y. Note that such a quasi-metric is homogeneous
and subinvariant (see, e.g. [4, 7, 16]):

q(x+ z, y + z) 6 q(x, y) for all x, y, z ∈ X.

In this paper on the base of an analogue of the Hahn-Banach theorem on functional separation
(see Theorem 3.1) we introduce a special finite homogeneous metric d∗ : X × X −→ R+ for a
new class of normed cones X. Using this metric we prove an analogue of the J.Rädström
embedding theorem on the existence of a sublinear isometric embedding of a normed cone into
a linear normed space (see Theorem 1). Generally speaking, the linearity of such an embedding
is impossible (see Remark 6).

Our paper is based on [22], where an analogue of the analytic version of the Hahn-Banach
theorem in abstract convex cones was proved and some applications of this result were considered.
In particular, in ([22], see Section 4) a special class of strict convex normed cones (SCNC) was
considered and the existence of a sublinear injective isometric embedding of each SCNC in a
Banach space E was proved.

We are developing research [22] in the following directions. Instead of the standard property
of monotony for norms in a cone (see, e.g. [16, 18, 22]) for all x, y, z ∈ X :

y = x+ z =⇒ ‖x‖ 6 ‖y‖ (1.1)

we consider its new generalization

x 6= 0 =⇒ inf{‖y‖ | y = x+ z for some z ∈ X} > 0 (1.2)

and select a class of convex ordered normed cone CONC as a corresponding modification of the
class of SCNC (see Definition 10). Property (1.2) can be fulfilled in cones with a non-monotonic
norm (see Examples 4 and 5). Thus, our approach is new even for the case, when non-negative
linear bounded functionals separate points of the cone.

We obtain an analogue of the Hahn-Banach separation theorem for points and introduce the
second conjugate space X∗∗ of CONC X and prove the opportunity to consider X as a metric
space (X, d∗) with some metric d∗ : X × X −→ R. On the base of this result for CONC we
obtain an analogue of the Hahn-Banach separation theorem by linear semi-bounded functionals
for special types of sets in X.
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The paper consists of the introduction and four main sections.
In Section 2 first of all we give an overview of the main concepts and results of the paper [22],

on which we base our reasoning: an analogue of the Hahn-Banach theorem on the extension of
a linear functional from a subcone Y ⊂ X to the whole cone X with preservation of an estimate
by a convex functional (Theorem 2.1), along with the analogue of the Lemma on a support
functional in the class of convex normed cones CNC (Corollary 2.1). Further, in Section 2 we
construct some new examples of normed cones that are not linearly injectively isometrically
embedded in any linear normed space (see Examples 4 and 5). Also we show that we need
additional requirements for the theorem on functional separation in the class CNC (see Lemma
2.1 and Example 6).

Section 3 is devoted to the theorem on functional separation of points by linear semi-bounded
functionals in CONC X (see Theorem 3.1) and its applications to a sublinear analogue of the
J.Rädström embedding theorem (see Theorem 1). Theorem 3.1 gives us the opportunity to
define a homogeneous metric d∗ : X ×X → R and prove the existence of an injective sublinear
d∗-continuous embedding of each CONC X in X∗∗ (see Theorem 1). Generally speaking, d∗
loses the property of subinvariance with respect to shifts (see Remark 9).

Section 4 is devoted to the analogues of the Hahn-Banach theorem on functional separation
of a point and a d∗-closed (d∗-open) set in CONC. We obtain an analogue of the Hahn-Banach
separation theorem of a point and a d∗-closed (d∗-open) convex set containing 0 (see Theorems
4.1 and 4.2). We show the impossibility of strengthening of the obtained result for sets, which
do not contain 0 (see Example 11).

In the last section on the base of Theorem 1 we prove an analogue of Theorem 4.1 for the
case, where instead of a point and a convex set we consider two closed sets with special properties
(see Theorem 5.1).

2 An analogue of the Hahn-Banach extension theorem and convex
normed cones

In this section we consider some auxiliary concepts, results and examples. Recall that an abstract
convex cone or convex cone is a collection X of elements with the operations of addition and
non-negative scalar multiplication, where X is a commutative semigroup under addition, such
that for arbitrary numbers λ, µ > 0 and elements x, y ∈ X the following relations hold:

1 · x = x; (λµ)x = λ(µx); 0 · x = 0; λ(x+ y) = λx+ λy; (λ+ µ)x = λx+ µx.

Note, that for many results in the theory of convex cones the following cancellation law is
essential for all x, y, z ∈ X :

x+ y = y + z ⇐⇒ x = z. (2.1)

Definition 1. A mapping p : X → R is called a convex functional, if for each x, y ∈ X and
λ > 0 the following conditions hold:

p(x) > 0, p(λx) = λp(x) and p(x+ y) 6 p(x) + p(y).

We also recall the concept of a subcone in the class of convex cones, introduced by us in [22].

Definition 2. We say that Y is a subcone of X, if Y ⊂ X, Y is a convex cone and for all x ∈ X
and y, z ∈ Y ⊂ X the condition z = x+ y implies that x ∈ Y .
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Example 1. For each fixed elements x1, x2, ..., xn ∈ X the set

Y =

{
x ∈ X

∣∣∣∣x+
n∑
k=1

µkxk =
n∑
k=1

λkxk for some λk, µk > 0, k = 1, n

}

is a subcone of X. One more example is considered further in the proof of Theorem 3.1.

Now we recall the analogue of the Hahn-Banach theorem on the extension of a linear func-
tional from a subcone Y ⊂ X to the whole cone X for the class of convex cones X with the
cancellation law [22].

Theorem 2.1. Let X be a convex cone with the cancellation law, p : X → R be a convex
functional on X, Y be a subcone of X. Assume that ` : Y → R is a linear functional with the
estimate `(y) 6 p(y) for all y ∈ Y .

Then there exists a linear functional L : X → R such that L(x) 6 p(x) for all x ∈ X and
L(y) = `(y) for all y ∈ Y .

It is interesting to know conditions under which an abstract convex cone with a norm may
be isometrically embedded in a linear normed space with some convenient properties of the
corresponding embedding. It is clear, that such a norm inX should satisfy the following property
for all x, y ∈ X :

x+ y = 0 =⇒ ‖x‖ = ‖y‖. (2.2)

Generally, the last property (2.2) does not follow from the standard axioms of a norm in the
class of convex cones. Such an example was given in [22] (see Example 2 below).

Let us recall the concept of a convex normed cone CNC X, some examples of CNC and the
analogue of the well-known Lemma on a support functional for such cones [22]. Recently, the
so-called subnormed cones were considered by I.V.Orlov (see [11]). Let us recall this concept.

Definition 3. A subnorm ‖ · ‖ : X → R, where X is a convex cone, is a function satisfying the
following conditions: for all x, y ∈ X and λ > 0:

‖x‖ > 0; ‖x‖ = 0⇔ x = 0; ‖λx‖ = λ‖x‖; ‖x+ y‖ 6 ‖x‖+ ‖y‖.

X is called a subnormed cone.

Now we consider some modification of the previous concept, introduced by us in [22].

Definition 4. A norm ‖ · ‖ : X → R, where X is a convex cone, is a function satisfying the
above axioms of a subnorm and (2.2). X is called a convex normed cone CNC.

We start with some simple examples of convex normed cones.

Example 2. Let X = (−∞; +∞). The non-negative scalar multiplication is standard. The
addition x1 ⊕ x2 is introduced in the following way: x1 ⊕ x2 := min{x1, x2}. We introduce the
standard subnorm in the convex cone X: ‖x‖ := |x| > 0.

Note, that with the addition x1⊕x2 := max{x1, x2} the set X = [0; +∞) is a convex normed
cone.

Example 3. Let X be the collection of all non-negative bounded real-valued functions f :
[0; 1] → R with the usual addition and scalar multiplication. In this case we can consider the
usual sup-norm ‖f‖X := sup

06t61
|f(t)|.
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Next, let us consider some important examples. Assume that a convex cone X is linearly
injectively embedded in a linear normed space E. Generally, a norm on X may not be a trace
of some seminorm in E.

Example 4. Let
X = {(0, 0)} ∪ {(a, b) | a > 0 and b > 0}.

We introduce the norm in X in the following way:

‖(a, b)‖ = max

{
a,
b2

a

}
for a 6= 0 and ‖(0, 0)‖ = 0.

It is clear that ‖(a, b)‖ = pW ((a, b)), where pW (·) is the Minkowsky functional of the set W ,
bounded by the parabola a = b2 and the straight line a = 1 (see Fig. 1).

Figure 1.

Thus, ‖ · ‖ is a convex functional on X. Let us show that ‖ · ‖ is not be a seminorm in linear
space E ⊃ ϕ(X) for each linear injective embedding ϕ : X → E. Indeed,

(
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∥∥∥∥(7
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,
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)∥∥∥∥ < ∥∥∥∥(1
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,
7
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)∥∥∥∥ ,
i.e. the inequality ‖(a1, b1)‖+ ‖(a1, b1) + (a2, b2)‖ > ‖(a2, b2)‖ is not satisfied.

Analogously to the preceding example we give one more example of convex normed cone that
is not linearly injectively isometrically embedded in any linear normed space.

Example 5. Let X be the same as in 4 We introduce the norm in X in the following way:

‖(a, b)‖ = max

{
a2

b
,
b2

a

}
for a, b 6= 0 and ‖(0, 0)‖ = 0.

It is clear that ‖(a, b)‖ = pW ((a, b)), where pW (·) is the Minkowsky functional of the set W
(see Fig. 2).

Figure 2.
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Let us recall the following analogue of the well-known Lemma on a support functional in
CNC ([22], Corollary 3.1). We start with auxiliary concepts of a semi-bounded linear functional
and a conjugate cone.

Definition 5. We say that a linear functional ` is semi-bounded on CNC X, if for some C > 0
the following inequality holds: `(x) 6 C‖x‖ for all x ∈ X.

Note that the inequality `(x) 6 C‖x‖ does not imply |`(x)| 6 C‖x‖ in view of non-
invertibility of elements of CNC X (see, e.g. [3]).

Clearly, the collection of all semi-bounded linear functionals on X is a convex cone if we
introduce addition of functionals and scalar multiplication in the usual way. Denote by X∗ the
collection of all semi-bounded linear functionals ` : X → R such that `(x0) > 0 for some x0 ∈ X,
x0 6= 0. We introduce the seminorm on X∗ in the following way:

‖`‖∗ := sup
x 6=0

{
`(x)

‖x‖

}
.

Definition 6. We say that X∗ is a conjugate cone of X.

An analogue of the known Lemma on a support functional for the class CNC immediately
follows from Theorem 2.1.

Corollary 2.1. (An analogue of the Lemma on a support functional in CNC) Let X be a CNC
with the cancellation law. Then for all x0 6= 0, x0 ∈ X there exists ` ∈ X∗ \ {0}, such that
‖`‖∗ = 1 and `(x0) = ‖x0‖.

Remark 1. An analogous result is known in the special class of normed cones X for non-
negative linear functionals f : X → R (see [18], Theorem 2.14). However, in general, the
equality f(x0) = ‖x0‖ is not possible (see Remark after Theorem 2.14 in [18]). Note, that the
condition `(x0) = ‖x0‖ in Corollary 2.1 is essential for some further results of our paper (see
Theorems 3.1 and 1).

Naturally, it is interesting to know whether functionals ` ∈ X∗ separate elements of CNC.
It turns out that it is possible to give an example of CNC, where `(x1) = `(x2) for each ` ∈ X∗
for different x1, x2 ∈ X. To give such an example we need an auxiliary statement.

Lemma 2.1. Each linear functional ` : X2 → R, where

X2 = {(a, b) | a, b > 0 and a = 0⇒ b = 0}

is given by
`((a, b)) = λa+ µb. (2.3)

for some constants λ and µ.
If we consider the norm ‖(a, b)‖ := a in X2 then the conjugate cone

X∗2 = {`((a; b)) = λa+ µb |λ > 0, µ 6 0}. (2.4)

Proof. Firstly, each functional ` is homogeneous:

`(α(a, b)) = α`((a, b)) ∀α > 0. (2.5)

If we take some pair x0 = (a0, b0) ∈ X2 then in the line of the ray {αx0}α>0 we have for
x0 6= (0, 0):

`(αx0) < 0 for each α > 0, or `(αx0) > 0 for each α > 0,
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or `(αx0) = 0 for each α > 0, (2.6)

If (2.6) is true then we call {αx0}α>0 a neutral ray for `.
a) If ` 6= 0, then there does not exist more than one neutral ray. Indeed, if there exist two

different neutral rays p1 and p2, then for each pair x = (a, b) we have `(x) = 0 in the cone K0

(see Fig. 3), bounded by the rays p1 and p2.

Figure 3. Two neutral rays.

From the linearity of ` we have that ` takes a zero value in all points of the cones, symmetric
to K0 with respect to p1 and p2. It is possible to cover the cone X2 by a finite set of such cones
as K0, i.e. ` = 0.

b) If one neutral ray exists for ` then due to the linearity of ` it can be shown that on rays
parallel to it ` takes constant values (see Fig. 4), i.e. ` is given by (2.3).

Figure 4. One neutral ray.

c) If there is no neutral rays for ` в X2 then on all rays given by {αx0}α>0 (x0 6= (0, 0)) `
takes either positive, or negative values.

Let us take such three rays p1, p2 and p3 (see Fig. 5) and choose such points x, y and z on
them that `(x) = `(y) = `(z) 6= 0, which can be done due to the homogeneity of `.

Figure 5. Three rays.
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It is clear that y = α1x+ α2z for some α1, α2 > 0. Then

`(y) = α1`(x) + α2`(z) = (α1 + α2)`(y),

whence α1+α2 = 1 owing to `(y) 6= 0. It means that x, y and z lie on the same line. Consequently,
for each C 6= 0 the sets given by {x ∈ X2 | `(x) = C} are the parts of parallel lines, whence ` is
given by (2.3).

Figure 6. There is no neutral ray.

The case ` ≡ 0 is trivial.
The condition ` ∈ X∗2 means that λa+µb 6 Ca for all (a, b) ∈ X and for some number C > 0.

It is clear that for all µ > 0 one may choose sufficiently large b > 0, for which the inequality
λa+ µb 6 Ca does not hold. Analogously, for λ < 0 ` 6∈ X∗2 . Therefore, (2.4) holds.

Let us return to the example of CNC, where linear semi-bound functionals may not separate
points.

Example 6. Let X = X ′2 = {(a, b) | a > 0, b ∈ R; a = 0⇒ b = 0}. The norm in X ′2 is introduced
by ‖(a, b)‖ = a.

Figure 7. The cone X ′2.

By Lemma 2.1 for each linear functional ` : X ′2 → R `((a, b)) = λa + µb for some constants
λ and µ. Since a 6= 0 and b can be an arbitrary number, the condition of the boundedness

`((a, b)) = λa+ µb 6 Ca

for some C > 0 implies µ = 0 (otherwise the inequality does not hold at the corresponding
choice of b). Obviously, functionals given by `((a, b)) = λa do not separate the points of X ′2.

Remark 2. The cone X ′2 is equivalent to the following cone

X ′2 = {[α; β] |α < β; α, β ∈ R}
⋃
{0}.

with the norm ‖[α; β]‖ = β − α in X ′2.

Previous examples show that for the validity of the theorem on functional separation it is
necessary to introduce some additional requirements and to consider the corresponding subclass
of CNC. The next section is devoted to our approach to this problem.
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3 A Hahn-Banach type theorem on functional separation for points
and its application to a sublinear version of J. Rädström theorem
for CONC

Naturally, it is interesting to get conditions of isometrical embedding of an abstract convex
normed cone in a normed space only using the norm. In [22] on the base of Theorem 2.1
and Corollary 2.1 this question was studied for SCNC X. An existence of convex isometrical
embedding ϕ : X → E for each SCNC X in the second conjugate normed space X∗∗ was
proved in [22]. In the work [13] it was proved by J. Rädström that if convex cone X has a metric
d : X × X −→ R with special properties then X is linearly injectively and isometrically (with
respect to the metric) embedded in some linear normed space.

This section of our paper is devoted to sublinear generalization of J. Rädström Theorem on
injective isometrical embedding in Banach space for CONC (see Definition 10). Note that a
convex normed cone from this class may not be linearly injectively isometrically embedded in
any Banach space (see Remark 6).

We prove a Hahn-Banach type theorem on functional separation of points by linear semi-
bounded functionals in CONC X (see Theorem 3.1). On the base of Theorem 3.1 we construct
a metric d∗ : X × X −→ R for each CONC X and prove the existence of injective sublinear
d∗-continuous embedding of X in the second conjugate Banach space (see Theorem 1). We start
with auxiliary definitions, notations, results and examples.

Definition 7. We say that X is a strict cone, if the following property holds:

x+ y = 0 =⇒ x = y = 0 for all x, y ∈ X. (3.1)

Note that strict convex cones were considered earlier, for example, in [18]. In each strict
convex cone X we can consider the following standard partial order [18]:

x � y if y = x+ z for some z ∈ X. (3.2)

Now we recall the property of order separability for strict convex cones and the concept of
strict convex normed cone SCNC and some examples of SCNC, considered by us in [22].

Definition 8. We say that X is order separable if for all x, y ∈ X:

αx � y � βx for each α < 1 < β =⇒ y = x. (3.3)

Definition 9. An abstract convex cone X is called a strict convex normed cone SCNC, if X is
a strict order separable convex normed cone with the cancellation law and for all x ∈ X:

x � y =⇒ ‖x‖ 6 ‖y‖. (3.4)

Now we consider some examples of SCNC.

Example 7. Let X be the collection of all non-negative numbers with the usual addition and
scalar multiplication. For each a, b ∈ X a+ b = 0 means a = b = 0 and a 6 b⇐⇒ b = a+ c for
some c > 0. Clearly, αb � a � βb for all α < 1 < β means that b 6 a 6 b, i.e. a = b.

Example 8. Let X be the collection of all non-negative bounded real-valued functions f :
[0; 1] → R+ with the usual addition and scalar multiplication. In this case for each f, g ∈ X
f � g ⇐⇒ f(t) 6 g(t) for all t ∈ [0; 1].
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Example 9. Let X be the collection of all segments A = [a; b] ⊂ R+ with the Minkowsky
addition and usual scalar multiplication. In this case we can consider the following order: for
each A,B ∈ X

A � B ⇐⇒ there exists C ∈ X such that B = A+ C.

Let us introduce a class of convex normed cones with some generalization of property (3.4).

Definition 10. We say that an abstract convex coneX is a convex ordered normed cone CONC,
if X is a strict order separable convex normed cone with the cancellation law and for all x ∈ X:

x 6= 0 =⇒ inf {‖y‖ | x � y} > 0. (3.5)

Remark 3. Clearly, (3.5) follows from (3.4). Therefore, each SCNC is CONC, but there are
CONC without property (3.4). Examples of such cones has been considered in Examples 4 and
5.

Let us formulate and prove a Hahn-Banach type theorem on functional separation of points
for CONC.

Theorem 3.1. Let X be a CONC. Then for all e1 6= e2 (e1, e2 ∈ X) there exists a functional
` ∈ X∗\{0}, such that `(e1) 6= `(e2) and `(e1) > 0 or `(e2) > 0.

Proof. 1) If ‖e1‖ 6= ‖e2‖ (for example, e1 = 0 or e2 = 0) then for i = 1, 2 by Corollary 2.1
there exists `i ∈ X∗\{0}, such that `i(ei) = ‖ei‖. If ‖e1‖ < ‖e2‖ then by ‖`2‖∗ = 1 we have
`2(e1) 6 ‖e1‖ < ‖e2‖ = `2(e2) and `2(e1) 6= `2(e2) > 0. The case of ‖e2‖ < ‖e1‖ is considered
analogously.

2) Now we assume ‖e1‖ = ‖e2‖, e1 6= 0 and e2 6= 0. Set Y := {λe1|λ > 0}. Note, that
Y is a subcone of X. Indeed, in view of the cancellation law of X for each λ > µ > 0 from
x+ µe1 = λe1 we have x = (λ− µ)e1. The case of λ < µ is impossible in view of strictness of X
(x+ (µ− λ)e1 = 0 means x = e1 = 0).

For each x = λe1 ∈ Y we can define ` ∈ X∗, such that `(x) := λ‖e1‖. Clearly, for e2 ∈ Y \{e1}
we have `(e2) 6= ‖e1‖ = `(e1) > 0.

If e2 6∈ Y we consider the set

Y1 = {x ∈ X |x+ λ2e2 + y2 = λ1e2 + y1 for some λ1, λ2 > 0, y1, y2 ∈ Y } .

By virtue of the cancellation law of X for each y1 = µ1e1 and y2 = µ2e1 ∈ Y from x+λ2e2 +
µ2e1 = λ1e2 + µ1e1 we have

x = (λ1 − λ2)e2 + (µ1 − µ2)e1, for λ1 > λ2 and µ1 > µ2,

x+ (λ2 − λ1)e2 = (µ1 − µ2)e1, for λ1 < λ2 and µ1 > µ2,

x+ (µ2 − µ1)e1 = (λ1 − λ2)e2, for λ1 > λ2 and µ1 < µ2.

The equality x+ (µ2− µ1)e1 + (λ2− λ1)e2 = 0 means x = (µ2− µ1)e1 = (λ2− λ1)e2 = 0 in view
of (3.1). Hence, we can consider only three types of elements x1, x2, x3 ∈ Y1:

a) x1 = λ1e2 + α1λ1e1 for some α1, λ1 > 0;

b) x2 + λ2e2 = α2λ2e1 in case of existing x2 ∈ X for some α2, λ2 > 0;

c) x3 + α3λ3e1 = λ3e2 in case of existing x3 for some α3, λ3 > 0.
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For xi ∈ X the conditions `(xi) 6 ‖xi‖ (i = 1, 2, 3) can be written in the following way:

λ1`(e2) + α1λ1`(e1) 6 ‖x1‖, −λ2`(e2) + α2λ2`(e1) 6 ‖x2‖, λ3`(e2)− α3λ3`(e1) 6 ‖x3‖,

or equivalently, for all possible αi > 0 and λi > 0 (i = 1, 2, 3)

`(e2) 6

∥∥∥∥x1

λ1

∥∥∥∥− α1`(e1), `(e2) > α2`(e1)−
∥∥∥∥x2

λ2

∥∥∥∥ , `(e2) 6

∥∥∥∥x3

λ3

∥∥∥∥+ α3`(e1).

According to the proof of Theorem 2.1 (see [22], the proof of Theorem 2.1) we can choose
`(e2) ∈ [αe2 ; βe2 ], where for all possible αi > 0 and λi > 0 (i = 1, 2, 3)

αe2 = sup
α2,λ2>0

{
α2`(e1)−

∥∥∥∥x2

λ2

∥∥∥∥}
and

βe2 = inf
α1,α3,λ1,λ3>0

{∥∥∥∥x1

λ1

∥∥∥∥− α1`(e1);

∥∥∥∥x3

λ3

∥∥∥∥+ α3`(e1)

}
.

Since
α2e1 =

x2

λ2

+ e2 =⇒ e2 � α2e1 and α3e1 +
x3

λ3

+ e2 =⇒ α3e1 � e2,

then α3e1 � e2 � α2e1 for some α2 > α3 > 0.
If inf {α2 − α3} = 0 then we have supα3 = inf α2 = α > 0. Then by (3.3) e2 = α · e1. From

‖e1‖ = ‖e2‖ we have e2 = e1, that is impossible.
We put inf {α2 − α3} = δ > 0. By virtue of the cancellation law of X we have

x2

λ2

+
x3

λ3

+ α3e1 = α2e1 and
x2

λ2

+
x3

λ3

= (α2 − α3)e1 ∈ Y.

Hence,∥∥∥∥x3

λ3

∥∥∥∥+ α3`(e1)−
(
α2`(e1)−

∥∥∥∥x2

λ2

∥∥∥∥) =

∥∥∥∥x2

λ2

∥∥∥∥+

∥∥∥∥x3

λ3

∥∥∥∥+ α3`(e1)− `
(
x2

λ2

+
x3

λ3

+ α3`(e1)

)
=

=

∥∥∥∥x2

λ2

∥∥∥∥+

∥∥∥∥x3

λ3

∥∥∥∥− `(x2

λ2

+
x3

λ3

)
=

∥∥∥∥x2

λ2

∥∥∥∥+

∥∥∥∥x3

λ3

∥∥∥∥− 1

2

∥∥∥∥x2

λ2

+
x3

λ3

∥∥∥∥ > ∥∥∥∥x2

λ2

+
x3

λ3

∥∥∥∥− 1

2

∥∥∥∥x2

λ2

+
x3

λ3

∥∥∥∥ =

=
1

2

∥∥∥∥x2

λ2

+
x3

λ3

∥∥∥∥ =
1

2
‖(α2 − α3)e1‖ >

1

2
δ‖e1‖ > 0 and∥∥∥∥x1

λ1

∥∥∥∥− α1`(e1)−
(
α2`(e1)−

∥∥∥∥x2

λ2

∥∥∥∥) =

∥∥∥∥x1

λ1

∥∥∥∥+

∥∥∥∥x2

λ2

∥∥∥∥− 1

2
` (α1e1 + α2e1) =

= ‖α1e1 + e2‖+

∥∥∥∥x2

λ2

∥∥∥∥− 1

2
‖α1e1 + α2e1‖ >

1

2
‖α1e1 + e2‖+

1

2

∥∥∥∥x2

λ2

∥∥∥∥+
1

2

∥∥∥∥α1e1 + e2 +
x2

λ2

∥∥∥∥−
−1

2
‖α1e1 + α2e1‖ =

1

2
‖α1e1 + e2‖+

1

2

∥∥∥∥x2

λ2

∥∥∥∥ > 1

2

∥∥∥∥α1e1 +
x2

λ2

+ e2

∥∥∥∥ = r > 0

by (3.5), since e2 6= 0.
Consequently, βe2 > αe2 + min

{
1
2
δ‖e1‖; r

}
, i.e. βe2 > αe2 and we can choose ` ∈ X∗ such

that `(e2) 6= `(e1) = 1
2
‖e1‖ > 0.

By Corollary 2.1 and Theorem 3.1 the next fact for each CONC immediately follows.

Corollary 3.1. Let X be a CONC. Then for all x0, x1, x2 ∈ X:
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(i) if x0 6= 0 then there exists ` ∈ X∗ \ {0} such that ‖`‖∗ = 1 and
max(0, `(x0)) = ‖x0‖;

(ii) if x1 6= x2 then there exists a functional ` ∈ X∗ \ {0} such that
max(0, `(x1)) 6= max(0, `(x2)).

Remark 4. Note, that the condition of `(e1) > 0 or `(e2) > 0 in Theorem 3.1 is essential for
this result.

Remark 5. Note that in the convex normed cone X2 from Example 6 all axioms of CONC are
fulfilled, besides (3.3). We can consider the pairs x = (1, 1) and y = (1, 0) to check this fact.
Obviously, the assertion of Corollary 3.1(ii) does not hold for the cone X2 from Example 6.

For each linear functional ` ∈ X∗ we consider the following bounded functional:

p`(x) = max{0, `(x)}. (3.6)

Corollary 3.1 means that functionals (3.6) separate points of each CONC X. Denote by
X∗sub the minimal convex cone including all functionals (3.6):

X∗sub :=

{
n∑
k=1

p`k(x) =
n∑
k=1

max{0, `k(x)} | `k ∈ X∗ for all k = 1, n, n ∈ N

}
.

Definition 11. We say that X∗sub is a subconjugate cone of X.

The norm on the convex cone X∗sub is introduced in a natural way:

‖p‖∗ := sup
x∈X\{0}

{
p(x)

‖x‖

}
for all p ∈ X∗sub. (3.7)

Now we consider the collection of all linear functionals ψ : X∗sub → R with natural operations
of addition and scalar multiplication:

[ψ1 + ψ2](p) := ψ1(p) + ψ2(p); [λψ](p) := λψ(p)

for all linear functionals ψ, ψ1,2 : X∗sub → R, for each number λ ∈ R and p ∈ X∗sub.
We say that the conjugate space (X∗sub)

∗ of X∗sub is the collection of all bounded linear func-
tionals ψ : X∗sub → R with the following norm:

‖ψ‖∗∗ := sup
p∈X∗sub\{0}

{
|ψ(p)|
‖p‖∗

}
= sup

p:‖p‖∗=1

|ψ(p)|.

Definition 12. We say that (X∗sub)
∗ =: X∗∗ is the second conjugate space of CONC X.

The partial order 4 can be introduced in X∗∗ in the following way:

∀ψ1,2 ∈ X∗∗ ψ1 4 ψ2 ⇐⇒ ψ1(p) 6 ψ2(p) p ∈ X∗sub. (3.8)

Let us formulate the following sublinear analogue of the J.Rädström embedding theorem.

Theorem 3.2. Let X be a CONC. Then there is such a metric d∗ : X × X −→ R+ that X
is sublinearly injectively isometrically and d∗-continuously embedded into the second conjugate
space X∗∗.
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Proof. It is natural to consider the embedding ϕ : X → X∗∗ :

ϕ(x) = ψx(·), where ψx(p) = p(x) for all p ∈ X∗sub. (3.9)

Indeed, for all x ∈ X, p1, p2 ∈ X∗sub and λ1, λ2 > 0 we have

ψx(λ1p1 + λ2p2) = [λ1p1 + λ2p2](x) = λ1p1(x) + λ2p2(x) = λ1ψx(p1) + λ2ψx(p2),

i.e. ψx(·) ∈ X∗∗.
Clearly, for all x1, x2 ∈ X, λ1, λ2 > 0 and p ∈ X∗sub

ψλ1x1+λ2x2(p) = p(λ1x1 + λ2x2) 6 λ1p(x1) + λ2p(x2) = [λ1ψx1 + λ2ψx2 ](p),

i.e.
ψλ1x1+λ2x2 4 λ1ψx1 + λ2ψx2 .

Assume that
d∗(x, y) := ‖ϕ(x)− ϕ(y)‖X∗∗ (3.10)

By Corollary 3.1 d∗(x, y) = 0 ⇐⇒ x = y. Hence, d∗ : X ×X −→ R+ is a metric. Further, for
all x, y ∈ X

‖ϕ(x)‖X∗∗ = sup
p:‖p‖∗=1

p(x) = sup
‖`‖∗=1

max{0, `(x)} = sup
‖`‖∗=1

`(x) = ‖x‖

by Corollary 2.1, i.e. ϕ is an isometrical embedding.
So, ϕ : X → X∗∗ is an injective sublinear isometric embedding of X into the linear normed

space X∗∗; d∗-continuity of ϕ is obvious.

Remark 6. The linearity of embedding ϕ : X → X∗∗ is impossible if d∗ is not invariant under
shifts (see Example 10 and Remark 9).

Remark 7. Note that on the base of Corollary 3.1 we can introduce one more metric d◦ :
X ×X −→ R:

d◦(x, y) = sup
`∈X∗:‖`‖∗=1

|max{0, `(x)} −max{0, `(y)}| 6 d∗(x, y),

where X∗ is the conjugate cone of CONC X (see Definition 6).

Remark 8. The system of closed d∗-neighbourhoods (and d◦-neighbourhoods) of points in a
CONC X is defined in the following natural way (x ∈ X, ε > 0):

Oε(x) = {y ∈ X | d∗(x, y) 6 ε}; (3.11)

O◦ε(x) = {y ∈ X | d◦(x, y) 6 ε}. (3.12)

Obviously, for each x ∈ X and ε > 0,

Oε(x) ⊂ O◦ε(x), Oε(0) = O◦ε(0) = {x ∈ X | ‖x‖ 6 ε}. (3.13)

Now we illustrate d◦-neighbourhoods of points x ∈ X in CONC X.
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Example 10. We consider the CONC

X2 = {(a, b) | a, b > 0 and a = 0⇒ b = 0}

with the norm ‖(a, b)‖ := a. In ([22], Example 8) it was shown, that X2 does not allow linear
isometric injective embedding into any linear normed space.

By Lemma 2.1 each linear functional f : X → R has the form f((a, b)) = λa + µb, where
λ > 0 and µ 6 0 are fixed constants:

X∗ = {`((a; b)) = λa+ µb |λ > 0, µ 6 0}. (3.14)

Hence
‖`‖∗ = ‖max{0, `(·)}‖X∗sub = sup

b>0
`((1; b)) = sup

b>0
(λ+ µb) = λ,

i.e. ‖`‖∗ = 1 ⇐⇒ `((a; b)) = a+ µb for some µ 6 0. Thus, the following equality holds

d◦(A,B) = sup
µ60
|max{0, a1 + µb1} −max{0, a2 + µb2}|, (3.15)

where A = (a1, b1), B = (a2, b2) ∈ X = X2. Set

g(A,B, µ) = max{0, a1 + µb1} −max{0, a2 + µb2}.

If a1,2 6= 0 and b1,2 6= 0, then the following cases are possible:

1) g(A,B, µ) = a1 − a2 + µ(b1 − b2) for µ > max
{
−a1
b1

;−a2
b2

}
;

2) g(A,B, µ) = a1 + µb1 for −a1
b1
6 µ 6 −a2

b2
;

3) g(A,B, µ) = −(a2 + µb2) for −a2
b2
6 µ 6 −a1

b1
;

4) g(A,B, µ) = 0 otherwise.

It is easy to see, that for fixed A and B the function |g(A,B, µ)| attains its maximax value
on α 6 µ 6 β only for µ = α or for µ = β. Hence, in the case −a1

b1
6 −a2

b2
the largest possible

value |g(A,B, µ)| can be one of the following numbers:

|a1 − a2|, a2 −
a2

b2

b1 =
a1b2 − a2b1

b2

,∣∣∣∣a1 − a2 −
a2

b2

(b1 − b2)

∣∣∣∣ =

∣∣∣∣a1 − a2 −
a2

b2

b1 + a2

∣∣∣∣ =

∣∣∣∣a1b2 − a2b1

b2

∣∣∣∣ =
a1b2 − a2b1

b2

,

and for a1
b1
> a2

b2
(b1, b2 6= 0) we have

d◦(A,B) = max

{
|a1 − a2|,

a1b2 − a2b1

b2

}
.

Analogously, for a2
b2
> a1

b1
(b1, b2 6= 0) we have

d◦(A,B) = max

{
|a1 − a2|,

a2b1 − a1b2

b1

}
.

Thus, for b1, b2 > 0 (and hence a1, a2 > 0)

d◦(A,B) = max

{
|a1 − a2|,

a2b1 − a1b2

b1

,
a1b2 − a2b1

b2

}
. (3.16)
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For b1 = 0 we have d◦(A,B) = sup
µ60
|max{0, a2 + µb2} − a1|. For b2 > 0 and µ 6 −a2

b2
one has

|max{0, a2 + µb2} − a1| = a1; for µ > −a2
b2

the following relation holds:

|max{0, a2 + µb2} − a1| = |a2 − a1 + µb2| 6 max{a1, |a1 − a2|}.

In the case b1 = b2 = 0 d◦(A,B) = |a1 − a2|. So, the following relation holds:

d◦(A,B) =


max{a1, |a1 − a2|}, for b1 = 0, b2 > 0;

max{a2, |a1 − a2|}, for b1 > 0, b2 = 0;

|a1 − a2|, for b1 = b2 = 0.

(3.17)

Relations (3.16) and (3.17) stated above allow us to clearly describe the
d◦-neighbourhoods of any A0 = (a0, b0) ∈ X2 of the form {Oε(A0)}ε>0, where

O◦ε(A0) = {A = (a, b) ∈ X | d◦(A,A0) 6 ε}. (3.18)

If b0 > 0 then A = (a, b) ∈ O◦ε(A0) for b > 0, if the following inequalities hold
a0 − ε 6 a 6 a0 + ε,

a− a0
b0
b 6 ε,

a0 − a
b
b0 6 ε,

that for a sufficiently small ε > 0 determine a trapezium (see Fig. 8).

Figure 8.

Moreover, the d◦-neighbourhood also includes points of the form

A = {(a, 0) : max{a0, |a− a0|} 6 ε} ,

that is, for a0 6 ε this relation will satisfy all a : |a − a0| 6 ε. Thus, if a0 6 ε then the
d◦-neighbourhood A0 = (a0, b0) will have the form shown in Fig. 9. As one can see, this
neighbourhood is a non-convex set.

Figure 9.
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Relations (3.17) allow us to determine the d◦-neighbourhood of A0 = (a0, 0). If 0 < a0 6 ε,
then such a neighbourhood will have the form of a strip (see Fig. 10), as in a0 = 0 (see Fig. 11).

Figure 10.

Figure 11.

If a0 > ε then d◦-neighbourhood has the form of the following segment (see Fig. 12)

{(a, 0) | a0 − ε 6 a 6 a0 + ε}.

Figure 12.

Remark 9. Generally, the metrics d∗ and d◦ are not subinvariant. Indeed, for some x, y ∈ X2

Oε(y) ⊂ y+Oε(0) (see Example 10, Fig. 8). If x ∈ Oε(0) (i.e. ‖x‖ < ε) such that x+ y 6∈ Oε(y)
then

‖x‖ = d∗(x, 0) = d◦(x, 0) < d◦(x+ y, y) 6 d∗(x+ y, y).

4 An analogue of the Hahn-Banach theorem on separation of a point
and a convex set for CONC

In Section 2 we have shown that each CONC X can be sublinearly injectively isometrically and
d∗-continuously embedded in a linear normed space. This indicates the possibility of transferring
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classical results of analysis in linear normed spaces to the class CONC. In this section we
obtain an analogue of the Hahn-Banach theorem on separability of a point and a d∗-closed (or
d∗-open) convex set for convex ordered normed cones (see Theorems 4.1 and 4.2). We start
with an example showing the existence of d∗-closed convex set U ⊂ X, such that for some point
x0 ∈ X \ {A}:

inf
a∈A

`(a) 6 `(x0) 6 sup
a∈A

`(a) for all ` ∈ X∗. (4.1)

Example 11. We consider the CONC

X2 = {(a, b) | a, b > 0 and a = 0⇒ b = 0}

with the norm ‖(a, b)‖ := a (see Example 10).
By Lemma 2.1 each linear functional f : X → R has the form f((a, b)) = λa + µb, where

λ > 0 and µ 6 0 are fixed constants:

X∗ = {`((a; b)) = λa+ µb |λ > 0, µ 6 0}. (4.2)

Let U has the form of a non-closed interval (see Fig. 13). If for x ∈ X and some sequence
{xn}∞n=1 ⊂ X: lim

n→∞
d∗(x, xn) = lim

n→∞
d◦(x, xn) = 0 then for all ` ∈ X∗ lim

n→∞
(max{0, `(xn)} −

max{0, `(x)}) = 0, which implies that the set U in Fig. 13 is d∗-closed in X2.
If we select a pair x0 = (a0, b0) (see Fig. 13), then `(x0) < `(x1) and `(x2) < `(x0), where

x1 = (a1, b0) and x2 = (a0, b2) for some a1 > a0 and b2 > b0, that implies (4.1).

Figure 13. "Interval and point".

The above example clearly shows that we cannot transfer the Hahn-Banach theorem on
separation of a point and a closed convex set for linear semi-bounded functionals to the class
CONC without additional conditions on U . Nevertheless, it is possible to obtain an analogue
of the Hahn-Banach theorem on separation of a point and a d∗-closed convex set U with 0 ∈ U .
We use the notation:

Oε(0) = {x ∈ X | d∗(0, x) 6 ε} = {x ∈ X | ‖x‖ < ε}.

The following theorem holds.

Theorem 4.1. Let U be a d∗-closed convex set in X, Oε(0) ⊂ U for some ε > 0. If x0 6∈ U then
there exists ` ∈ X∗ \ {0} such that `(x0) > sup `(U).

Proof. We consider the Minkowsky functional pU(x) = inf{λ > 0 |x ∈ λ−1U}. It is bounded for
all x ∈ X since Oε(0) ⊂ U . Clearly, that pU(x) 6 1 for all x ∈ U and pU(x0) > 1. Also it follows
from Oε(0) ⊂ U that pU(x) 6 1

ε
‖x‖X for all x ∈ X. If X is a CONC then X0 = {λx0 |λ > 0}

is a subcone X, pU is a linear functional on X0. Hence, by Theorem 2.1 there exists a linear
functional ` : X → R:

`(x0) = pU(x0) and `(x) 6 pU(x) 6
1

ε
‖x‖X for all x ∈ X.
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It is clear that ` ∈ X∗ and for all x ∈ U `(x) 6 pU(x) 6 1 and `(x0) = pU(x0) > 1, i.e. ` is a
required functional.

Remark 10. Note that the condition U ⊂ X is d∗-closed can be replaced by the following one
(U ⊂ X is a closed set on the rays):

for each x ∈ X λx ∈ U for all λ < λ0 =⇒ λ0 · x ∈ U. (4.3)

Remark 11. The condition Oε(0) ⊂ U for some ε > 0 is essential for the validity Theorem
4.1. Indeed, if we consider X = X2 (see Example 11) then for U = {(a, 0) | 0 6 a 6 2} and
x0 = (1, 1):

sup{`((a, 0)) | 0 6 a 6 2}} = 2λ > `((1, 1)) = λ+ µ

for all λ > 0, µ 6 0 (by Lemma 2.1 for each ` ∈ X∗2 `((a, b)) = λa+ µb, where λ > 0, µ 6 0).

Analogously to the previous result it can be proved the following fact for d∗-open convex sets
U . In this case the condition x0 6∈ Oε(0) for some ε > 0 follows from 0 ∈ U .

Theorem 4.2. Let U be a d∗-open convex set in X, 0 ∈ U . If x0 6∈ U then there exists ` ∈ X∗
such that `(x0) > sup `(U).

5 An analogue of the Hahn-Banach separation theorem for closed sets
in CONC

In this section we generalize Theorem 4.1 to the case, in which instead of a point and a convex set
we consider two closed sets A and B. We assume that one of them A is bounded (i.e. ‖a‖ 6 C
for some C > 0) and another set B is d∗-compact. The following result holds.

Theorem 5.1. Let A be a bounded convex set closed on the rays in CONC X, Oε(0) ⊂ A for
some ε > 0. Let B be a d∗-compact set in X, A∩B = ∅. Then there exists a finite set of linear
semi-bounded functionals {`k}nk=1 ⊂ X∗, with ‖`k‖∗ = 1 such that

inf
b∈B

max{`1(b), `2(b), . . . , `n(b)} > sup
a∈A

max{`1(a), `2(a), . . . , `n(a)} (5.1)

Proof. 1) Since A is a bounded closed set on the rays then we can consider the equivalent norm
pA(·) in X. Therefore, we assume that

‖x‖ = pA(x) = inf

{
λ > 0

∣∣∣∣ xλ ∈ A
}
.

Since A ∩ B = ∅ and A is bounded and closed on rays, then inf
b∈B
‖b‖ > 1 = max

a∈A
‖a‖. It

means that we can choose such δ > 0 that inf
b∈A
‖b‖ > 1 + 2δ.

2) In virtue of d∗-compactness of B and d∗-continuity of the embedding ϕ : X → X∗∗ by
Theorem 1 we have compactness of the image ϕ(B) ⊂ X∗∗. This means that ϕ(B) can be
covered by a finite set of δ-neighbourhoods Oδ(ϕ(xk)) for k = 1, n, i.e. B is covered by δ-
neighbourhoods Oδ(xk) ⊂ X for k = 1, n. Let y ∈ Oδ(xk0) for some k0 ∈ {1, 2, . . . , n}. Then
‖ϕ(y)− ϕ(xk0)‖X∗∗ 6 δ, i.e.

sup
`∈X∗:‖`‖∗=1

|max{0, `(y)} −max{0, `(xk0)}| 6 δ. (5.2)

3) By Corollary 2.1 for all k ∈ {1, 2, . . . , n} there exists `k ∈ X∗ such that ‖`k‖∗ = 1 and

`k(xk) = ‖xk‖ = max{0, `(xk)} > 1 + 2δ. (5.3)
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It follows from (5.2) that max{0, `k0(y)} > max{0, `k0(x0)}−δ > 1+δ > 0, i.e. `k0(y) > 1+δ
for all y ∈ Oδ(xk0).

Since B is covered by δ-neighbourhoods of points {xk}nk=1Oδ(xk), then for all b ∈ B there
exists `k ∈ X∗ satisfying (5.3), for which `k(b) > 1 + δ. Therefore,

inf
b∈B

max{`1(b), `2(b), . . . , `n(b)} > 1 + δ.

On the other hand, in view of (5.3) (‖`k‖∗ = 1) `k(a) 6 ‖a‖ 6 1 for each a ∈ A and (5.1)
holds.

Remark 12. Generally, one cannot replace a system of functionals in (5.1) by some functional
` ∈ X∗. To illustrate this fact we consider the convex normed cone

X = {(0, 0)} ∪ {(a, b) | a > 0 and b > 0}

with the norm ‖(a, b)‖ =
√
a2 + b2. Clearly, X is a CONC.

Assume that
A = {(a, b) ∈ X | a2 + b2 6 1}

and
B =

{
(a, b) ∈ X | a2 + b2 = (1 + ε)2

}
for some ε > 0 (see Fig. 14).

Figure 14.

The sets A and B satisfy the conditions of Theorem 5.1 (see Fig. 14), but for sufficiently
small ε > 0 A

⋂
coB 6= ∅ (coB is a convex hull of B) and there is no functional ` ∈ X∗ such

that
inf
b∈B

`(b) > sup
a∈A

`(a).
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