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Abstract. In this paper we show that the set of all elements g ∈ Lp(H) for which (|g|∗|g|)(x) <∞ for
a center element x ∈ B, is σ-c-lower porous, where p > 2, H is a non-compact unimodular hypergroup
andB is some special symmetric compact neighborhood of the identity element. As an application, we
give some new equivalent condition for the finiteness of a discrete Hermitian hypergroup. Moreover,
we give some sufficient conditions for the set of all pairs (f, g) in Lp(H) × Lq(H) for which for a
center element x ∈ B, (|f | ∗ |g|)(x) <∞, is a σ-c-lower porous, where p, q > 1 with 1

p
+ 1

q
< 1. Also,

we show that the complement of this set is spaceable in Lp(H)× Lq(H).
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1 Introduction and preliminaries

σ-porous sets, as a category of small sets, were introduced by Dolženko in 1967 in order to study of
singular points of holomorphic functions. In recent decades, the relationship between this concept
and many topics has been discovered, including hypercyclicity, Lp-conjecture, spaceability etc; see
[4, 8, 9, 10]. We refer the reader to survey papers [23, 24] for more information on porosity on the
real line, metric spaces and normed spaces. If c ∈ (0, 1) and X is a metric space, a subset M ⊆ X is
called c-lower porous if for each x ∈M ,

lim inf
r>0

γ(x, r,M)

r
≥ c

2
, (1.1)

where
γ(x, r,M) := sup{s ≥ 0 : for some z ∈ X, B(z; s) ⊆ B(z; r) \M}, (1.2)

and B(x; r) is the open ball with center x and radius r. We denote also B(x; 0) := ∅. We say that
M is σ-c-lower porous if it can be represented as a countable union of c-lower porous subsets of X.
In the following result which was proved in [25] one can find some equivalent condition for σ-lower
porosity of subsets of normed spaces; see also [24, Proposition 2.2].

Theorem 1.1. Let X be a normed linear space and c ∈ (0, 1]. Then, a subset E ⊆ X is σ-c-lower
porous if and only if E =

⋃∞
m=1 Pm, where for each m ∈ N, x ∈ X and r > 0 there exists some y ∈ X

such that B(y; cr) ⊆ B(x; r) \ Pm.

In 2010, due to study of some classes of convolution Banach function algebras, S. G ląb and F.
Strobin started to investigate the σ-lower porous subsets of Lebesgue spaces in the context of locally
compact groups. They proved that there is a σ-porous set such that for each (f, g) in its complement,
f ∗ g does not exist on a set of positive measure [8], and also proved the following statement.
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Theorem 1.2. If G is a non-compact unimodular group and p > 2, then for each compact subset
F ⊂ G there exists some c > 0 such that the set

E := {f ∈ Lp(G) : ∃x ∈ F such that |f | ∗ |f |(x) <∞}

is a σ-c-lower porous subset of Lp(G).

After that, I. Akbarbaglu and S. Maghsoudi in [1] draw a similar picture for some Orlicz spaces
which are generalization of Lebesgue ones. They and J.B. Seoane-Sepúlveda in [2] studied also this
topic for Lebesgue spaces on discrete semigroups.

On the other hand, locally compact hypergroups which are important generalizations of locally
compact groups were introduced in [6, 11, 19]; see [12, 13, 14, 15, 16, 17] as recent works on locally
compact hypergroups. There exists some convolutions among the regular measures of a locally
compact hypergroup, while in contrast to the group case, the convolution of two Dirac measures of
a hypergroup is not necessarily a Dirac measure. In Section 2 of this paper we initiate investigations
of porosity in the context of hypergroups and as a main result we give an extension of Theorem 1.2
to hypergroups. Indeed, we prove that whenever H is a non-compact unimodular hypergroup and
p > 2, then for each symmetric compact neighborhood B of the identity element of H if there is a
constant L > 0 such that for each x1, . . . , xn ∈ H we have∑n

k=1 λ(xk ∗B ∗B)∑n
k=1 λ(B ∗ x̌k)

≤ L, (1.3)

then the set
EB := {g ∈ Lp(H) : for some x ∈ B ∩Ma(H), (|g| ∗ |g|)(x) <∞}

is σ-c-lower porous in Lp(H), where Ma(H) is the center of the hypergroup and the Lebesgue space
is with respect to a left invariant measure on H. This fact directly implies that for each infinite
discrete Hermitian hypergroup H and p > 2, L2(H) is a σ-c-lower porous subset of Lp(H).

In Section 3 among other results we give some equivalent condition for a hypergroup to be
compact. In fact, in Corollary 3.2 we prove that if 1 < p, q <∞ with 1

p
+ 1

q
< 1, H is a unimodular

hypergroup and B is a symmetric compact neighborhood of the identity e in H with L-property, then
H is non-compact if and only if the set MB is a σ-c-lower porous subset of Lp(H)× Lq(H) for some
c ∈ (0, 1), and this holds if and only if the set

(
Lp(H)×Lq(H)

)
\MB is spaceable in Lp(H)×Lq(H),

where
MB := {(f, g) ∈ Lp(H)× Lq(H) : ∃x ∈ B ∩Ma(H), (|f | ∗ |g|)(x) <∞}.

We will show that in several classes of hypergroups one can find such neighborhoods B with L-
property.

Next, we recall some basic information regarding hypergroups.

1.1 Hypergroups

We denote the space of all complex Radon measures on a locally compact Hausdorff space X by
M(X ). Also, the set of all non-negative measures in M(X ) by M+(X ). The support of each
µ ∈M(X ) is denoted by supp(µ). We denote a point-mass measure at x ∈ X by δx.

Definition 1. A locally compact Hausdorff space H equipped with a (convolution) product ∗ on
M(H) and an involution map x 7→ x̌ is called a locally compact hypergroup (or simply a hypergroup)
if the following conditions hold.

1. (M(H),+, ∗) is a Banach algebra.
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2. For each x, y ∈ H, δx ∗ δy is a compact supported probability measure.

3. The mappings (x, y) 7→ δx ∗ δy from H × H into M+(H) is continuous, where M+(H) is
equipped with the cone topology.

4. The mapping (x, y) 7→ supp(δx ∗ δy) from H × H into the family of all nonempty compact
subsets of H, C(H), is continuous, where C(H) is equipped with the Michael topology.

5. The involution map is an involutive homeomorphism fromH ontoH such that for each x, y ∈ H,
(δx ∗ δy )̌ = δy̌ ∗ δx̌.

6. There exists an element e ∈ H (called identity) such that for each x ∈ H, δx ∗ δe = δe ∗ δx = δx.
Moreover, for each x, y ∈ H, e ∈ supp(δx ∗ δy) if and only if y = x̌.

Any locally compact group, equipped with the usual convolution and the inverse mapping as
involution, is a hypergroup. Contrary to the group case, for each x, y in a hypergroup H, the
convolution δx ∗ δy of two Dirac measures is not necessarily a Dirac measure. We refer to the book
[5] for more information and examples. H is called commutative if δx ∗ δy = δy ∗ δx for all x, y ∈ H.

A nonzero nonnegative Radon measure λ on a hypergroup H is called left-invariant if for each
x ∈ H, δx ∗ λ is defined and δx ∗ λ = λ. For each measurable set E ⊆ H we have

‖χE ∆−1‖1 = λ(Ě), (1.4)

where ∆ is the modular function. By [11, Theorem 4.3C], any hypergroup H admits a left sub-
invariant measure λ with supp(λ) = H, while so far it has been remained as a conjecture that any
hypergroup has a left-invariant measure.

In sequel, H is a hypergroup and λ is a left-invariant measure on H. Also, for each p ≥ 1, Lp(H)
is the Lebesgue space with the measure λ.

For each complex-valued Borel functions f and g on H and all x, y ∈ H we denote

f(x ∗ y) :=

∫
H
fd(δx ∗ δy) and (g ∗ f)(x) :=

∫
H
g(y) f(y̌ ∗ x) dλ(y).

The convolution of two subsets A,B ⊆ H is defined by

A ∗B :=
⋃

x∈A, y∈B

supp(δx ∗ δy).

The center of a hypergroup H is defined by

Ma(H) := {x ∈ H : δx ∗ δx̌ = δx̌ ∗ δx = δe}.

Ma(H) is the maximal subgroup of H. Let x ∈ Ma(H) and y ∈ H. Then, by [11, Section 10.4],
δx ∗ δy is a Dirac measure; see also [18]. In this case, we denote the unique element in supp(δx ∗ δy)
by xy. Similarly, δy ∗ δx is the Dirac measure δyx. Note that xy and yx do not belong to the center
in general. For each Borel measurable function f : H → C, x ∈ Ma(H) and y ∈ H we have

|f(x ∗ y)| =
∣∣∣∣∫
H
f(t) d(δx ∗ δy)(t)

∣∣∣∣
=

∣∣∣∣∫
H
f(t) dδxy(t)

∣∣∣∣
= |f(xy)| = |f |(xy)

= |f |(x ∗ y).
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Example 1. Let G be a locally compact group such that the quotient space G/Z(G) is compact,
where Z(G) := {z ∈ G : for each x ∈ G, zx = xz}. Let I := Inn(G) be the set of all inner
automorphisms of G. Then, the orbit space GI := {xI : x ∈ G} is a hypergroup where xI :=
{g−1xg : g ∈ G} [11, Theorem 8.3A], and by [18] we have Ma(GI) = {zI : z ∈ Z(G)}.

Remark 1. For each A,B ⊆ H, a ∈ Ma(H) and b ∈ H we have:

1. λ(A ∗ {ǎ}) = (λ ∗ δa)(A) and (λ ∗ δb)(A) = ∆(b̌)λ(A).

2. (A ∩B) ∗ {a} = (A ∗ {a}) ∩ (B ∗ {a}) and (A ∪B) ∗ {b} = (A ∗ {b}) ∪ (B ∗ {b}).

3. for each a ∈ Ma(H) and A,B ⊆ K, we have

(A ∩B) ∗ {a} = (A ∗ {a}) ∩ (B ∗ {a}).

2 Porosity on Lp(H)

In this section, we study some porous subsets of Lebesgue spaces on hypergroups which helps us
to give new equivalent conditions for a discrete Hermitian hypergroup to be infinite. The following
lemma which was shortly proved in the proof of [21, Theorem 2.3] plays a key role in the main results
of this paper.

Lemma 2.1. Let H be a non-compact hypergroup and B be a compact symmetric neighborhood of
the identity e in H. Then, there exists a sequence (an)n in H with ∆(an) ≤ 1 for all n ∈ N such that
for each distinct m,n ∈ N,

({an} ∗B ∗B)
⋂

({am} ∗B ∗B) = ∅ (2.1)

and
(B ∗ {ǎn})

⋂
(B ∗ {ǎm}) = ∅. (2.2)

Now, we give the main result of this paper which improves Theorem 1.2 proved by S. G ląb and F.
Strobin. The method of the proof is similar to [8, Theprem 2] but its details and basics are different.

Theorem 2.1. Let H be a non-compact unimodular hypergroup and p > 2. Let B be a symmetric
compact neighborhood of the identity e in H and there is a constant L > 0 such that for each
x1, . . . , xn ∈ H, ∑n

k=1 λ(xk ∗B ∗B)∑n
k=1 λ(B ∗ x̌k)

≤ L. (2.3)

Then, there is a constant c > 0 such that the set

EB := {g ∈ Lp(H) : for some x ∈ B ∩Ma(H), (|g| ∗ |g|)(x) <∞}

is σ-c-lower porous in Lp(H).

Proof. Trivially we have EB =
⋃∞
m=1 Pm, where

Pm := {g ∈ Lp(H) : for some x ∈ B ∩Ma(H), (|g| ∗ |g|)(x) < m}.

We show that the collection {Pm}m satisfies the equivalent condition in Theorem 1.1.
Step 1. By Lemma 2.1 one can find a1, a2, . . . in H satisfying

({an} ∗B ∗B)
⋂

({am} ∗B ∗B) = ∅ (2.4)
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and
(B ∗ {ǎn})

⋂
(B ∗ {ǎm}) = ∅ (2.5)

for all distinct m,n ∈ N.
Step 2. Fix a number k with 0 < k < 1

1+L
1
p
. For each 0 < x < 1 we define

F (x) := 2

(
x

k (1− x)

)p
. (2.6)

Then, F is a continuous strictly increasing function on the interval (0, 1), limx→0+ F (x) = 0 and
limx→1− F (x) = ∞. This implies that there exists a number 0 < γ < 1 such that F (γ) = 1, and so
for each fixed number 0 < c < γ, 0 < F (c) < 1. Define

G(x) := 1− 2
( c

kx

)p
. (2.7)

By the continuity of G on (0, 1), since G(1−c) = 1−F (c) > 0, there are 0 < η < 1−c and 0 < α < 1
such that

1− 2

(
c

η(1− α)k

)p
> 0.

Step 3. Let r > 0 and f ∈ Lp(H). Then, by disjointness properties (2.4) and (2.5) we have

∞∑
n=1

‖χB∗ǎn f‖pp ≤ ‖f‖pp <∞ and
∞∑
n=1

‖χan∗B∗B g‖qq ≤ ‖g‖qq <∞.

Hence, there is some n0 ∈ N such that

‖χI f‖pp =
∞∑

n=n0

‖χB∗ǎn f‖pp < [
1

2
(1− c− η)r]p (2.8)

and

‖χJ f‖pp =
∞∑

n=n0

‖χan∗B∗B f‖pp < [
1

2
(1− c− η)r]p, (2.9)

where

I :=
∞⋃

n=n0

B ∗ ǎn and J :=
∞⋃

n=n0

an ∗B ∗B.

Let m ∈ N. Choose a natural number n1 > n0 such that

α2η2 r2 k2(n1 − n0 + 1)1− 2
p λ(B)1− 2

p

(
1− 2

(
c

η(1− α)k

)p)
> m, (2.10)

Set

A :=

n1⋃
n=n0

B ∗ ǎn and D :=

n1⋃
n=n0

an ∗B ∗B.

Then, by (2.8) and (2.9) we have

‖χA f‖p ≤
1

2
(1− c− η)r and ‖χD f‖p ≤

1

2
(1− c− η)r. (2.11)
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We have
M λ(A)

1
p +M λ(D)

1
p ≤ ηr, (2.12)

where
M := rηk λ(A)

−1
p . (2.13)

Define f̃ := MχA∪D + fχ(A∪D)c . Then, we have

‖f − f̃‖p =
∥∥∥χA∪D (f − f̃) + χ(A∪D)c (f − f̃)

∥∥∥
p

=
∥∥∥χA∪D (f − f̃)

∥∥∥
p

=
∥∥∥(χA + χD−A) (f − f̃)

∥∥∥
p

≤ ‖χA f‖p + ‖χA f̃‖p + ‖χD−A f‖p + ‖χD−A f̃‖p
= ‖χA f‖p + ‖χAM‖p + ‖χD−A f‖p + ‖χD−AM‖p
≤ ‖χA f‖p +M λ(A)

1
p + ‖χD f‖p +M λ(D)

1
p

≤ (1− c− η)r + ηr = (1− c) r.

This implies that B(f̃ , cr) ⊆ B(f ; r).
Step 4. In this step we show that B(f̃ ; cr)

⋂
Pm = ∅. Let g ∈ B(f̃ ; cr) and x ∈ B∩Ma(H). Set

A1 := {x ∈ A : |g(x)| ≤ αM} and D1 := {x ∈ D : |g(x)| ≤ αM}. (2.14)

Then,
(1− α)Mλ(A1)

1
p ≤ ‖χA1 (|f̃ | − |g|)‖p ≤ ‖χA1 (f̃ − g)‖p ≤ ‖f̃ − g‖p < cr. (2.15)

By a similar argument it follows that relation (2.15) holds for D1 too. So, we can conclude that

max{λ(A1), λ(D1)} ≤
(

cr

(1− α)M

)p
=

(
c

η(1− α)k

)p
λ(A). (2.16)

Put A2 := A \ A1 and D2 := D \D1. Also, we put F := A2 ∩ ({x} ∗ Ď2).
Then, F ⊆ A2 and F̌ ∗ {x} ⊆ D2. This implies that

(|g| ∗ |g|)(x) =

∫
H
|g(t)| |g|(ť ∗ x) dλ(t)

≥
∫
F

|g(t)| |g(ť ∗ x)| dλ(t)

≥ α2M2λ(F ).

On the other hand,

λ(F ) = λ(Ǎ2 ∩ (D2 ∗ {x̌}))
= λ(Ǎ2)− λ(Ǎ2 \ (D2 ∗ {x̌}))
≥ λ(A)− λ(A1)− λ(D1)

≥ λ(A)

(
1− 2

(
c

η(1− α)k

)p)
.
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Therefore, by (2.10) we have

(|g| ∗ |g|)(x) ≥ α2M2λ(A)

(
1− 2

(
c

η(1− α)k

)p)
= α2η2 r2 k2λ(A)1− 2

p

(
1− 2

(
c

η(1− α)k

)p)
≥ α2η2 r2 k2(n1 − n0 + 1)1− 2

p λ(B)1− 2
p

(
1− 2

(
c

η(1− α)k

)p)
> m,

since

λ(A) =

n1∑
n=n0

λ(B ∗ {ǎn})

=

n1∑
n=n0

λ({an} ∗B)

≥
n1∑

n=n0

λ(B)

= (n1 − n0 + 1)λ(B).

thanks to [11, Lemma 3.3C] and the assumption that H is unimodular.

Note that Theorem 2.1 is a generalization of Theorem 1.2 because if H is a locally compact group,
then Ma(H) = H and condition (2.3) holds with L = λ(B2)

λ(B)
.

For each function f : H → C we define f̌(x) := f(x̌) for all x ∈ H. We mention that in each
discrete commutative hypergroup, B := {e} is a compact symmetric neighborhood of the identity
element, and in this case B ∩Ma(H) = {e}. Also, condition (2.3) trivially holds (with L = 1) for
this neighborhood in the case in which the discrete hypergroup H is unimodular too. So, we can
conclude the following result.

Corollary 2.1. Let H be an infinite discrete commutative hypergroup and p > 2. Then, there is a
constant c > 0 such that the set

E := {f ∈ Lp(H) : ff̌ ∈ L1(H)}

is σ-c-lower porous.

Recall that a hypergroup H is called Hermitian if x̌ = x for all x ∈ H. Clearly, any Hermitian
hypergroup is commutative.

Let N0 := N∪{0} be equipped with the discrete topology and let p be a fixed prime number. For
any k ∈ N0 and distinct m,n ∈ N define δk ∗ δ0 = δ0 ∗ δk := δk, δm ∗ δn := δmax{m,n} and

δn ∗ δn :=
1

pn−1(p− 1)
δ0 +

n−1∑
k=1

pk−1δk +
p− 2

p− 1
δn.

Then, N0 is a Hermitian hypergroup with the left invariant measure m defined by

m({k}) :=


1, if k = 0,

(p− 1)pk−1, if k ≥ 1.
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This class of discrete Hermitian hypergroups was introduced by Dunkl and Ramirez in [7]. In the
final result of this paper, we give some porosity property of discrete Hermitian hypergroups. Just
note that thanks to [11, Theorem 7.1A], if H is a discrete hypergroup, the measure λ given by

λ({x}) :=
1

(δx̌ ∗ δx)({e})
(x ∈ H) (2.17)

is a left-invariant measure on H. So, since the convolution of any two Dirac measures is a probability
measure, we have

inf{λ(A) : λ(A) > 0} ≥ 1. (2.18)

Hence, by [22, Theorem 1], for each p > 2, L2(H, λ) ⊆ Lp(H, λ). Now, Corollary 2.1 implies the next
fact.

Corollary 2.2. Let H be a discrete Hermitian hypergroup. Then, the following conditions are equiv-
alent.

1. H is infinite.

2. There exists some p > 2 and a constant c > 0 such that the set L2(H) is a σ-c-lower porous
subset of Lp(H).

3. For each p > 2 there exists a constant c > 0 such that the set L2(H) is a σ-c-lower porous
subset of Lp(H).

3 Porosity and spaceability on hypergroups

In this section we intend to give some equivalent conditions by porosity and spaceability for a hy-
pergroup to be compact.

Remark 2. We say that a neighborhood B has L-property for some constant L > 0, if there exists
a sequence (an)n satisfying the conditions of Lemma 2.1 such that

sup{λ({an} ∗B ∗B) : n ∈ N} ≤ L. (3.1)

We will use this condition in the assumptions of some results in this paper. Next, we show that any
locally compact group has this condition and also we present some classes of hypergroups which are
not groups, but have L-property.

Example 2. 1. Let a hypergroup H have a non-compact open center. Then, there exists a
compact symmetric neighborhood B of e such that B ⊂ Ma(H). In this case, B has L-property
for some L > 0, because by the proof of Lemma 2.1 one can choose a sequence (an)n ⊆ Ma(H)
satisfying condition (3.1). In particular, ifH is a non-compact group, then we haveH = Ma(H)
and so any compact symmetric neighborhood of e in H has L-property for some L > 0.

2. Let G is a non-compact group with a left Haar measure λ = dx and let H be a compact non-
normal subgroup of G with normalized Haar measure dh. LetH = H\G/H := {HxH : x ∈ G}
be the double coset hypergroup with convolution δẋ ∗ δẏ =

∫
H
δ(xhy)·dh and left Haar measure

λ̇ =
∫
G
δẋdx, where ẋ := HxH is the image of x in H\G/H. Let B be a compact symmetric

neighborhood of the identity element HeH in H. Then, there exists a compact subset E ⊆ G
such that B = Ė and ẋ ∗ Ė = (HxHEH)·. Now, thanks to Lemma 2.1, this implies that if H
is connected, compact and open, or if H is finite, then there is a constant L > 0 such that B
has L-property.
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In this paper, we consider the maximum norm on the product of two Banach spaces.

Theorem 3.1. Let H be a non-compact hypergroup and 1 < p, q < ∞ with 1
p

+ 1
q
< 1. Let B be a

symmetric compact neighborhood of e in H with L-property. For each m ∈ N, put

MB,m := {(f, g) ∈ Lp(H)× Lq(H) : ∃x ∈ B ∩Ma(H), (|f | ∗ |g|)(x) < m}.

Then, there exists some c ∈ (0, 1) such that for each (f, g) ∈ Lp(H) × Lq(H) and r > 0 there exists
an element (f̃ , g̃) ∈ Lp(H)× Lq(H) such that

B((f̃ , g̃); cr) ⊆ B((f, g); r) \MB,m.

Proof. Put S := supx∈B ∆(x). For each 0 < x < 1 we define

F (x) :=

(
x

1− x

)p
+

(
x

1− x

)q
SL

λ(B)
.

Then, F is a continuous strictly increasing function on the interval (0, 1), limx→0+ F (x) = 0 and
limx→1− F (x) = ∞. This implies that there exists a number 0 < γ < 1 such that F (γ) = 1, and so
for each fixed number 0 < c < γ, 0 < F (c) < 1. Define

G(x) := 1−
( c
x

)p
−
( c
x

)q SL

λ(B)
.

Since G is continuous on (0, 1), there are 0 < η < 1−c and 0 < α < 1 such that P := G((1−α) η) > 0.
Assume that m ∈ N. Let (f, g) ∈ Lp(H)× Lq(H) and r > 0. Assume that (an)n is the sequence

given in Remark 2 corresponding to the symmetric compact neighborhood B. Then, by disjointness
properties (2.4) and (2.5) there are some n0 ∈ N and a natural number n1 > n0 such that

α2η2 r2

(
L

λ(B)

)−1
q

S
1
p
−1 P λ(B)1− 1

p
− 1
q (n1 − n0 + 1)1− 1

p
− 1
q > m, (3.2)

n1∑
n=n0

‖χB∗{ǎn} f‖pp < [(1− c− η)r]p (3.3)

and
n1∑

n=n0

‖χ{an}∗B∗B g‖qq < [(1− c− η)r]p. (3.4)

Set

A :=

n1⋃
n=n0

{an} ∗B and D :=

n1⋃
n=n0

{an} ∗B ∗B.

Then, by (3.3) and (3.4) we have

‖χǍ f‖p ≤ (1− c− η)r and ‖χD g‖q ≤ (1− c− η)r. (3.5)

Also, by [11, Lemma 3.3C] and property (3.1),

λ(B) (n1 − n0 + 1) ≤ λ(A) ≤ L (n1 − n0 + 1) (3.6)

and
λ(B ∗B) (n1 − n0 + 1) ≤ λ(D) ≤ L (n1 − n0 + 1). (3.7)
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Put
M1 := η rλ(A)

−1
p and M2 := η rλ(D)

−1
q . (3.8)

We define f̃ := M1∆
−1
p χǍ + fχ(Ǎ)c and g̃ := M2 χD + gχDc . Then,

‖f̃ − f‖p =
∥∥∥χǍM1 ∆

−1
p − χǍ f

∥∥∥
p

≤
∥∥∥χǍM1 ∆

−1
p

∥∥∥
p

+ ‖χǍ f‖p

≤M1 ‖χǍ∆−1‖
1
p

1 + (1− c− η)r

= M1 λ(A)
1
p + (1− c− η)r

= η r + (1− c− η)r = (1− c)r

thanks to (3.5), (3.8) and (1.4). Similarly, ‖g̃−g‖q ≤ (1−c)r. Therefore, B((f̃ , g̃); cr) ⊆ B((f, g); r).
Now, let (h, s) ∈ B((f̃ , g̃); c r). Setting

A1 := {x ∈ Ǎ : |h(x)| ≤ α f̃(x)},

we have

c r > ‖h− f̃‖p
≥ ‖ |h| − |f̃ | ‖p
≥ ‖χA1

(
|h| − |f̃ |

)
‖p

≥
(
1− α

)
‖χA1 f̃‖p

=
(
1− α

)
M1 ‖χA1 ∆−1‖

1
p

1

=
(
1− α

)
M1 λ(Ǎ1)

1
p ,

and so,

λ(Ǎ1) <

(
c r

(1− α)M1

)p
=

(
c

(1− α) η

)p
λ(A). (3.9)

Similarly, setting
D1 := {x ∈ D : |s(x)| ≤ α g̃(x)}.

we have

c r > ‖s− g̃‖q
≥ ‖ |s| − |g̃| ‖q
≥ ‖χD1

(
|s| − |g̃|

)
‖q

≥
(
1− α

)
‖χD1 g̃‖q

=
(
1− α

)
M2 ‖χD1‖q

=
(
1− α

)
M2 λ(D1)

1
q ,

and therefore by inequalities (3.6) and (3.7),

λ(D1) <

(
c r

(1− α)M2

)q
=

(
c

(1− α) η

)q
λ(D) ≤

(
c

(1− α) η

)q
Lλ(A)

λ(B)
. (3.10)
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Let x ∈ B ∩Ma(H). Put H := {x}∗
[
({x̌}∗A2)∩ Ď2

]
, where D2 := D \D1 and A2 := Ǎ \A1. Then,

since x is a center element,
H ⊆ {x} ∗ {x̌} ∗ A2 = A2 ⊆ Ǎ,

and Ȟ ∗ {x} ⊆ D2 ⊆ D. In fact, for each t ∈ H, we have ťx ∈ D2, and since Ȟ ⊆ A, for each t ∈ Ȟ,
there is some j ∈ {n0, . . . , n1} such that t ∈ {aj} ∗B. This means that there exists y ∈ B such that
t ∈ {aj} ∗ {y}. Now, by [11, Theorem 5.3C], we have ∆(t) = ∆(aj)∆(y) ≤ S because ∆(aj) ≤ 1 and
y ∈ B. For each t ∈ H we have |φ|(t ∗ x) = |φ(t ∗ x)| for all complex-valued measurable function φ
on H. This implies that

(|h| ∗ |s|)(x) =

∫
H
|h(t)| |s|(ť ∗ x) dλ(t)

≥
∫
H

|h(t)| |s(ťx)| dλ(t)

≥ α2

∫
H

f̃(t) g̃(ťx) dλ(t)

= α2M1M2

∫
H

∆(t)
−1
p dλ(t)

= α2M1M2

∫
Ȟ

∆(t)
1
p
−1 dλ(t)

≥ α2M1M2 S
1
p
−1

∫
Ȟ

dλ(t)

= α2M1M2 S
1
p
−1 λ(Ȟ),

thanks to [11, Theorem 5.3B]. On the other hand,

Ȟ = [(Ǎ2 ∗ {x})
⋂

D2] ∗ {x̌}

=
(
(Ǎ2 ∗ {x} ∗ {x̌})

)⋂(
D2 ∗ {x̌}

)
= Ǎ2

⋂(
D2 ∗ {x̌}

)
= Ǎ2 − [Ǎ2 −

(
D2 ∗ {x̌}

)
],

since x ∈ Ma(H). Also, we have

Ǎ2 ∗ {x} ⊆ A ∗ {x} =

n1⋃
n=n0

(
{an} ∗B ∗ {x}

)
⊆

n1⋃
n=n0

(
{an} ∗B ∗B

)
= D,

and so Ǎ2 ⊆ (D ∗ {x̌}). This implies that

λ(Ȟ) = λ(Ǎ2)− λ
(
Ǎ2 − (D2 ∗ {x̌})

)
≥ λ(Ǎ2)− λ

(
(D ∗ {x̌})−

(
D2 ∗ {x̌})

)
= λ(Ǎ2)− λ

(
(D −D2) ∗ {x̌}

)
= λ(Ǎ2)− λ

(
D1 ∗ {x̌}

)
= λ(A)− λ(Ǎ1)− λ

(
D1 ∗ {x̌}

)
= λ(A)− λ(Ǎ1)− (λ ∗ δx)

(
D1

)
= λ(A)− λ(Ǎ1)−∆(x̌)λ

(
D1

)
.
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Therefore, by inequalities (3.9) and (3.10)

λ(Ȟ) ≥ λ(A)−
(

c

(1− α) η

)p
λ(A)−∆(x̌)

(
c

(1− α) η

)q
Lλ(A)

λ(B)

≥
(

1−
(

c

(1− α) η

)p
−
(

c

(1− α) η

)q
SL

λ(B)

)
λ(A)

= P λ(A).

Therefore,

(|h| ∗ |s|)(x) ≥ α2M1M2 S
1
p
−1 P λ(A)

= α2η2 r2λ(A)
−1
p λ(D)

−1
q S

1
p
−1 P λ(A)

≥ α2η2 r2

(
L

λ(B)

)−1
q

S
1
p
−1 P λ(A)1− 1

p
− 1
q

≥ α2η2 r2

(
L

λ(B)

)−1
q

S
1
p
−1 P λ(B)1− 1

p
− 1
q (n1 − n0 + 1)1− 1

p
− 1
q

> m,

thanks to inequality (3.2). This shows that (h, s) /∈MB,m and the proof is complete.

Corollary 3.1. Let H be a non-compact hypergroup and p, q > 1 with 1
p

+ 1
q
< 1. Let B be a

symmetric compact neighborhood of e in H with L-property. Then, there exists some c ∈ (0, 1) such
that the set

MB := {(f, g) ∈ Lp(H)× Lq(H) : ∃x ∈ B ∩Ma(H), (|f | ∗ |g|)(x) <∞} (3.11)

is a σ-c-lower porous.

Proof. Note that MB =
⋃∞
n=1 MB,n, and directly apply Theorem 1.1 and Theorem 3.1.

In the sequel, we intend to give some extension of [10, Theorem 13]. In the proof of this fact, we
use a recent result regarding spaceability subsets of Banach spaces from [3]. Recall that a subset S
of a topological vector space E is called spaceable if S ∪ {0} contains a closed infinite-dimensional
linear subspace of E . We need the next definition given in [3] for proving our main theorem.

Definition 2. Let E be a topological vector space. We say that a relation ∼ on E has property (D)
if the following conditions hold.

1. If (xn) is a sequence in E such that xn ∼ xm for all distinct index m,n, then for each disjoint
finite subsets A,B of N we have ∑

n∈A

αnxn ∼
∑
m∈B

βmxm,

where αn and βm’s are arbitrary scalars.

2. If a sequence (xn) converges to x in E and for some y ∈ E , xn ∼ y for all n ∈ N, then x ∼ y.

We say that a subset B of a vector space is a cone if for each scalar c, cB ⊆ B.

Theorem 3.2. Let (E , ‖ · ‖) be a Banach space, ∼ be a relation on E with property (D), and K be
a nonempty subset of E. Assume that:
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1. there is a constant k > 0 such that ‖x+ y‖ ≥ k ‖x‖ for all x, y ∈ E with x ∼ y;

2. K is a cone;

3. if x, y ∈ E such that x+ y ∈ K and x ∼ y then x, y ∈ K;

4. there is an infinite sequence {xn}∞n=1 ⊆ E \K such that for each distinct m,n ∈ N, xm ∼ xn.

Then, E \K is spaceable in E.

Proof. See [3, Theorem 4.2].

Now, the next result which is a generalization of [10, Theorem 13] can be obtained with some
different proof.

Theorem 3.3. Let 1 < p, q < ∞ with 1
p

+ 1
q
< 1. If H is a non-compact unimodular hypergroup

and B is a fixed symmetric compact neighborhood of e in H with L-property, then the set
(
Lp(H)×

Lq(H)
)
\MB is spaceable in Lp(H)× Lq(H), where MB is given by (3.11).

Proof. TriviallyMB is a cone in the space Lp(H)×Lq(H). We define the relation ∼ on Lp(H)×Lq(H)
by

(f1, g1) ∼ (f2, g2) if and only if σ(f1) ∩ σ(f2) = σ(g1) ∩ σ(g2) = ∅

up to a null set, for all f1, f2 ∈ Lp(H) and g1, g2 ∈ Lq(H), where σ(f) := {x ∈ G : f(x) 6= 0}. One can
easily see that this relation satisfies condition (D) because convergence with respect to the Lp-norm
implies almost everywhere subsequence convergence. This relation also satisfies conditions (1) (with
k = 1) and (3) in Theorem 3.2. Indeed, if (f1, g1) ∼ (f2, g2), then we have (|f1|+ |f2|) ∗ (|g1|+ |g2|) =
|f1 + f2| ∗ |g1 + g2|. In the sequel, we will show that condition (4) holds too. In this case the proof is
complete. Assume that (an)n is the sequence in H obtained in Remark 2 regarding the neighborhood
B. Define

f(x) :=
∞∑
n=1

n
−q
p+qχB∗{ǎn} and g(x) :=

∞∑
n=1

n
−p
p+qχ{an}∗B∗B (3.12)

for all x ∈ H. Then, since H is unimodular we have∫
H
|f |p dλ =

∫
H

∞∑
n=1

n
−pq
p+qχB∗{ǎn} dλ

=
∞∑
n=1

n
−pq
p+qλ(B ∗ {ǎn})

=
∞∑
n=1

n
−pq
p+qλ({an} ∗B)

≤ L
∞∑
n=1

n
−pq
p+q <∞,

because pq
p+q

> 1. So f ∈ Lp(H). Similarly, g ∈ Lq(H). For each N ⊆ N we set

AN :=
⋃
n∈N

B ∗ {ǎn} and BN :=
⋃
n∈N

{an} ∗B ∗B.
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Then, fN := χAN f ∈ Lp(H) and gN := χBN g ∈ Lq(H). Let (Nk)k∈N be a partition of N with∑
n∈Nk

1
n

= ∞ for all k ∈ N. We denote fk := fANk and gk := gBNk . Then for each k ∈ N we have
(fk, gk) ∈

(
Lp(H)× Lq(H)

)
\MB because

(fk ∗ gk)(x) =

∫
H
fk(y)gk(y̌ ∗ x) dλ(y)

=

∫
ANk

fk(y)gk(y̌ ∗ x) dλ(y)

=
∑
n∈Nk

1

n
λ(B ∗ {ǎn})

=
∑
n∈Nk

1

n
λ({an} ∗B)

≥ λ(B)
∑
n∈Nk

1

n
=∞

for all x ∈ B ∩Ma(H), thanks to [11, Lemma 3.3C]. Finally, it is easy to see that for each distinct
numbers k,m ∈ N, (fk, gk) ∼ (fm, gm).

Corollary 3.2. Let 1 < p, q < ∞ with 1
p

+ 1
q
< 1. Let H be a unimodular hypergroup and B be

a symmetric compact neighborhood of e in H with L-property. Then, the following conditions are
equivalent.

1. H is non-compact.

2.
(
Lp(H)× Lq(H)

)
\MB 6= ∅.

3. MB is a σ-c-lower porous subset of Lp(H)× Lq(H) for some c ∈ (0, 1)

4. The set
(
Lp(H)× Lq(H)

)
\MB is spaceable in Lp(H)× Lq(H).
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