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British Technical University, as a professor of mathematics, where he is currently working.

Stanislav Nikolayevich paid much attention to the training of young researchers. Under his
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matical modeling of phenomena in electrical contacts. Using models based on the new original
methods for solving free boundary problems he described mathematically the phenomena of
arcing, contact welding, contact floating, dynamics of contact blow-open phenomena, electro-
chemical mechanism of electron emission, arc-to-glow transition, thermal theory of the bridge
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Eurasian Mathematical Journal cordially congratulate Stanislav Nikolayevich on the occasion of
his 80th birthday and wish him good health, happiness and new achievements in mathematics
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1 Introduction

This paper studies Noethericity and index stability of linear differential operators, acting in
anisotropic Sobolev spaces on Rm.

There are some main results obtained in this research area for elliptic operators acting in
Sobolev spaces on compact manifolds. The equivalence of Noethericity and ellipticity is proved
for operators, acting in certain Sobolev spaces on smooth compact manifolds (see [1]). Their
index formula in topological terms is obtained in the work [2]. For elliptic operators in unbounded
domains Noethericity is proved for the special class of operators acting in weighted Sobolev spaces
in Rm (see [3]), and Noethericity is studied in terms of limiting operators in the work [9].

Noethericity of semi-elliptic operators with constant coefficients in Rm are studied in [5, 4, 6],
Noethericity is proved for a class of semi-elliptic operators with variable coefficients in weighted
Sobolev spaces (see [7]). A sufficient condition for index invariance on the scale of anisotropic
spaces is established in [10].

2 Basic concepts and definitions

Definition 1. A bounded linear operator A, acting from a Banach space X to a Banach space
Y is called Noetherian, if the following conditions are satisfied:

1. the image of the operator A is closed
(
Im(A) = Im(A)

)
;

2. the kernel of the operator A is finite dimensional (dimKer(A) <∞);

3. the cokernel of the operator A is finite dimensional
(dim coker(A) = dimY/Im(A) <∞).

The difference between the dimensions of the kernel and the cokernel is called the index of
the operator:

ind(A) = dimKer(A)− dim coker(A).
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Definition 2. A bounded linear operator A, acting from a Banach space X to a Banach space
Y is called a Fredholmian (F-operator) if it is a Noetherian operator with ind(A) = 0.

Definition 3. A bounded linear operator A, acting from a Banach space X to a Banach space
Y , is called normally solvable if the image of operator A is closed

(
Im(A) = Im(A)

)
.

Let N be the set of all natural numbers, m ∈ N, Zm+ – the set of all m-dimensional multi-
indices, Nm – the set of m-dimensional multi-indices with natural components, Rm – the m-
dimensional Euclidean space.

Denote

Q :=

{
g ∈ C∞ (Rm) : g(x) > 0,∀x ∈ Rm; sup

x∈Rm

|Dβg(x)|
g(x)

<∞,∀β ∈ Zm+
}
,

and

Q̃ := { g ∈ C∞ (Rm) : g(x) > 0,∀x ∈ Rm;
|Dβg(x)|
g(x)

⇒ 0 as |x| → ∞,

∀β ∈ Zm+ , β 6= 0 } .

For k ∈ Z+ and ν ∈ Nm denote

Ck,ν (Rm) := { a : Dβa ∈ C(Rm),

sup
x∈Rm

|Dβa(x)| <∞, ∀β ∈ Zm+ such that (β : ν) ≡ β1

ν1

+ · · ·+ βn
νn
≤ k } .

Definition 4. For k ∈ Z+, ν ∈ Nm denote by Hk,ν(Rm) the space of all measurable functions u
for which the norm

‖u‖k,ν =

 ∑
(α:ν)≤k

∫
|Dαu (x)|2 dx

 1
2

<∞.

Hereinafter, for ν ∈ Nm, ν1 = · · · = νm = 1 the space Hk,ν(Rm) will be denoted by Hk(Rm).

Definition 5. For k ∈ Z+, ν ∈ Nm and a positive-valued function q denote by Hk,ν
q (Rm) the

space of all measurable functions u for which the norm

‖u‖k,ν,q =

 ∑
(α:ν)≤k

∫ ∣∣Dαu (x) q(x)k−(α:ν)
∣∣2 dx

 1
2

<∞.

Definition 6. For k ∈ Z+, ν ∈ Nm and r ∈ Q denote by H̃k,ν
r (Rm) the space of all functions u

such that ru ∈ Hk,ν(Rm) equipped with the norm

‖u‖
′

k,ν,r = ‖ru‖k,ν .

Consider k, s ∈ N such that k ≥ s.
Let

P (x,D) =
∑

(α:ν)≤s

aα(x)Dα, (2.1)

where α ∈ Zm+ , ν ∈ Nm, Dα = Dα1
1 ...Dαm

m , Dj = i−1 ∂
∂xj
, x = (x1, ..., xm) ∈ Rm, aα ∈ Ck−s,ν (Rm) .
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Denote by
Ps (x,D) =

∑
(α:ν)=s

aα(x)Dα, (2.2)

the principal part of P (x,D) and by

Ps (x, ξ) =
∑

(α:ν)=s

aα(x)ξα, (2.3)

its symbol.
With the specified conditions on the coefficients of the differential form P (x,D) it originates

a bounded linear operator acting from Hk,ν(Rm) to Hk−s,ν(Rm). Notation
(
P ;Hk,ν

)
will be used

for it.
As r ∈ Q the differential form P (x,D) originates a bounded linear operator, acting from

H̃k,ν
r (Rm) to H̃k−s,ν

r (Rm). Denote it by
(
P ; H̃k,ν

r

)
.

For a positive-valued function q, such that 1
q(x)
⇒ 0 as |x| → ∞, the differential form

P (x,D) originates a bounded linear operator, acting from Hk,ν
q (Rm) to Hk−s,ν

q (Rm). Denote it
by
(
P ;Hk,ν

q

)
.

Definition 7. A differential expression P (x,D) of the form (2.1) is called semi-elliptic at a point
x = x0, if

Ps (x0, ξ) 6= 0,∀ξ ∈ Rm, |ξ| 6= 0.

Definition 8. A differential expression P (x,D) of the form (2.1) is called semi-elliptic in Rm

or just semi-elliptic, if it is semi-elliptic at each point x ∈ Rm.

3 Main results

Let r ∈ Q and Mr be the operator of multiplication by r :

Mr : H̃k,ν
r (Rm)→ Hk,ν(Rm), (Mru)(x) = r(x)u(x), ∀u ∈ H̃k,ν

r (Rm), ∀x ∈ Rm

and
M−1

r : Hk,ν(Rm)→ H̃k,ν
r (Rm), (M−1

r v)(x) =
v(x)

r(x)
, ∀v ∈ Hk,ν(Rm),∀x ∈ Rm.

Consider
Pr := MrP (x,D)M−1

r .

As sup
x∈Rm

|Dβr(x)|
r(x)

< ∞ for all β ∈ Zm+ , we get that Pr originates a bounded linear operator

acting from Hk,ν(Rm) to Hk−s,ν(Rm). Denote it by
(
Pr;H

k,ν
)
.

By considering the properties of weighted spaces and the Noethericity conditions, the follow-
ing statements can be proven.

Lemma 3.1. An operator
(
Pr;H

k,ν
)
is a Noetherian operator if and only if

(
P ; H̃k,ν

r

)
is Noethe-

rian, and the following equalities hold:

dimKer
(
Pr;H

k,ν
)

= dimKer
(
P ; H̃k,ν

r

)
,

dim coker
(
Pr;H

k,ν
)

= dim coker
(
P ; H̃k,ν

r

)
,

ind
(
Pr;H

k,ν
)

= ind
(
P ; H̃k,ν

r

)
.
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Corollary 3.1. Let r ∈ Q̃. Then an operator
(
P ;Hk,ν

)
is a Noetherian operator if and only if(

P ; H̃k,ν
r

)
is Noetherian, and the following equalities hold:

dimKer
(
P ;Hk,ν

)
= dimKer

(
P ; H̃k,ν

r

)
,

dim coker
(
P ;Hk,ν

)
= dim coker

(
P ; H̃k,ν

r

)
,

ind
(
P ;Hk,ν

)
= ind

(
P ; H̃k,ν

r

)
.

Lemma 3.2. Let q ∈ Q̃ be such that 1
q(x)
⇒ 0 as |x| → ∞. Let

(
P ;Hk,ν

)
be a Noetherian

operator and
(
P ;Hk,ν

q

)
be normally solvable. Then

(
P ;Hk,ν

q

)
is also Noetherian with

dimKer
(
P ;Hk,ν

q

)
= dimKer

(
P ;Hk,ν

)
,

dim coker
(
P ;Hk,ν

q

)
= dim coker

(
P ;Hk,ν

)
,

ind
(
P ;Hk,ν

q

)
= ind

(
P ;Hk,ν

)
.

Denote by
T (x,D) =

∑
(α:ν)<s

bα(x)Dα, (3.1)

a differential form containing only lower order terms, where the same notations are used as in
Section 2 and bα ∈ Ck−s,ν (Rm).

For a positive-valued function q such that 1
q(x)
⇒ 0 as |x| → ∞ it is easy to check that

T (x,D) originates a bounded linear operator, acting from Hk,ν
q (Rm) to Hk−s,ν

q (Rm).

Lemma 3.3. Let q ∈ Q̃ be such that 1
q(x)
⇒ 0 as |x| → ∞. Then the operator T (x,D) is a

compact operator acting from Hk,ν
q (Rm) to Hk−s,ν

q (Rm).

Denote
P̃ (x,D) = P (x,D) + T (x,D) .

Theorem 3.1. Let q ∈ Q̃ be such that 1
q(x)
⇒ 0 as |x| → ∞. Let operators

(
P ;Hk,ν

)
and(

P̃ ;Hk,ν
)
be Noetherian operators, and operator

(
P ;Hk,ν

q

)
be normally solvable. Then the fol-

lowing equality holds:
ind

(
P̃ ;Hk,ν

)
= ind

(
P ;Hk,ν

)
.

Proof. It is easy to see that Lemma 3.2 can be applied to
(
P ;Hk,ν

)
, and we get that

(
P ;Hk,ν

q

)
is also a Noetherian operator with ind

(
P ;Hk,ν

)
= ind

(
P ;Hk,ν

q

)
.

From Lemma 3.3 we have that T (x,D), acting from Hk,ν
q (Rm) to Hk−s,ν

q (Rm) is a com-

pact operator. So we have that
(
P̃ ;Hk,ν

q

)
is also a Noetherian operator and ind

(
P̃ ;Hk,ν

q

)
=

ind
(
P ;Hk,ν

q

)
(see [8] 8.5.20). Taking into consideration the Noethericity of

(
P̃ ;Hk,ν

)
Lemma

3.2 can be applied to it. So we have:

ind
(
P̃ ;Hk,ν

)
= ind

(
P̃ ;Hk,ν

q

)
= ind

(
P ;Hk,ν

q

)
= ind

(
P ;Hk,ν

)
.

Remark 1. In general, lower order terms of differential operator can affect Noethericity. In
the case, when the Noethericity is preserved, the index of an operator, perturbed by lower order
terms, can also change. Thus, the conditions in Theorem 3.1 are essential.
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The following example demonstrates it.
Let a be a positive real number. Consider the operators P1u = u′′ + au and P2u = u′′ − au

acting from H2(R1) to L2(R1). It is easy to check that P2 : H2(R1) → L2(R1) is Noetherian
with dimKer(P2) = dim coker(P2) = ind(P2) = 0 and P1 : H2(R1)→ L2(R1) is not Noetherian
(dimKer(P1) = dimKer(P ∗1 ) = 0, but Im(P1) 6= Im(P1)).

This shows that lower order terms of differential operator can affect the Noethericity.
Let δ ∈ R+. Denote rδ(x) = e−δ

√
1+x2 ∈ Q.

Consider

P1,rδu = e−δ
√

1+x2P1

(
eδ
√

1+x2u
)

= u′′ + 2δ
x√

1 + x2
u′+

+

(
δ2 x2

1 + x2
+ δ

1

(1 + x2)3/2
+ a

)
u.

It can be checked that the bounded linear operator P1,rδ : H2(R1)→ L2(R1) is a Noetherian
operator (see [9], theorem 4.1) and the following equalities hold:

Ker (P1,rδ) = Span{cos(
√
ax)e−δ

√
1+x2 ; sin(

√
ax)e−δ

√
1+x2}, dimKer (P1,rδ) = 2,

Ker
(
P ∗1,rδ

)
= {0}, dim coker (P1,rδ) = 0.

So it is obtained that ind (P1,rδ) = 2.
Thus, this example shows that lower order terms can affect the index value of Noetherian

operators, acting in Sobolev spaces of functions defined on Rm.

Remark 2. If the index value is preserved under perturbation by lower order terms of a differ-
ential operator, the dimensions of kernel and cokernel can be affected.

Consider the operator P3u = u′′ + 2−x2
√

1+x2

4(1+x2)
3
2
u, acting from H2(R1) to L2(R1). It can be

shown that P3 : H2(R1)→ L2(R1) is a Noetherian operator and

Ker (P3) = Span{e−
1
2

√
1+x2}, dimKer (P3) = dim coker (P3) = 1, so ind (P3) = 0.

For P2 : H2(R1) → L2(R1) from the previous example we have that dimKer(P2) =
dim coker(P2) = ind(P2) = 0.

So ind (P3) = ind(P2) = 0, but the dimensions of kernel and cokernel are affected by lower
order terms of differential operator.

Let
Ls (D) =

∑
(α:ν)=s

aαD
α, (3.2)

where coefficients aα are real numbers and the same notations are used as in Section 2.
Consider L(x,D) = Ls(D) + T (x,D) (see (3.1)). It generates a bounded linear operator

acting from Hk,ν(Rm) to Hk−s,ν(Rm) (it is denoted by
(
L;Hk,ν

)
). For a positive-valued function

q, which satisfies 1
q(x)
⇒ 0 as |x| → ∞, L(x,D) originates a bounded linear operator acting from

Hk,ν
q (Rm) to Hk−s,ν

q (Rm) (denoted by
(
L;Hk,ν

q

)
).

Theorem 3.2. Let q ∈ Q̃ be such that 1
q(x)
⇒ 0 as |x| → ∞. Let

(
L;Hk,ν

)
be a semi-elliptic

Noetherian operator and
(
L;Hk,ν

q

)
be normally solvable. Then

(
L;Hk,ν

)
is a Fredholmian oper-

ator.
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Proof. By applying Lemma 3.2 we have that
(
L;Hk,ν

q

)
is also a Noetherian operator and

ind
(
L;Hk,ν

)
= ind

(
L;Hk,ν

q

)
. Then due to the semi-ellipticity of L(x,D) and the fact that the

coefficients aα of its principal part are real-valued constants, there exists such c0 that L(x,D)
can be represented as

L(x,D) = L1(D) + L2(x,D),

where L1(D) = Ls(D) + c0, L
1(ξ) 6= 0, for all ξ ∈ Rm and L2(x,D) = T (x,D)− c0.

From Lemma 3.3 we get that
(
L2;Hk,ν

q

)
is a compact operator. It follows that

(
L1;Hk,ν

q

)
is a Noetherian operator and ind

(
L;Hk,ν

q

)
= ind

(
L1;Hk,ν

q

)
(see [8], 8.5.20). In [5] it is proven

that L1(D) : Hk,ν(Rm)→ Hk−s,ν(Rm) is a Noetherian operator and ind
(
L1;Hk,ν

)
= 0. Lemma

3.2 can be applied to L1(D) and we get

ind
(
L1;Hk,ν

q

)
= ind

(
L1;Hk,ν

)
= 0.

So we obtain

ind
(
L;Hk,ν

)
= ind

(
L;Hk,ν

q

)
= ind

(
L1;Hk,ν

q

)
= ind

(
L1;Hk,ν

)
= 0.
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