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1 Introduction

The classical Gamma function, see for example, Sneddon [10], Γ(λ) is usually defined by

Γ(λ) =

∫ ∞
0

tλ−1e−t dt, (λ > 0).

It is easily seen that
Γ(λ+ 1) = λΓ(λ), (λ > 0).

This equality is then used to define Γ(λ) for λ < 0 and λ 6= −1,−2, . . . .
It follows by induction that if −r < λ < −r + 1, r = 1, 2, . . . , then

Γ(λ) =

∫ ∞
0

tλ−1
[
e−t −

r−1∑
i=0

(−t)i

i!

]
dt.

It was then proved in [5] that

Γ(s)(λ) = N−lim
ε→0

∫ ∞
ε

tλ−1e−t lns t dt (1.1)

for s = 0, 1, 2, . . . and λ 6= 0,−1,−2, . . . , where N is the neutrix, see van der Corput [11], having
domain N ′ = {ε : 0 < ε <∞} with negligible functions finite linear sums of the functions

ελ lns−1 ε, lns ε : λ < 0, s = 1, 2, . . .

and all functions which converge to zero in the usual sense as ε tends to zero.
It was also proved in [5] that the neutrix limit in equality (1.1) also existed for λ =

0,−1,−2, . . . , and this suggested that Γ(s)(−r) could be defined by

Γ(s)(−r) = N−lim
ε→0

∫ ∞
ε

t−r−1e−t lns t dt
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for r, s = 0, 1, 2, . . . .
It was proved in [4] that

Γ(−r) =
(−1)r

r!
[ψ(r)− γ]

for r = 0, 1, 2, . . . , where γ denotes the Euler’s constant and

ψ(r) =

{∑r
i=1

1
i
, r > 0,

0, r = 0.

The upper incomplete Gamma function Γ(λ, x) is defined by

Γ(λ, x) =

∫ ∞
x

tλ−1e−t dt, (λ > 0)

and more generally, the function Γs(λ, x) is defined by

Γs(λ, x) =

∫ ∞
x

tλ−1e−t lns t dt, (λ > 0)

for s = 0, 1, 2, . . . .
The lower incomplete Gamma function or incomplete Gamma function γ(λ, x) is defined by

γ(λ, x) =

∫ x

0

tλ−1e−t dt, (λ > 0, x ≥ 0)

and more generally, the function γs(λ, x) is defined by

γs(λ, x) =

∫ x

0

tλ−1e−t lns t dt, (λ > 0, x ≥ 0),

γs(λ, x) = N−lim
ε→0

∫ x

ε

tλ−1e−t lns t dt, (λ ≤ 0, x ≥ 0) (1.2)

for s = 0, 1, 2, . . . .
The existence of the neutrix limit in equality (1.2) follows from the existence of the neutrix

limit in equality (1.1).
Note that if −r < λ < −r + 1, r = 1, 2, . . . and x > 0, we have

γ(λ, x) =

∫ x

0

tλ−1

[
e−t −

r−1∑
k=0

(−t)k

k!

]
dt+

r−1∑
k=0

(−1)kxλ+k

(λ+ k)k!
.

It follows that

lim
x→∞

γ(λ, x) = Γ(λ)

for λ 6= 0,−1,−2, . . . .
Alternatively, the incomplete Gamma function is defined by

γ(λ, x) =

∫ x

0

|t|λ−1e−t dt, (λ > 0, x < 0)
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and more generally, the function γs(λ, x) is defined by

γs(λ, x) =

∫ x

0

|t|λ−1e−t lns |t| dt, (λ > 0, x < 0) (1.3)

γs(λ, x) = N−lim
ε→0

∫ x

ε

|t|λ−1e−t lns |t| dt, (λ ≤ 0, x < 0) (1.4)

for s = 0, 1, 2, . . . .
The corresponding locally summable functions γ+(λ, x) and γ−(λ, x) were defined in [6] by

γ+(λ, x) =


∫ x

0

tλ−1e−tdt, x ≥ 0,

0, x < 0,

γ−(λ, x) =


∫ x

0

|t|λ−1e−tdt, x ≤ 0,

0, x > 0,

if λ > 0 and the distributions γ+(λ, x) and γ−(λ, x) were defined inductively by equalities

γ+(λ, x) = λ−1γ+(λ+ 1, x) + λ−1(xλ)+e
−x,

γ−(λ, x) = −λ−1γ−(λ+ 1, x)− λ−1(xλ)−e
−x

for λ < 0 and λ 6= −1,−2, . . . . It follows that

lim
x→−∞

γ−(λ, x) =∞.

Note that the notations γ(λ, x+), γ(λ, x−), xλ− and xλ+ in [6] are changed to γ+(λ, x),
γ−(λ, x), (xλ)− and (xλ)+, respectively.

It was proved in [9] that, if x ≥ 0, we have

γ(0, x) = e−x lnx+ γ1(1, x), (1.5)

γ(−r, x) = −1

r
γ(−r + 1, x)− 1

r
x−re−x +

(−1)r

rr!
, (1.6)

=
r∑
i=1

[
(−1)r

ir!
− (−1)r−i(i− 1)!x−ie−x

r!

]
+

(−1)r

r!
γ(0, x), (1.7)

r = 1, 2, . . . .
For the case x < 0, one can prove from equality (1.4) that

γ(0, x) = −e−x ln |x| − γ1(1, x), (1.8)

γ(−r, x) =
1

r
γ(−r + 1, x) +

1

r
|x|−re−x − 1

rr!
, (1.9)

=
r∑
i=1

(i− 1)!

r!
|x|−ie−x − ψ(r)

r!
+

1

r!
γ(0, x) (1.10)

r = 1, 2, . . . .
We now define distributions γ+(0, x), γ−(0, x), γ+(−r, x) and γ−(−r, x), r = 1, 2, . . . , as

follow:

γ+(0, x) = e−x ln+ x+ γ+
1 (1, x), (1.11)

γ−(0, x) = −e−x ln− x− γ−1 (1, x), (1.12)

γ+(−r, x) = −1

r
γ+(−r + 1, x)− 1

r
(x−r)+e

−x +
(−1)r

rr!
H(x), (1.13)

γ−(−r, x) =
1

r
γ−(−r + 1, x) +

1

r
(x−r)−e

−x − 1

rr!
H(−x), (1.14)
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where H(x) denotes the Heaviside function and the functions γ+
s (λ, x) and γ−s (λ, x) are defined

by

γ+
s (λ, x) =


∫ x

0

tλ−1e−t lns tdt, x ≥ 0,

0, x < 0,
(1.15)

γ−s (λ, x) =


∫ x

0

|t|λ−1e−t lns |t|dt, x ≤ 0,

0, x > 0,
(1.16)

for λ > 0 and s = 0, 1, 2, . . . . It follows that

lim
x→+∞

γ+(λ, x) = Γ(s)(λ),

lim
x→−∞

γ−(λ, x) = −∞,

for λ > 0 and s = 0, 1, 2, . . . .
Note that

Γ(s)(λ) = γs(λ, x) + Γs(λ, x)

for all λ and s = 0, 1, 2, . . . . This suggests that the locally summable function Γ+
s (λ, x) could be

defined by the relation
Γ(s)(λ) = γ+

s (λ, x) + Γ+
s (λ, x) (1.17)

for all λ and s = 0, 1, 2, . . . .
The locally summable functions ln+ x, ln− x, (x

r)+, (x
r)−, (x−r)+ and (x−r)−, r = 1, 2, . . . are

defined as follow:

• ln+ x =

{
lnx, x > 0,

0, x < 0,

• (xr)+ =

{
xr, x > 0,

0, x < 0,

• (x−r)+ =
(−1)r−1

(r − 1)!
(ln+ x)(r),

• ln− x =

{
ln |x|, x < 0,

0, x > 0,

• (xr)− =

{
|x|r, x < 0,

0, x > 0,

• (x−r)− = − 1

(r − 1)!
(ln− x)(r).

The distribution xr is defined by

xr = (xr)+ + (−1)r(xr)−

for r = 0,±1,±2, . . . .
Note that the distributions (x−r)+ and (x−r)− are not the same as in Gel’fand and Shilov’s

definition and we denote those distributions by x−r+ and x−r− , for r = 1, 2, . . . , respectively. That
is, for any ϕ ∈ D, we have

〈x−r+ , ϕ(x)〉 =

∫ ∞
0

x−r

[
ϕ(x)−

r−2∑
i=0

xi

i!
ϕ(i)(0)

− xr−1

(r − 1)!
ϕ(r−1)(0)H(1− x)

]
dx, (1.18)
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〈x−r− , ϕ(x)〉 =

∫ ∞
0

x−r

[
ϕ(−x)−

r−2∑
i=0

(−x)i

i!
ϕ(i)(0)

−(−x)r−1

(r − 1)!
ϕ(r−1)(0)H(1− x)

]
dx. (1.19)

Note also that

〈x−r+ , ϕ(x)〉 = N−lim
ε→0

∫ ∞
ε

x−rϕ(x)dx, (1.20)

〈x−r− , ϕ(x)〉 = N−lim
ε→0

∫ ε

−∞
|x|−rϕ(x)dx (1.21)

for r = 1, 2, . . . , where N is the neutrix defined in Section 1.
It was proved in [7] that

(x−r)+ = x−r+ +
(−1)rψ(r − 1)

(r − 1)!
δ(r−1)(x), (1.22)

(x−r)− = x−r− −
(−1)rψ(r − 1)

(r − 1)!
δ(r−1)(x) (1.23)

for r = 1, 2, . . . , where δ denotes the Dirac delta function.
It follows that

e−x(x−r)+ = e−xx−r+ +
(−1)rψ(r − 1)

(r − 1)!
e−xδ(r−1)(x), (1.24)

e−x(x−r)− = e−xx−r− −
(−1)rψ(r − 1)

(r − 1)!
e−xδ(r−1)(x) (1.25)

for r = 1, 2, . . . .

2 Convolution of distributions

If f and g are locally summable functions then the classical definition for the convolution f ∗ g
of f and g is as follows:

Definition 1. Let f and g be functions. Then the convolution f ∗ g is defined by

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t)dt

for all points x for which the integral exists.

It follows easily from the definition that if the classical convolution f ∗ g of f and g exists,
then g ∗ f exists and

f ∗ g = g ∗ f. (2.1)

Further, if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exist, then

(f ∗ g)′ = f ∗ g′ (or f ′ ∗ g). (2.2)

The classical definition of the convolution can be extended to define the convolution f ∗ g of
two distributions f and g in D′ with the following definition, see [1].
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Definition 2. Let f and g be distributions in D′. Then the convolution f ∗ g is defined by the
equality

〈(f ∗ g)(x), ϕ(x)〉 = 〈f(y), 〈g(x), ϕ(x+ y)〉〉

for arbitrary ϕ in D′, provided that f and g satisfy either of the following conditions:

(a) either f or g has bounded support

(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition, then equalitys (2.1) and (2.2)
are satisfied.

We first of all prove the following results that are needed to prove the next convolution
products.

Lemma 2.1.

H(x) ∗ (xs)+ =
1

s+ 1
(xs+1)+, (2.3)

H(−x) ∗ (xs)− =
1

s+ 1
(xs+1)−, (2.4)

for s = 0, 1, 2, . . . .

Proof. It is obvious that H(x) ∗ (xs)+ = 0, if x < 0. When x > 0, we have

H(x) ∗ (xs)+ =

∫ ∞
−∞

H(t)(x− t)s+dt

=

∫ x

0

(x− t)sdt

=
1

s+ 1
xs+1

proving equality (2.3).
Equality (2.4) follows from equality (2.3) by replacing x by −x.

Lemma 2.2.

[e−xδ(r−1)(x)] ∗ xs =
s∑
i=0

(
r − 1

i

)
s!

(s− i)!
xs−i, (2.5)

for s = 0, 1, . . . , r − 1 and r = 1, 2, . . . and

[e−xδ(r−1)(x)] ∗ xs =
r−1∑
i=0

(
r − 1

i

)
s!

(s− i)!
xs−i, (2.6)

for s = r, r + 1, . . . and r = 1, 2, . . . .

Proof. We have

e−xδ(r−1)(x) =
r−1∑
i=0

(
r − 1

i

)
δ(i)(x), (2.7)
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for r = 1, 2, . . . . It follows that

[e−xδ(r−1)(x)] ∗ xs =
r−1∑
i=0

(
r − 1

i

)
δ(i)(x) ∗ xs

=
r−1∑
i=0

(
r − 1

i

)
(xs)(i) (2.8)

where

(xs)(i) =


s!

(s− i)!
xs−i, s ≥ i,

0, s < i,
(2.9)

for i, s = 0, 1, 2, . . . .
Equalities (2.5) and (2.6) then follow easily from equalities (2.8) and (2.9).

Lemma 2.3.

[e−xδ(r−1)(x)] ∗ (xs)+ =
s∑
i=0

(
r − 1

i

)
s!

(s− i)!
(xs−i)+ + s!

r−1∑
i=s+1

(
r − 1

i

)
δ(i−s−1)(x), (2.10)

for s = 0, 1, . . . , r − 2 and r = 1, 2, . . . and

[e−xδ(r−1)(x)] ∗ (xs)+ =
r−1∑
i=0

(
r − 1

i

)
s!

(s− i)!
(xs−i)+, (2.11)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . .

[e−xδ(r−1)(x)] ∗ (xs)− =
s∑
i=0

(
r − 1

i

)
(−1)is!

(s− i)!
(xs−i)− − s!

r−1∑
i=s+1

(
r − 1

i

)
δ(i−s−1)(x), (2.12)

for s = 0, 1, . . . , r − 2 and r = 1, 2, . . . and

[e−xδ(r−1)(x)] ∗ (xs)− =
r−1∑
i=0

(
r − 1

i

)
(−1)is!

(s− i)!
(xs−i)−, (2.13)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . .

Proof. The proof of (2.10) and (2.11) is similar to the proof of Lemma 2.2 on noting that

((xs)+)(i) =


s!

(s− i)!
(xs−i)+, s ≥ i,

s!δ(i−s−1)(x), s < i,

for i, s = 0, 1, 2, . . . .
The proof of (2.12) and (2.13) follow from (2.10), (2.11) and Lemma 2.2 on noting that

[e−xδ(r−1)(x) ∗ xs = [e−xδ(r−1)(x)] ∗ (xs)+] + (−1)s[e−xδ(r−1)(x)] ∗ (xs)−]

for s = 0, 1, 2, . . . .
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Theorem 2.1.

(e−x ln+ x) ∗ (xs)+ =
s∑
i=0

(
s

i

)
(−1)ixs−iγ+

1 (i+ 1, x), (2.14)

(e−x ln− x) ∗ (xs)− = (−1)s−1

s∑
i=0

(
s

i

)
γ−1 (i+ 1, x)xs−i, (2.15)

for s = 0, 1, 2, . . . .

Proof. It is obvious that (e−x ln+ x) ∗ (xs)+ = 0 if x < 0. When x > 0, we have

(e−x ln+ x) ∗ (xs)+ =

∫ ∞
−∞

e−t ln t+(x− t)s+dt

=
s∑
i=0

(
s

i

)
(−1)ixs−i

∫ x

0

tie−t ln tdt

=
s∑
i=0

(
s

i

)
(−1)ixs−iγ1(i+ 1, x),

proving equality (2.14).
It is obvious that (e−x ln− x) ∗ (xs)− = 0 if x > 0. When x < 0, we have

(e−x ln− x) ∗ (xs)− =

∫ 0

x

|x− t|se−t ln |t|dt

= (−1)s
s∑
i=0

(
s

i

)
xs−i

∫ 0

x

|t|ie−t ln |t|dt

= (−1)s−1

s∑
i=0

(
s

i

)
γ−1 (i+ 1, x)xs−i

proving equality (2.15).

Theorem 2.2.

γ+
1 (1, x) ∗ (xs)+ =

1

s+ 1
xs+1γ+

1 (1, x) +
s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
xs−iγ+

1 (i+ 2, x), (2.16)

γ−1 (1, x) ∗ (xs)− =
(−1)s+1

s+ 1
xs+1γ−1 (1, x) +

s∑
i=0

(
s

i

)
(−1)s+1

i+ 1
xs−iγ−1 (i+ 2, x), (2.17)

for s = 0, 1, 2, . . . .
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Proof. It is obvious that γ+
1 (1, x) ∗ (xs)+ = 0, if x < 0. When x > 0, we have

γ+
1 (1, x) ∗ (xs)+ =

〈
γ1(1, t+), (x− t)s+

〉
=

∫ x

0

γ+
1 (1, t)(x− t)sdt

=

∫ x

0

∫ t

0

e−u lnu(x− t)sdudt

=
s∑
i=0

(
s

i

)
(−1)ixs−i

∫ x

0

∫ t

0

e−u lnutidudt

=
s∑
i=0

(
s

i

)
(−1)ixs−i

∫ x

0

e−u lnu

∫ x

u

tidtdu

=
s∑
i=0

(
s

i

)
(−1)i

i+ 1
xs+1γ1(1, x) +

s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
xs−iγ1(i+ 2, x)

=
1

s+ 1
xs+1γ1(1, x) +

s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
xs−iγ1(i+ 2, x)

proving equality (2.16).
The proof of equality (2.17) is similar to the proof of equality (2.16).

Theorem 2.3.

γ+(0, x) ∗ (xs)+ =
1

s+ 1
xs+1γ+(0, x) +

s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
xs−iγ+(i+ 1, x), (2.18)

γ−(0, x) ∗ (xs)− =
(−1)s+1

s+ 1
xs+1γ−(0, x) +

s∑
i=0

(
s

i

)
(−1)s+1

i+ 1
xs−iγ−(i+ 1, x), (2.19)

for s = 0, 1, 2, . . . .

Proof. We have from equality (1.11) that

γ+(0, x) ∗ (xs)+ = [(e−x ln+ x) ∗ (xs)+] + [γ+
1 (1, x) ∗ (xs)+], (2.20)

for s = 0, 1, 2, . . . . It follows from equalities (2.14), (2.16) and (2.20) that

γ+(0, x) ∗ (xs)+ =
s∑
i=0

(
s

i

)
(−1)ixs−iγ+

1 (i+ 1, x)

+
s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
xs−iγ+

1 (i+ 2, x) +
1

s+ 1
xs+1γ+

1 (1, x)

=
s∑
i=0

(
s

i

)
(−1)ixs−i

[
γ+

1 (i+ 1, x)− 1

i+ 1
γ+

1 (i+ 2, x)

]
+

1

s+ 1
xs+1γ+

1 (1, x)

=
s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
xs−iγ+(i+ 1, x) +

1

s+ 1
xs+1γ+(0, x),

on noting that

γ+
1 (i+ 1, x)− 1

i+ 1
γ+

1 (i+ 2, x) =
1

i+ 1
xi+1e−x ln+ x−

1

i+ 1
γ+(i+ 1, x),
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for i = 0, 1, 2, . . . . This proves equality (2.18).
Equality (2.19) follows from equalities (1.12), (2.15) and (2.17) by noting that

γ−1 (i+ 1, x) +
1

i+ 1
γ−1 (i+ 2, x) =

(−1)i

i+ 1
xi+1e−x ln |x| − 1

i+ 1
γ−(i+ 1, x),

for i = 0, 1, 2, . . . .

Theorem 2.4.

[e−xx−r+ ] ∗ (xs)+ =
s∑
i=0

(
s

i

)
(−1)ixs−iγ+(−r + i+ 1, x), (2.21)

[e−xx−r− ] ∗ (xs)− = (−1)s−1

s∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1, x) (2.22)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .

Proof. It is obvious that [e−xx−r+ ] ∗ (xs)+ = 0, if x < 0. When x > 0, we have

[e−xx−r+ ] ∗ (xs)+ = N−lim
ε→0

∫ x

ε

e−tt−r(x− t)sdt

=
s∑
i=0

(
s

i

)
(−1)ixs−i N−lim

ε→0

∫ x

ε

e−tt−r+idt

=
s∑
i=0

(
s

i

)
(−1)ixs−iγ(−r + i+ 1, x),

proving equality (2.21).
It is obvious that [e−xx−r− ] ∗ (xs)+ = 0, if x > 0. When x < 0, we have

[e−xx−r− ] ∗ (xs)− = N−lim
ε→0

∫ ε

x

e−t|t|−r|x− t|sdt

= (−1)s
s∑
i=0

(
s

i

)
xs−i N−lim

ε→0

∫ ε

x

e−t|t|−r+idt

= (−1)s−1

s∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1, x)

proving equality (2.22).

Theorem 2.5.

[e−xx−r+ ] ∗ (xs)+ =
s∑
i=0

(
s

i

)
(−1)ixs−iγ+(−r + i+ 1, x) +

s∑
i=0

(
s

i

)
(−1)rψ(r − 1)

(r − 1− i)!
(xs−i)+

+
(−1)rψ(r − 1)s!

(r − 1)!

r−1∑
i=s+1

(
r − 1

i

)
δ(i−s−1)(x), (2.23)

for s = 0, 1, . . . , r − 2 and r = 1, 2, . . . and

[e−xx−r+ ] ∗ (xs)+ =
s∑
i=0

(
s

i

)
(−1)ixs−iγ+(−r + i+ 1, x)

+
r−1∑
i=0

(
s

i

)
(−1)rψ(r − 1)

(r − 1− i)!
(xs−i)+, (2.24)
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for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . .

[e−xx−r− ] ∗ (xs)− = (−1)s−1

s∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1, x)

−
s∑
i=0

(
s

i

)
(−1)r+iψ(r − 1)

(r − 1− i)!
(xs−i)−

−(−1)rψ(r − 1)s!

(r − 1)!

r−1∑
i=s+1

(
r − 1

i

)
δ(i−s−1)(x), (2.25)

for s = 0, 1, . . . , r − 2 and r = 1, 2, . . . and

[e−xx−r− ] ∗ (xs)− = (−1)s−1

s∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1, x)

−
r−1∑
i=0

(
s

i

)
(−1)r+iψ(r − 1)

(r − 1− i)!
(xs−i)−, (2.26)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . .

Proof. The proof of equalities (2.23) and (2.24) are quite straitforward on using equalities (1.24),
(2.10) and (2.21).

The proof of equalities (2.25) and (2.26) are quite straightforward on using equalities (1.25),
(2.12) and (2.22).

Theorem 2.6. The convolution γ+(−r, x) ∗ (xs)+ and γ−(−1, x) ∗ (xs)− exist for s = 0, 1, 2, . . .
and r = 1, 2, . . . . In particular,

γ+(−1, x) ∗ (xs)+ =
s∑
i=0

(
s

i

)
(−1)ixs−i

[
1

i+ 1
γ+(i+ 1, x)− γ+(i, x)

]
− 1

s+ 1
xs+1γ+(0, x)− 1

s+ 1
xs+1

+ , (2.27)

γ−(−1, x) ∗ (xs)− = (−1)s+1

s∑
i=0

(
s

i

)
xs−i

[
1

i+ 1
γ−(i+ 1, x) + γ−(i, x)

]
+

1

s+ 1
xs+1
− γ−(0, x)− 1

s+ 1
xs+1
− , (2.28)

for s = 0, 1, 2, . . . .

Proof. We have proved that the convolution γ+(0, x) ∗ (xs)+ exists. Now assuming that the
convolution γ+(−r, x) ∗ (xs)+ exists for some r. We have from equality (1.13) that

γ+(−r − 1, x) ∗ (xs)+ = − 1

r + 1

[
γ+(−r, x) ∗ (xs)+

]
− 1

r + 1
[e−xx−r−1

+ ∗ (xs)+]

− (−1)r

(r + 1)(r + 1)!
H(x) ∗ (xs)+.

Since each term of the right-hand side exists, therefore the convolution γ+(−r − 1, x) ∗ (xs)+

exists.
In particular, we have

γ+(−1, x) ∗ (xs)+ = −
[
γ+(0, x) ∗ (xs)+

]
− [e−xx−1

+ ∗ (xs)+]− [H(x) ∗ (xs)+], (2.29)
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for s = 0, 1, 2, . . . .
Equality (2.27) then follows from equalities (2.3), (2.18), (2.24) and (2.29).
We have proved that the convolution γ−(0, x) ∗ (xs)− exists. Now assuming that the convo-

lution γ( − r, x) ∗ (xs)− exists for some r. We have from equality (1.14) that

γ−(−r − 1, x) ∗ (xs)− =
1

r + 1

[
γ−(−r, x) ∗ (xs)−

]
+

1

r + 1
[e−xx−r−1

− ∗ (xs)−]

− 1

(r + 1)(r + 1)!
H(−x) ∗ (xs)−.

Since each term of the right-hand side exists, therefore the convolution γ−(−r − 1, x) ∗ (xs)−
exists.

In particular, we have

γ−(−1, x) ∗ (xs)− =
[
γ−(0, x) ∗ (xs)−

]
+ [e−xx−1

− ∗ (xs)−]− [H(−x) ∗ (xs)−], (2.30)

for s = 0, 1, 2, . . . .
Equality (2.28) then follows from equalities (2.4), (2.19), (2.26) and (2.30).

3 Neutrix convolution of distributions

The definition of the convolution is rather restrictive and so the non-commutative neutrix con-
volution was introduced in [2]. In order to define the neutrix convolution product we first of all
let τ be a function in D satisfying the following properties:

(i) τ(x) = τ(−x),

(ii) 0 ≤ τ(x) ≤ 1,

(iii) τ(x) = 1 for |x| ≤ 1
2
,

(iv) τ(x) = 0 for |x| ≥ 1.

The function τn is then defined by

τn(x) =


1, |x| ≤ n,

τ(nnx− nn+1), x > n,

τ(nnx+ nn+1), x < −n

for n = 1, 2, . . . .

The following definitions were given by van der Corput [11].

Definition 3. A neutrix N is defined as a commutative additive group of functions ν(ξ) defined
on a domain N ′ with values in an additive group N ′′, where further, if for some ν ∈ N , ν(ξ) = γ
for all ξ ∈ N ′, then γ = 0. The functions in N are called negligible functions.

Definition 4. Let N ′ be a set contained in a topological space with a limit point b which does
not belong to N ′. If f(ξ) is a function in N ′ with values in N ′′ and it is possible to find a
constant c such that f(ξ)− c ∈ N, then c is called the neutrix limit of f as ξ tends to b and we
write N−limξ→b f(ξ) = c.

Note that f tends to c in the normal sense as ξ tends to b, then it converges to c in the
neutrix sense.
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The following definition was given in [2].

Definition 5. Let f and g be distributions in D′ and let fn = fτn for n = 1, 2, . . . . Then the
neutrix convolution f ~ g is defined as the neutrix limit of the sequence {fn ∗ g}, provided that
the limit h exists in the sense

N−lim
n→∞

〈fn ∗ g, ϕ〉 = 〈h, ϕ〉

for all ϕ in D, where N is the neutrix, see van der Corput [11], having domain N ′ =
{1, 2, . . . , n, . . .} and range N ′′, the real numbers, with negligible functions being finite linear
sums of the functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, . . .)

and all functions which converge to zero in the usual sense as n tends to infinity.
In particular, if

lim
n→∞
〈fn ∗ g, ϕ〉 = 〈h, ϕ〉

for all ϕ in D, we say that the convolution f ∗ g exists and equals h.

Note that in this definition the convolution fn ∗g is as defined in Gel’fand and Shilov’s sense,
the distribution fn having compact support. Note also that because of the lack of symmetry in
the definition of f ~ g, the neutrix convolution is in general non-commutative.

The following theorem was proved in [2], showing that the neutrix convolution is a general-
ization of the convolution.

Theorem 3.1. Let f and g be distributions in D′ satisfying either condition (a) or condition
(b) of Gel’fand and Shilov’s definition. Then the neutrix convolution f ~ g exists and

f ~ g = f ∗ g.

For our next results, we need to extends of our set of negligible functions to include finite
linear sums of

nr−1en, en lnn, nr−1γ−1 (i,−n), γ−(i,−n) : r, i = 1, 2, . . . .

The following results were proved in [8] and [6], respectively:

γ+(λ, x)~ xs =
1

s+ 1

s+1∑
i=1

(
s+ 1

i

)
(−1)iΓ(λ+ i)xs−i+1,

γ−(λ, x)~ xs = 0,

for s = 0, 1, 2, . . . and λ 6= 0,−1,−2, . . . .

We now prove

Theorem 3.2. The neutrix convolution H(x)~ xs exists and

H(x)~ xs = 0, (3.1)
H(−x)~ xs = 0, (3.2)

for s = 0, 1, 2, . . . .



On the incomplete Gamma function and its neutrix convolution for negative integers 43

Proof. We have

[H(x)τn(x)] ∗ xs =

∫ n

0

(x− t)sdt+

∫ n+n−n

n

τn(t)(x− t)sdt

for s = 0, 1, 2, . . . . It is easily seen that

N−lim
n→∞

[H(x)τn(x)] ∗ xs = 0,

proving equality (3.1).
The proof of equality (3.2) is similar to the proof of equality (3.1).

Theorem 3.3. The neutrix convolution (e−x ln+ x)~ xs and (e−x ln− x)~ xs exist and

(e−x ln+ x)~ xs =
s∑
i=0

(
s

i

)
(−1)iΓ′(i+ 1)xs−i, (3.3)

(e−x ln− x)~ xs = 0, (3.4)

for s = 0, 1, 2, . . . .

Proof. Put (e−x ln+ x)n = (e−x ln+ x)τn(x). Then

(e−x ln+ x)n ∗ xs =

∫ n

0

e−t ln t(x− t)sdt+

∫ n+n−n

n

e−t ln tτn(t)(x− t)sdt

= J1 + J2. (3.5)

Now

J1 =
s∑
i=0

(
s

i

)
(−1)ixs−i

∫ n

0

e−tti ln tdt

=
s∑
i=0

(
s

i

)
(−1)ixs−iγ1(i+ 1, n)

and so

N−lim
n→∞

J1 =
s∑
i=0

(
s

i

)
(−1)ixs−iΓ′(i+ 1). (3.6)

Further, it is easily seen that

N−lim
n→∞

J2 = 0. (3.7)

It follows from equalities (3.5), (3.6) and (3.7) that

N−lim
n→∞

[(e−x ln+ x)n ∗ xs] =
s∑
i=0

(
s

i

)
(−1)ixs−iΓ′(i+ 1)

proving equality (3.3).
Put (e−x ln− x)n = (e−x ln− x)τn(x). Then

(e−x ln− x)n ∗ xs =

∫ 0

−n
e−t ln |t|(x− t)sdt+

∫ −n
−n−n−n

e−t ln |t|τn(t)(x− t)sdt

= I1 + I2. (3.8)
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Now

I1 =

∫ 0

−n
e−t ln |t|(x− t)sdt =

s∑
i=0

(
s

i

)
xs−i

∫ 0

−n
e−t|t|i ln |t|dt

= −
s∑
i=0

(
s

i

)
xs−iγ1(i+ 1,−n).

It follows that

N−lim
n→∞

I1 = 0. (3.9)

Further, it is easily seen that

N−lim
n→∞

I2 = 0,

Combining equalities (3.8), (3.9) and (3.10), we get

N−lim
n→∞

[(e−x ln− x)n ∗ xs] = 0, (3.10)

for s = 0, 1, 2, . . . . This completes the proof of the theorem.

Theorem 3.4. The neutrix convolution γ+
1 (1, x)~ xs and γ−1 (1, x)~ xs exist and

γ+
1 (1, x)~ xs =

s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
Γ′(i+ 2)xs−i, (3.11)

γ−1 (1, x)~ xs = 0, (3.12)

for s = 0, 1, 2, . . . .

Proof. Put γ+
1 (1, x)n = γ+

1 (1, x)τn(x). Then

γ+
1 (1, x)n ∗ xs =

∫ n

0

γ+
1 (1, t)(x− t)sdt+

∫ n+n−n

n

γ+
1 (1, t)τn(t)(x− t)sdt

= J3 + J4. (3.13)

We have

J3 =

∫ n

0

γ+
1 (1, t)(x− t)sdt

=

∫ n

0

∫ t

0

e−u lnu(x− t)sdudt

=
s∑
i=0

(
s

i

)
(−1)ixs−i

∫ n

0

∫ t

0

e−u lnutidudt

=
s∑
i=0

(
s

i

)
(−1)ixs−i

∫ n

0

e−u lnu

∫ n

u

tidtdu

=
s∑
i=0

(
s

i

)
(−1)i

i+ 1
xs−i

[
ni+1γ1(1, n)− γ1(i+ 2, n)

]
.



On the incomplete Gamma function and its neutrix convolution for negative integers 45

It follows that

N−lim
n→∞

J3 =
s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
Γ′(i+ 2)xs−i (3.14)

Further, it is easily seen that

N−lim
n→∞

J4 = 0. (3.15)

It now follows from equalities (3.13), (3.14) and (3.15) that

N−lim
n→∞

[γ+
1 (1, x)n ∗ xs] =

s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
Γ′(i+ 2)xs−i

for s = 0, 1, 2, . . . .
This completes the proof of (3.11).
Put γ−1 (1, x)n = γ−1 (1, x)τn(x). Then

γ−1 (1, x)n ∗ xs =

∫ 0

−n
γ−1 (1, t)(x− t)sdt+

∫ −n
−n−n−n

γ−1 (1, t)τn(t)(x− t)sdt

= I3 + I4. (3.16)

We have

I3 =

∫ 0

−n
γ−1 (1, t)(x− t)sdt

=

∫ 0

−n

∫ t

0

e−u ln |u|(x− t)sdudt

=
s∑
i=0

(
s

i

)
xs−i

∫ 0

−n

∫ t

0

e−u ln |u||t|idudt

= −
s∑
i=0

(
s

i

)
xs−i

∫ −n
0

e−u ln |u|
∫ −n
u

|t|idtdu

=
s∑
i=0

(
s

i

)
1

i+ 1
xs−ini+1γ1(1,−n)−

s∑
i=0

(
s

i

)
1

i+ 1
xs−iγ1(i+ 2,−n).

It follows that

N−lim
n→∞

I3 = 0. (3.17)

Further, it is easily seen that

N−lim
n→∞

I4 = 0. (3.18)

Combining equalities (3.16), (3.17) and (3.18), we get

N−lim
n→∞

[γ−1 (1, x)n ∗ xs] = 0,

for s = 0, 1, 2, . . . .
This completes the proof of the theorem.
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Theorem 3.5. The neutrix convolutions γ+(0, x)~ xs and γ−(0, x)~ xs exist and

γ+(0, x)~ xs =
s∑
i=0

(
s

i

)
(−1)i+1

i+ 1
Γ(i+ 1)xs−i, (3.19)

γ−(0, x)~ xs = 0, (3.20)

for s = 0, 1, 2, . . . .

Proof. Equality (3.19) follows from equalities (3.3) and (3.11) by noting that

Γ(i+ 1) = Γ′(i+ 2)− (i+ 1)Γ′(i+ 1),

for i = 0, 1, 2, . . . .
Equality (3.20) follows from equalities (1.12), (3.4) and (3.12).

Corollary 3.1. The neutrix convolutions γ+(0, x)~ (xs)− and γ−(0, x)~ (xs)+ exist and

γ+(0, x)~ (xs)− =
s∑
i=0

(
s

i

)
(−1)s+i+1

i+ 1
γ+(i+ 1, x)xs−i +

(−1)s+1

s+ 1
xs+1γ+(0, x), (3.21)

γ−(0, x)~ (xs)+ =
1

s+ 1
xs+1γ−(0, x) +

s∑
i=0

(
s

i

)
1

i+ 1
xs−iγ−(i+ 1, x), (3.22)

for s = 0, 1, 2, . . . .

Proof. We have

γ+(0, x)~ xs = [γ+(0, x)~ (xs)+] + (−1)s[γ+(0, x)~ (xs)−], (3.23)
γ−(0, x)~ xs = [γ−(0, x)~ (xs)+] + (−1)s[γ−(0, x)~ (xs)−], (3.24)

for s = 0, 1, 2, . . . .
Equality (3.21) then follows from equalities (1.17), (2.18), (3.19) and (3.23).
Equality (3.22) then follows from equalities (2.19), (3.20) and (3.24).

Theorem 3.6. The neutrix convolution [e−xx−r+ ]~ xs exists and

[e−xx−r+ ]~ xs =
s∑
i=0

(
s

i

)
(−1)ixs−iΓ(−r + i+ 1), (3.25)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .

Proof. We have

[e−xx−r+ τn(x)] ∗ xs = N−lim
ε→0

∫ n

ε

e−tt−r(x− t)sdt+

∫ n+n−n

n

e−tt−rτn(t)(x− t)sdt

= J5 + J6, (3.26)

where

J5 =
s∑
i=0

(
s

i

)
(−1)ixs−iγ(−r + i+ 1, n).
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It follows that

N−lim
n→∞

J5 =
s∑
i=0

(
s

i

)
(−1)ixs−iΓ(−r + i+ 1), (3.27)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .
Note that from equalities (1.5) and (1.7), we have

γ(−r, n) =
r∑
i=1

[
(−1)r

ir!
− (−1)r−i(i− 1)!n−ie−n

r!

]
+

(−1)r

r!
e−n lnn+

(−1)r

r!
γ1(1, n),

for r = 0, 1, 2, . . . , where the sum is being empty when r = 0. Applying the neutrix limit, we get

N−lim
n→∞

γ(−r, n) =
(−1)r

r!
[ψ(r)− γ] = Γ(−r),

for r = 0, 1, 2, . . . .
Further, it is easily seen that

N−lim
n→∞

J6 = 0. (3.28)

It now follows from equalities (3.26), (3.27) and (3.28) that

N−lim
n→∞

[e−xx−r+ τn(x)] ∗ xs =
s∑
i=0

(
s

i

)
(−1)ixs−iΓ(−r + i+ 1),

for s = 0, 1, 2, . . . and r = 1, 2, . . . .
This completes the proof of the theorem.

Theorem 3.7. The neutrix convolution [e−xx−r− ]~ xs exists and

[e−xx−r− ]~ xs =
s∑
i=0

(
s

i

)
ψ(r − i− 1)

(r − i− 1)!
xs−i, (3.29)

for s = 0, 1, 2, . . . , r − 2 and r = 1, 2, . . . and

[e−xx−r− ]~ xs =
r−2∑
i=0

(
s

i

)
ψ(r − i− 1)

(r − i− 1)!
xs−i, (3.30)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . , where the sum is empty when r = 1.

Proof. We have

[e−xx−r− τn(x)] ∗ xs= N−lim
ε→0

∫ ε

−n
e−t|t|−r(x− t)sdt+

∫ −n
−n−n−n

e−t|t|−rτn(t)(x− t)sdt

= I5 + I6, (3.31)

where

I5 =
s∑
i=0

(
s

i

)
xs−i N−lim

ε→0

∫ ε

−n
e−t|t|−r+idt

= −
s∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1,−n). (3.32)
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We now have from equalities (1.8) and (1.10) that

γ−(−r,−n) =
r∑
i=1

(i− 1)!

r!
n−ien − ψ(r)

r!
+

1

r!
γ−(0,−n).

It follows that

N−lim
n→∞

γ−(−r,−n) = −ψ(r)

r!
, (3.33)

for r = 1, 2, . . . .
It now follows from equality (3.32) that

I5 = −
s∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1,−n), (3.34)

for s = 0, 1, 2, . . . , r − 2 and r = 1, 2, . . . and

I5 = −
r−2∑
i=0

(
s

i

)
xs−iγ−(−r + i+ 1,−n)

−
s∑

i=r−1

(
s

i

)
xs−iγ−(−r + i+ 1,−n), (3.35)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . .
It now follows from equalities (3.33), (3.34) and (3.35) that

N−lim
n→∞

I5 =
s∑
i=0

(
s

i

)
ψ(r − i− 1)

(r − i− 1)!
xs−i, (3.36)

for s = 0, 1, 2, . . . , r − 2 and r = 1, 2, . . . and

N−lim
n→∞

I5 =
r−2∑
i=0

(
s

i

)
ψ(r − i− 1)

(r − i− 1)!
xs−i, (3.37)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . , where the sum is empty when r = 1.
Further, it is easily seen that

N−lim
n→∞

I6 = 0. (3.38)

Equality (3.29) follows from equalities (3.31), (3.36) and (3.38).
Equality (3.30) follows from equalities (3.31), (3.37) and (3.38).

Corollary 3.2. The neutrix convolution [e−x(x−r)+]~ xs exists and

[e−x(x−r)+]~ xs =
s∑
i=0

(
s

i

)
xs−i
[
(−1)iΓ(−r + i+ 1)+

(−1)rψ(r − 1)

(r − i− 1)!

]
, (3.39)

for s = 0, 1, . . . , r − 1 and r = 1, 2, . . . and

[e−x(x−r)+]~ xs =
s∑
i=0

(
s

i

)
(−1)ixs−iΓ(−r + i+ 1) +

r−1∑
i=0

(
s

i

)
(−1)rψ(r − 1)

(r − i− 1)!
xs−i, (3.40)

for s = r, r + 1, . . . and r = 1, 2, . . . .
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Proof. It follows from equality (1.24) that

[e−x(x−r)+]~ xs = [e−xx−r+ ~ x
s] +

(−1)rψ(r − 1)

(r − 1)!
[e−xδ(r−1)(x)~ xs], (3.41)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .
Equality (3.39) follows from equalities (2.5), (3.25) and (3.41).
Equality (3.40) follows from equalities (2.6), (3.25) and (3.41).

Corollary 3.3. The neutrix convolution [e−x(x−r)−]~ xs exists and

[e−x(x−r)−]~ xs =
s∑
i=0

(
s

i

)
1

(r − i− 1)!
[ψ(r − i− 1)− (−1)rψ(r − 1)]xs−i, (3.42)

for s = 0, 1, . . . , r − 2 and r = 1, 2, . . . and

[e−x(x−r)−]~ xs =
r−2∑
i=0

(
s

i

)
ψ(r − i− 1)

(r − i− 1)!
xs−i −

r−1∑
i=0

(
s

i

)
(−1)rψ(r − 1)

(r − i− 1)!
xs−i, (3.43)

for s = r − 1, r, r + 1, . . . and r = 1, 2, . . . , where the first sum is being empty when r = 1.

Proof. It follows from equality (1.25) that

[e−x(x−r)−]~ xs=[e−xx−r− ~ x
s]− (−1)rψ(r−1)

(r−1)!
[e−xδ(r−1)(x)~ xs] (3.44)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .
Equality (3.42) follows from equalities (2.5), (3.29) and (3.44).
Equality (3.43) follows from equalities (2.6), (3.30) and (3.44).

Theorem 3.8. The neutrix convolution γ+(−r, x)~xs exists for s = 0, 1, 2, . . . and r = 1, 2, . . . .
In particular,

γ+(−1, x)~ xs =
s∑
i=0

(
s

i

)
(−1)ixs−i

[
1

i+ 1
Γ(i+ 1)− Γ(i)

]
, (3.45)

for s = 0, 1, 2, . . . .

Proof. We have proved that the convolution γ+(0, x) ~ xs exists. Now assuming that the con-
volution γ+(−r, x)~ xs exists for some r. We then have from equality (1.13) that

γ+(−r − 1, x)~ xs = − 1

r + 1

[
γ+(−r, x)~ xs

]
− 1

r + 1
[e−x(x−r−1)+ ~ x

s]

− (−1)r

(r + 1)(r + 1)!
[H(x)~ xs].

Since each term of the right-hand side exists, the convolution γ+(−r − 1, x)~ xs exists.
In particular, we have

γ+(−1, x)~ xs = −
[
γ+(0, x)~ xs

]
− [e−x(x−1)+ ~ x

s]− [H(x)~ xs], (3.46)

for s = 0, 1, 2, . . . .
Equality (3.45) follows from equalities (3.1), (3.19), (3.39), (3.40) and (3.46).
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Theorem 3.9. The neutrix convolution γ−(−r, x)~xs exists for s = 0, 1, 2, . . . and r = 1, 2, . . . .
In particular,

γ−(−1, x)~ xs = 0, (3.47)

for s = 0, 1, 2, . . . .

Proof. The existence of the convolution γ−(−r, x)~ xs is easily proved by induction.
We have in particular,

γ−(−1, x)~ xs =
[
γ−(0, x)~ xs

]
+ [e−x(x−1)− ~ x

s]− [H(−x)~ xs] (3.48)

for s = 0, 1, 2, . . . .
Equality (3.47) follows from equalities (3.2), (3.20), (3.43) and (3.48).

Corollary 3.4. The neutrix convolutions γ+(−r, x) ~ (xs)− and γ−(−r, x) ~ (xs)+ exist for
s = 0, 1, 2, . . . and r = 1, 2, . . . . In particular,

γ+(−1, x)~ (xs)− =
s∑
i=0

(
s

i

)
(−1)s+ixs−i

[
1

i+ 1
γ+(i+ 1, x)− Γ+(i, x)

]
(−1)s

s+ 1
xs+1γ+(0, x) +

(−1)s

s+ 1
(xs+1)+, (3.49)

γ−(−1, x)~ (xs)+ =
s∑
i=0

(
s

i

)
xs−i

[
1

i+ 1
γ−(i+ 1, x) + γ−(i, x)

]
+

(−1)s+1

s+ 1
(xs+1)−γ

−(0, x)− (−1)s+1

s+ 1
(xs+1)−, (3.50)

for s = 0, 1, 2, . . . .

Proof. The existence of the convolution γ+(−r, x) ~ (xs)− follows from the existence of the
convolutions γ+(−r, x)~ xs and γ+(−r, x) ∗ (xs)+.

The existence of the convolution γ−(−r, x) ~ (xs)+ follows from the existence of the convo-
lutions γ−(−r, x)~ xs and γ−(−r, x) ∗ (xs)−.

Equality (3.49) follows from equalities (2.27) and (3.45) by noting that

Γ(i+ 1) = γ+(i+ 1, x) + γ+(i+ 1, x),

for i = 0, 1, 2, . . . .
Equality (3.50) follows from equalities (2.28) and (3.47).
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