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his 80th birthday and wish him good health, happiness and new achievements in mathematics
and mathematical education.



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 10, Number 1 (2019), 16 – 29

LAGRANGE FORMULA FOR DIFFERENTIAL OPERATORS AND
SELF-ADJOINT RESTRICTIONS OF

THE MAXIMAL OPERATOR ON A TREE

B. Kanguzhin, L. Zhapsarbayeva, Zh. Madibaiuly

Communicated by M. Otelbaev

Key words: directed graph, tree, Kirchhoff conditions, self-adjoint restrictions.

AMS Mathematics Subject Classification: 34B45,34L20.

Abstract. The paper is devoted to linear differential operators defined on a tree. We aim
at obtaining complete descriptions of well-posed restrictions of a given maximal differential
operator on a tree. In this paper all self-adjoint restrictions of the maximal operator and also all
the invertible restrictions of the maximal operator are described. We also present the Lagrange
formula for a differential operator on a tree with the Kirchhoff conditions at its interior vertices.

DOI: https://doi.org/10.32523/2077-9879-2019-10-1-16-29

1 Introduction

Differential equations that arise in many in applications can be interpreted as equations on
graphs. Plenty of examples can be found in fields such as chemical kinetics, chemical technology,
biology, and in Markov processes. Therefore, the study of differential equations is of interest
beyond the field of mathematics.

Besides applications, mathematicians also intensively develop the theoretical foundation of
differential equations on graphs [5, 9, 10]. One of the main questions is: what conditions at the
vertices of the graph are the most "natural"? The standard answer is the Kirchhoff conditions.
However, there is a possibility to impose conditions other than the Kirchhoff conditions at the
vertices. The detailed answer to this question for second order differential equations can be
found in [5, 12], and for higher order differential equations in [13]. In monograph [9], the vertices
of graphs are divided into two types: boundary vertices and interior vertices. If we assume that
the Kirchhoff conditions or conditions from [5, 12] hold at the interior vertices, there is still a
problem of determining conditions at boundary vertices. The problem of determining the general
boundary conditions at boundary vertices have not been studied in [5, 12, 13].

Five approaches (decomposition, scalarizing, vector, related and synthetic) of the study of
differential equations on graphs are presented in monograph [9].

In this paper, we exploit a related approach, according to which differential equations at
the edges of a graph and conditions at the interior vertices of a graph generate a differential
operator in some function space on the graph. Then, the problem of describing the general
boundary conditions at boundary vertices of a graph is reduced to determining the self-adjoint
restrictions of the above-mentioned differential operator. Similar constructions for any graphs
are given in [14]. In the present paper, in the case of a tree, it is possible to describe in a compact
form (more clearly than in work [14]) not only all possible self-adjoint boundary value problems,
but also well-posed problems for differential equations with the Kirchhoff conditions at interior
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vertices. In this paper all self-adjoint restrictions of the maximal operator (Theorem 5.1) and
also all the invertible restrictions of the maximal operator (Theorem 6.2) are described.

We note that a related approach to finding the asymptotics of solutions to differential equa-
tions on a tree was used in [15].

2 Basic concepts

Let = = {V , E} be a tree. Here V is the set of vertices and E is the set of edges [1] of the graph
=. A directed graph is a tree, if at each vertex, except for one vertex, there is one incoming edge.
The vertex which does not have any incoming edges is said to be a root of the tree. We assign
the number 0 to the root. One of the important properties of a tree is the existence of a unique
path connecting the root and any vertex [11]. The length of the path determines the height
of the vertex of the tree. Vertices which do not have the outgoing edges are called boundary
vertices and denoted by Γ. Non-boundary vertices we call interior vertices and denote them by
I. First, we number the boundary vertices from 0 to p. Further, we assign the numbers from
p + 1 to r to the interior vertices by the rule: if the height of the vertex is greater, then its
number is greater. We denote by mj the number of edges outgoing from vertex j. Without loss
of generality, we suppose that each edge has unit length. The edge which ended at vertex j, we
denote by ej. Function y(x) defined on edge ej we denote by yj(xj), xj ∈ ej. The path outgoing
from the root and ending at vertex j, we denote by sj, and its length by |sj| − 1. Further, we
assume that only one edge goes out from a root.

3 Definition of the maximal operator on a tree

We consider the space

L2(=) +
r∏
j=1

L2(ej)

with the elements
~Y ( ~X) + [yj(xj), j = 1, . . . , r]T ,

(where ~X = (xj, j = 1, . . . , r) and
∏r

j=1 is the Cartesian product of the subspaces) and with a
finite norm

||~Y ||L2(=) =

√√√√ r∑
j=1

∫
ej

|yj(xj)|2dxj.

In the standard way we introduce the space

W 2
2 (=) +

r∏
j=1

W 2
2 (ej).

We introduce the set of functions D(Λmax) ⊂ W 2
2 (=) with the elements that satisfy the following

Kirchhoff conditions [8]
yk(1) = ys1(k)(0) = . . . = ysmk (k)(0), (3.1)

y′k(1) = y′s1(k)(0) + . . .+ y′smk (k)(0) (3.2)

at each interior vertices k = p + 1, . . . , r. Here s1(k), . . . , smk(k) are the numbers of outgoing
edges from vertex k (Fig.1).
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Fig. 1. The distribution of the solution at the interior k-th vertex.

An operator Λmax with the domain of definitionD(Λmax) and given by the differential expressions

−y′′j (xj) + qj(xj)yj(xj) = ρ2yj(xj), ej ∈ E , 0 < xj < 1, (3.3)

j = 1, . . . , r

is called a maximal operator. Here {qj(xj), xj ∈ ej ∈ E , 0 < xj < 1} is the set of real-valued
continuous functions, usually called potentials. We note that the total number of the Kirchhoff
conditions at the interior vertices is equal to 2r − p− 1.

4 Lagrange formula for differential operators on a tree

The Lagrange formula plays an important role in the study of differential operators on an
interval. In this section we present the analogue of the Lagrange formula in the case of differential
operators on a tree. The Lagrange formula for arbitrary connected graphs without loops is stated
in [14]. When a graph becomes a tree, the Lagrange formula has a more illustrative form. First,
we formulate some auxiliary lemmas [14].

Lemma 4.1. The following identity
r∑
j=1

∫
ej

Λmaxyj(xj)vj(xj)dxj

=
r∑

k=1

[−y′k(1)vk(1) + yk(1)v′k(1)] +
r∑

k=p+1

[y′k(0)vk(0)− yk(0)v′k(0)]

+
r∑
j=1

∫
ej

yj(xj)Λmaxvj(xj)dxj (4.1)

holds for all ~Y (x) = {yj(xj), j = 1, . . . , r}, ~V (x) = {vj(xj), j = 1, . . . , r} from W 2
2 (=), where z̄

is a complex conjugate of the number z.

Lemma 4.2. The following identity

r∑
j=1

∫
ej

Λmaxyj(xj)vj(xj)dxj =

p∑
k=1

[−y′k(1)vk(1) + yk(1)v′k(1)]

+ [y′p+1(0)vp+1(0)− yp+1(0)v′p+1(0)] +
r∑
j=1

∫
ej

yj(xj)Λmaxvj(xj)dxj (4.2)

holds for all ~Y (x) = {yj(xj), j = 1, . . . , r}, ~V (x) = {vj(xj), j = 1, . . . , r} from the domain of
definition of the maximal operator Λmax.
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Lemma 4.2 is proved in [14]. Here is a more illustrative proof of Lemma 4.2.

Proof. We assume that j takes one of the values p+1, . . . , r. Then the contribution of the vertex
j to the terms

r∑
k=1

[−y′k(1)vk(1) + yk(1)v′k(1)] +
r∑

k=p+1

[y′k(0)vk(0)− yk(0)v′k(0)], (4.3)

that do not contain the integral, can be written in the following form

[−y′j(1)vj(1) + yj(1)v′j(1)] +

mj∑
k=1

[y′sk(j)(0)vsk(j)(0)− ysk(j)(0)v′sk(j)(0)]. (4.4)

By condition (3.1) we calculate the value of sum (4.4), and get

[−y′j(1)vj(1) + yj(1)v′j(1)] + vj(1)

mj∑
k=1

y′sk(j)(0)− yj(1)

mj∑
k=1

v′sk(j)(0).

By Kirchhoff condition (3.2) we compute the last expression. We obtain

[−y′j(1)vj(1) + yj(1)v′j(1)] + vj(1)y′j(1)− yj(1)v′j(1) = 0. (4.5)

Relation (4.5) means that the contribution of interior vertices p + 1, . . . , r to the terms that
do not contain the integral (4.3) is equal to zero. Therefore in (4.3) it is necessary to take
into account only the contribution of boundary vertices 0, . . . , p. Then we have the values of
the functions yj(x), y′j(x), vj(x), v′j(x), j = 1, . . . , p at the point x = 1. We recall that these
functions are defined on the incoming edges e1, . . . , ep to the boundary vertices 1, . . . , p. There
are also the values of the functions yp+1(x), y′p+1(x), vp+1(x), v′p+1(x) at the point x = 0. These
functions are defined on the outgoing edges ep+1 from the vertex 0 and directed to the vertex
p+ 1 (Fig.2):

p∑
k=1

[−y′k(1)vk(1) + yk(1)v′k(1)]− [−y′p+1(0)vp+1(0) + yp+1(0)v′p+1(0)].

Fig. 2.Tree with r vertices (black vertices are boundary vertices).



20 B. Kanguzhin, L. Zhapsarbayeva, Zh. Madibaiuly

Lemma 4.2 implies that the contribution of interior vertices to the terms that do not contain
integral (4.2) is equal to zero. In other words, the terms that are outside of integral (4.2)
contain only the contribution of boundary vertices. By monograph [6] similar formulae are
called Lagrange formula. Formula (4.2) can be generalized in the following direction.

For k = 1, . . . , 2(p+ 1) we consider

Uk(~Y ) =

p∑
j=1

[αkjyj(1) + βkjy
′
j(1)] + [αk,p+1yp+1(0) + βk,p+1y

′
p+1(0)], (4.6)

where αkj, βkj, αk,p+1, βk,p+1 are some constants.

Theorem 4.1. [Lagrange formula] Let {U1, . . . , U2(p+1)} be a set of linear independent boundary
forms. Then there exists a unique set of boundary forms {T1, . . . , T2(p+1)} such that the following
identity

r∑
j=1

∫
ej

Λmaxyj(xj)vj(xj)dxj = U1(~Y )T2(p+1)(~V ) + U2(~Y )T2(p+1)−1(~V ) + . . .

+ U2(p+1)(~Y )T1(~V ) +
r∑
j=1

∫
ej

yj(xj)Λmaxvj(xj)dxj (4.7)

holds for all functions ~Y (x) = {yj(xj), j = 1, . . . , r}, ~V (x) = {vj(xj), j = 1, . . . , r} from the
domain of definition of the maximal operator Λmax.

Theorem 4.1 is proved in [14]. Here it is specified that the boundary forms {T1, . . . , T2(p+1)}
can be represented as

T2(p+1)−k+1(~V ) =

p∑
k=1

[
−εjkvj(1) + γjkv

′
j(1)

]
+
[
εj,p+1vp+1(0)− γj,p+1v

′
p+1(0)

]
,

where εjk, γjk is some set of numbers (may be complex).
Formula (4.7) is called the Lagrange formula.
Theorem 4.1 immediately implies the following statement.

Corollary 4.1. Let Λ be a restriction of the operator Λmax in the domain of definition
D(Λ) = {~Y ∈ D(Λmax) : U1(~Y ) = 0, . . . , Up+1(~Y ) = 0}. Then the adjoint operator Λ∗ is
also a restriction of the operator Λmax in the domain of definition D(Λ∗) = {~V ∈ D(Λmax) :

T1(~V ) = 0, . . . , Tp+1(~V ) = 0}, and for all ~Y ∈ D(Λ) and ~V ∈ D(Λ∗) the following equality

r∑
j=1

∫
ej

Λyj(xj)vj(xj)dxj =
r∑
j=1

∫
ej

yj(xj)Λ∗vj(xj)dxj

holds.

5 Self-adjoint restrictions of the maximal operator Λmax

In this section we give the complete description of all self-adjoint restrictions of the operator
Λmax. First we introduce the minimal restriction Λ0 of the operator Λmax. We denote by D(Λ0)

the set all functions ~Y (x) ∈ D(Λmax) which satisfy the conditions

yj(1) = 0, y′j(1) = 0 for j = 1, . . . , p, (5.1)
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yp+1(0) = 0, y′p+1(0) = 0.

Furthermore, we introduce the minimal restriction Λ0 by formula

Λ0
~Y = Λmax

~Y , ~Y ∈ D(Λ0).

The following assertions are valid
I) the equality

〈Λ0
~Y , ~V 〉 = 〈~Y ,Λmax

~V 〉 (5.2)

holds for all ~Y ∈ D(Λ0), ~V ∈ D(Λmax),
II) the equality

〈Λ0
~Y , ~V 〉 = 〈~Y ,Λ0

~V 〉

holds for all ~Y , ~V ∈ D(Λ0). From equality (5.2) it follows that Λmax ⊂ Λ∗0.
To study the properties of the minimal operator it is convenient to introduce the operators

Λ1 and Λ2 which are the restrictions of the maximal operator Λmax. Let

D(Λ1) = {~Y ∈ D(Λmax) : yj(1) = 0, j = 1, . . . , p, yp+1(0) = 0}

and Λ1
~Y (x) = Λmax

~Y (x) for ~Y ∈ D(Λ1).
Let

D(Λ2) = {~Y ∈ D(Λmax) : y′j(1) = 0, j = 1, . . . , p, y′p+1(0) = 0}

and Λ2
~Y (x) = Λmax

~Y (x) for ~Y ∈ D(Λ2).

Assumption 1. The equation

Λi
~Y (x) = ~F (x), i = 1, 2 (5.3)

has a unique solution in D(Λi), i = 1, 2 for all functions ~F (x) in L2(=).

Remark 1. Operator equation (5.3) in the set D(Λi), i = 1, 2 is equivalent to the system of
second order linear differential equations on the set of edges E with 2|E| − p − 1 the Kirchhoff
conditions at the interior vertices I and p + 1 conditions at the boundary vertices Γ. Thus, we
have the system of second order non-homogeneous linear differential equations on the set of edges
E, whose general solution contains 2|E| constants. There are (2|E| − p− 1) + p+ 1 = 2|E| linear
conditions to determine them. Consequently, one can write some determinant Di, i = 1, 2 of size
2|E|. Then the unique solvability of equation (5.3) is equivalent to the fact that the determinant
Di, i = 1, 2 is not equal to zero.

By following monograph [6], we formulate two lemmas.

Lemma 5.1. Let Λmax be a maximal operator on the tree = that was introduced in Section 3,
and let ~F (x) be a function in L2(=). If assumption 1 hold, then the equation

Λmax
~Y (x) = ~F (x)

has a solution ~Y (x) that satisfies condition (5.1) if and only if ~F (x) is orthogonal to all elements
from KerΛmax.
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Proof. By assumption 1 we denote by ~Y (x) the unique solution of operator equation (5.3) for
i = 1. We denote by ~V1, . . . , ~Vp+1 the fundamental set of solutions of homogeneous operator
equation Λmax

~V = 0 that satisfies the following conditions: all boundary forms vjl(1) for j =
1, . . . , p и vp+1,l(0), except for one of them, are equal to zero, and one of the forms is equal to 1.
There exists such a fundamental system. This follows from Remark 1, because the condition of
solvability is equivalent to the fact that the determinant D1 is not equal to zero.

By applying the Lagrange formula to the functions ~Y (x) and ~Vk(x), we have

〈~F , ~Vk〉 = 〈Λmax
~Y , ~Vk〉 − 〈~Y ,Λmax

~Vk〉. (5.4)

However Λmax
~Vk = 0. Moreover, the inclusion ~Y ∈ D(Λ1) implies that

p∑
l=1

yl(1)v′kl(1)− yp+1(0)v′k,p+1(0) = 0.

Hence, formula (5.4) has the following form

〈~F , ~Vk〉 = −
p∑
l=1

y′l(1)vkl(1) + y′p+1(0)vk,p+1(0)

=

{
−y′l(1) if vkl(1) = 1,
y′p+1(0) if vk,p+1(0) = 1.

(5.5)

Relation (5.5) implies the statement of Lemma 5.1: equalities (5.1) are valid if and only if
〈~F , ~Vk〉 = 0, k = 1, . . . , p + 1. Namely, ~F (x) is orthogonal to all solutions of the equation
Λmax

~V = 0.

Lemma 5.2. Let assumption 1 hold. Then there exists a function such that ~Y (x) ∈ D(Λmax)
which satisfies the following conditions

y′k(1) = βk, yk(1) = αk, k = 1, . . . , p,

y′p+1(0) = βp+1, yp+1(0) = αp+1

for any numbers αk, βk for k = 1, . . . , p and αp+1, βp+1.

Proof. First, we prove Lemma 5.2 for the case αk = 0. We choose ~F (x) ∈ L2(=) such that

〈~F , ~Vk〉 =

{
−βl if vkl(1) = 1,
βp+1 if vk,p+1(0) = 1,

(5.6)

where ~Vk, k = 1, . . . , p + 1 is the same system of fundamental solution, that in the proof of
Lemma 5.1. There exists such an element and moreover it is in KerΛmax. Indeed, if we take

~F =

p+1∑
k=1

µk~Vk,

then condition (5.6) is the system of equations with respect to the constants µ1, . . . , µp+1, whose
determinant is the Gram determinant of linear independent functions ~V1, . . . , ~Vp+1. Consequently,
it is not equal to zero. We denote by ~V the solution to the equation Λ1

~V = ~F . Then the Lagrange
formula implies

~V ′(1) = βj for j = 1, . . . , p,
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~V ′(0) = βp+1.

So, the constructed function ~V (x) ∈ D(Λmax) and

~V ′(1) = βj, ~V (1) = 0 for j = 1, . . . , p,

~V ′(0) = βp+1, ~V (0) = 0.

Replacing the set αj, αp+1 by βj, βp+1, and replacing the operator Λ1 by Λ2, we obtain the proof
of Lemma 5.2.

Now we formulate the statement about the minimal operator Λ0.

Lemma 5.3. Λ0 ⊂ Λ∗0 = Λmax, Λ∗max = Λ0.

Lemma 5.3 can be proved by arguing as in the proof of a similar statement in monograph [6].
We state the main theorem of this section.

Theorem 5.1. If assumption 1 hold, then any self-adjoint restriction Λ of operator Λmax can
be determined by k = 1, . . . , p+ 1 linear independent boundary conditions

Uk(~Y ) =

p∑
j=1

[αjkyj(1) + βjky
′
j(1)] + [αp+1,kyp+1(0) + βp+1,ky

′
p+1(0)] = 0, (5.7)

where αjk, βjk, αp+1,k, βp+1,k are some constants. Moreover

p∑
j=1

[αjkβ̄jk − ᾱjkβjk] = αp+1,kβ̄p+1,k − ᾱp+1,kβp+1,k (5.8)

for k = 1, . . . , p+ 1.
Conversely, if assumption 1 holds, any linear independent boundary conditions of form (5.7)

which satisfy relations (5.8), specify the domain of definition of some self-adjoint restriction Λ
of the operator Λmax.

An analogue of Theorem 5.1 can be found in [14].

Proof. In monograph [6] there is a similar theorem. Following monograph [6] we introduce the
functions ~V1, . . . , ~Vp+1. More precisely, ~Vk ∈ D(Λmax) with conditions

v′kj(1) = αjk, vkj(1) = −βjk for j = 1, . . . , p, (5.9)

v′k,p+1(0) = −αp+1,k, vk,p+1(0) = βp+1,k.

By Lemma 5.2 there exist such solutions. Then condition (5.7) for k = 1, . . . , p+1 has the form

Uk(~Y ) =

p∑
j=1

[yj(1)v′kj(1)− y′j(1)vkj(1)]− [yp+1(0)v′k,p+1(0)− y′p+1(0)vk,p+1(0)] = 0.

By results of monograph [6] boundary conditions (5.7) specify the domain of definition of a
self-adjoint restriction Λ of the operator Λmax. Suppose that the domain of definition of the
restriction Λ is defined by boundary conditions (5.7). Then the following equalities

Uk(~Vj) = 0, k, j = 1, . . . , p+ 1

hold. Hence, Λ is the self-adjoint restriction. The inverse statement is true. The proof of
Theorem 5.1 is complete.
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6 Well-posed restrictions of the maximal operator Λmax

In the preceding section, we gave a complete description for all self-adjoint restrictions of the
maximal operator Λmax. Now we will describe well-posed restrictions of the maximal operator
Λmax.

An operator Λ is called a well-posed restriction of the maximal operator Λmax, if the following
conditions

(i) Λ ⊂ Λmax,
(ii) ∃Λ−1 is a bounded operator in L2(=)

hold. Well-posed restrictions of various classes of differential operators have been studied in
[4, 7]. Motivated by works [4, 7], first, we need to choose some fixed well-posed restriction Λ1 of
the maximal operator Λmax. Afterwards, knowing the inverse operator Λ−1

1 , we need to describe
all well-posed restrictions.

6.1 Green function for a fixed well-posed restriction

Further, we suppose that assumption 1 holds for i = 1. By assumption 1 there exists a bounded
operator Λ−1

1 in the space L2(=) for i = 1. In this subsection we find out the structure of
the inverse operator Λ−1

1 . So, we consider operator equation Λ1
~Y = ~F for an arbitrary ~F

from L2(=). We need to express its solution ~Y = {yj(xj), xj ∈ ej, j = 1, . . . , r} ∈ D(Λ1) by
~F = {fj(xj), xj ∈ ej, j = 1, . . . , r} ∈ D(Λ1). It is well-known [6] that on the edge ej the function
yj(xj) that satisfies the equation

−y′′j (xj) + qj(xj)yj(xj) = fj(xj), xj ∈ ej

has the following representation

yj(xj) = yj(0)cj(xj) + y′j(0)sj(xj) +

∫ xj

0

g̃j(xj, t)fj(t)dt, (6.1)

where {cj(xj), sj(xj)} is the fundamental set of solutions of homogeneous equation −y′′j (xj) +
qj(xj)yj(xj) = 0 subordinated to Cauchy data s′j(0) = cj(0) = 1, sj(0) = c′j(0) = 0. In formula
(6.1) the Cauchy function g̃j(xj, t) also appears. It is defined by the formula

g̃j(xj, t) =

∣∣∣∣ cj(t) sj(t)
cj(x) sj(x)

∣∣∣∣ , t < xj.

Further, it is convenient to introduce the notation

gj(xj, t) =

{
0 for xj ≤ t < 1,

g̃j(xj, t) for 0 ≤ t < xj.

Then formula (6.1) for xj ∈ ej has the following form

yj(xj) = yj(0)cj(xj) + y′j(0)sj(xj) +

∫
ej

gj(xj, t)fj(t)dt. (6.2)

Since Λ−1
1 exists, the values yj(0) and y′j(0) can be uniquely determined by ~F . The inverse opera-

tor Λ−1
1 is linear because Λ1 is linear. Consequently, the functionals yj(0) and y′j(0) depend on ~F

linearly. From the boundedness of Λ−1
1 it follows the boundedness of the linear functionals yj(0)
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and y′j(0) in L2(=). Hence, the Riesz representation theorem on continuous linear functionals in
L2(=) implies the following statement: there exist functions ~Aj and ~Bj in L2(=) such that

yj(0) =
r∑

k=1

∫
ek

ajk(x)fk(x)dx, (6.3)

y′j(0) =
r∑

k=1

∫
ek

bjk(x)fk(x)dx.

From relations (6.2) by (6.3), it follows that

yj(xj) =
r∑

k=1

∫
ek

{ajk(t)cj(xj) + bjk(t)sj(xj)} fk(t)dt+

∫
ej

gj(xj, t)fj(t)dt. (6.4)

Thus, for fixed xj ∈ ej the right-hand side of relation (6.4) has the form of inner product of the
space L2(=). Therefore, formula (6.4) for j = 1, . . . , r can be rewritten in the form

yj(xj) =
r∑

k=1

∫
ek

djk(xj, tk)fk(tk)dtk, xj ∈ ej, (6.5)

where djk(xj, tk) is some set of functions.
So, the inverse operator Λ−1

1 is defined by formulae (6.5). The matrix D = ‖djk(xj, tk)‖ is
usually called the Green function of the operator Λ1.

Remark 2. Instead of restriction Λ1 one can choose other invertible restrictions of maximal
operator Λmax. Finally, we arrive at the following question. Which restriction has the inverse
operator to be of the simplest form? For example, the inverse operator of the restriction Λ3 ⊂
Λmax in the domain of definition

D(Λ3) = {~Y ∈ D(Λmax) : yj(1) = 0, j = 1, . . . , p− 1, yp+1(0) = y′p+1(0) = 0}

has the following form

yj(xj) =

|sj |−1∑
k=2

∫
enk,j

dnk,j(xj, t)fnk,j(t)dt, xj ∈ ej. (6.6)

Here sj = {n1j, n2j, . . . , n|sj |,j} is the path connecting the vertices 0 and j. It is clear that
n1j = 0, n2j = p + 1, . . . , n|sj |,j = j. In contrast to formula (6.5), only edges that form the
path sj appear in formula (6.6). At the same time in the right-hand side of formula (6.5) it is
essential that the graph is a tree, i.e. all the edges will participate in formula (6.6).

6.2 The description of the well-posed restrictions

In this subsection, the full description of well-posed restrictions of the operator Λmax is given by
following the scheme proposed by M. Otelbayev [4, 7].

Let ~H = {hj(xj), xj ∈ ej, j = 1, . . . , r} be an arbitrary element of the set D(Λmax). We
introduce a new function ~Z = {zj(xj), xj ∈ ej, j = 1, . . . , r} by formula (6.5)

zj(xj) =
r∑

k=1

∫
ek

djk(xj, tk) (−h′′k(tk) + qk(tk)hk(tk)) dtk, xj ∈ ej. (6.7)
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It is clear that the function ~Z has the following properties:

−z′′j (xj) + qj(xj)zj(xj) = −h′′j (xj) + qj(xj)hj(xj), xj ∈ ej, (6.8)

zp+1(0) = 0, z1(1) = z2(1) = . . . = zp(1) = 0, (6.9)
~Z ∈ D(Λ1) ⊂ D(Λmax). (6.10)

On the other hand, using Lagrange formula (4.2) to the right-hand side of relation (6.7) we
can rewrite in the following way

zj(xj) =
r∑

k=1

∫
ek

(
−d′′jk(xj, tk) + qk(tk)djk(xj, tk)

)
hk(tk)dtk

+

p∑
k=1

[−h′k(1)djk(xj, 1) + hk(1)
∂

∂tk
djk(xj, 1)]

+[h′p+1(0)dj,p+1(xj, 0)− hp+1(0)
∂

∂tp+1

dj,p+1(xj, 0)].

Hence, by (6.8) and (6.9), we have

zj(xj) = hj(xj)− hp+1(0)
∂

∂tp+1

dj,p+1(xj, 0) +

p∑
k=1

hk(1)
∂

∂tk
djk(xj, 1). (6.11)

Thus, the following statement is valid.

Lemma 6.1. Identity (6.11) holds for all functions ~H = {hj(xj), xj ∈ ej, j = 1, . . . , r} , where
~Z = Λ−1

1

(
Λmax

~H
)
.

Lemma 6.1 immediately implies the following corollary.

Corollary 6.1. The following equalities are valid

∂

∂tp+1

dp+1,p+1(xp+1, 0)|xp+1=0 = 1,

∂

∂tk
dp+1,k(xp+1, 1)|xp+1=0 = 0, k = 1, . . . , p,

∂

∂tp+1

dj,p+1(xj, 0)|xj=1 = 0,

∂

∂tk
dj,k(xj, 1)|xj=1 = δjk, k = 1, . . . , p

for j = 1, . . . , p.

It follows that firstly, identity (6.11) holds for all ~H ∈ D(Λmax), and, the function ~Z satisfies
relations (6.9).

Now, we form new functions

wj(xj) = yj(xj)− hp+1(0)
∂

∂tp+1

dj,p+1(xj, 0) +

p∑
k=1

hk(1)
∂

∂tk
djk(xj, 1), xj ∈ ej (6.12)

for j = 1, . . . , r, where ~H is an arbitrary function from D(Λmax), and yj(xj) are functions defined
by (6.5).
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Theorem 6.1. Function ~W = {wj(xj), xj ∈ ej, j = 1, . . . , r} , introduced by formula (6.12), is
the solution of the following problem

Λmax
~W = ~F , ~W ∈ D(Λmax), (6.13)

wp+1(0) = hp+1(0), wj(1) = hj(1), j = 1, . . . , r. (6.14)

Moreover, a solution to problem (6.13)-(6.14) is unique, i.e. a solution to problem (6.13)-
(6.14) depends only on the set {hp+1(0), h1(1), . . . , hp(1)}, but does not depend on the functions
hj(xj), xj ∈ ej, j = 1, . . . , r.

Proof of Theorem 6.1. Corollary 1 implies the validity of equality (6.14). To verify equality
(6.13) it is enough to recall that the Green function djk(xj, tk) is the solution to corresponding
homogeneous equation for ~X = (x1, . . . , xr) 6= ~T = (t1, . . . , tr). Assumption 1 implies the
uniqueness of a solution of problem (6.13)-(6.14) for j = 1. Thereby, the proof of Theorem 6.1
is complete.

Now we show how to construct well-posed boundary problems for the equation Λmax
~Y = ~F

by applying Theorem 6.1. It suffices to prove that ~H depends continuously on ~F in Theorem
6.1, i.e. there exists a continuous operator K mapping ~F belonging to L2(=) to ~H belonging to
D(Λmax).

So, let ~H = K ~F . Then problem (6.13)-(6.14) have the form

Λmax
~W = ~F , ~W ∈ D(Λmax), (6.15)

wj(1) =
(
KΛmax

~W
)
j
(1), j = 1, . . . , r, wp+1(0) =

(
KΛmax

~W
)
p+1

(0). (6.16)

Conditions (6.16) imposed on the functions ~W can be interpreted as additional conditions in
order for equation (6.15) to have a unique solution for any right hand side ~F . Thus, each
problem (6.15)-(6.16) present a well-posed problem with new "boundary" condition (6.16).
Thus, the next statement is true.

Theorem 6.2. For all continuous operators K mapping the space L2(=) in D(Λmax), problems
(6.15)-(6.16) have unique stable solutions for all ~F in L2(=).

The inverse statement is also true.

The restriction corresponding to the operator K from Theorem 6.2 we denote by ΛK . The-
orem 6.1 implies the proof of the direct statement of the theorem. The proof of the inverse
statement is similar to that of Theorem 5 in [2].

Example. Let K be the operator in Theorem 6.2 defined by formula(
K ~F

)
j
(xj) =

r∑
s=1

∫
es

djs(xj, ts)fs(ts)dts.

Then the well-posed restriction ΛK ⊂ Λmax corresponds to the boundary value problem, i.e. its
domain of definition is given by the following boundary conditions

D(ΛK) = {~Y ∈ D(Λmax) : Uj(~Y ) = 0, j = 1, . . . , p+ 1},

where U1(·), . . . , Up+1(·) are boundary forms defined by formulas (4.6) with some scalar coeffi-
cients.

The presented scheme of M. Otelbaev for the description of well-posed restrictions is used
for partial differential equations in works [2, 3].
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