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nality at most λ and for any cut s there exist at most λ one-types over A that are consistent
with s. A theory is called c-o-stable if there exists an in�nite λ such that all its models are
c-o-stable in λ. In the paper, it is proved that any circularly ordered group, whose elementary
theory is c-o-stable, is Abelian.
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1 Introduction

If in a linearly ordered set N with the minimal and maximal elements we glue the minimal
element with the maximal one, we obtain a circular order, i.e. an order on a circle. So, recall
that a circular order relation on N is described as a ternary relation K satisfying the following
conditions:

(co1) ∀x∀y∀z(K(x, y, z)→ K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧K(y, x, z)⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z)→ ∀t[K(x, y, t) ∨K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨K(y, x, z)).
It is assumed that all x, y, z, t ∈ N . The pair (N,K) is called a circular ordering.
The relation K0(x, y, z) is de�ned as follows: K(x, y, z) ∧ x 6= y ∧ y 6= z ∧ z 6= x.
We say that K(u1, . . . , un) denotes a formula if all subtriples of u1, . . . , un (in increasing

order) satisfy K; likewise with K0 in place of K.
It is possible to connect linear and circular orderings as follows.

Fact 1.1. ([2], Theorem 11.9) (i) If 〈M,≤〉 is a linear ordering and K is a ternary relation
obtained from ≤ by the rule

K(x, y, z) , (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x),

then K is a circular order relation on M .
(ii) If 〈N,K〉 is a circular ordering and a ∈ N then the relation ≤a, de�ned on M := N \{a}

by the rule

y ≤a z :⇔ K(a, y, z)

is a linear ordering. Furthermore, if we extend this linear ordering to the ordering denoted by
≤′, on N , adding that a ≤′ b for all b ∈M then the derived circular order relation is the original
circular order relation K.
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A subset A of a circularly ordered structure N = 〈N,=, K, . . .〉 is said to be convex if for
any elements a and b ∈ A either any element of K(a,N, b) is contained in A or any element
of K(b,N, a) is contained in A. A maximal convex subset of a set A is said to be a convex
component of the set A.

Recall that a group G having a linear order relation < is said to be linearly ordered if for
any elements a, b and c the inequality a < b implies both ac < bc and ca < cb. We say that
a group G is linearly orderable if there exists a linear ordering of the set of elements of G with
regards to which G is a linearly ordered group. If a group G has a circular order relation K
then it is said to be circularly ordered if for any elements a, b, c and d the relation K(a, b, c)
implies both K(ad, bd, cd) and K(da, db, dc). It is easy to see that a linearly ordered group is a
circularly ordered group if a circular ordering is de�ned as in Fact 1.1.

Natural examples of cyclically ordered non-linearly ordered groups are non-zero subgroups
of the multiplicative group S1 = 〈{z ∈ C | |z| = 1}, K, ·, 1〉 of complex numbers moduluses of
which are equal to 1 containing elements of �nite order. Indeed, the multiplication in the group
is a turning of the unit circumference, and any turning cannot change a mutual location of three
elements. Since a linearly ordered group is a torsion free group, the considered groups are not
linearly orderable.

Recall that a linearly ordered structure M = 〈M,<, . . .〉 is weakly o-minimal if any para-
metrically de�nable set is a �nite union of convex sets. In [5] it had been proved that weakly
o-minimal ordered groups are Abelian and divisible.

The following notion has been introduced and originally studied in [3]. A circularly ordered
structureM = 〈M,K, . . . 〉 is weakly circularly minimal if any parametrically de�nable set is a
�nite union of convex sets. Recall that such a structureM = 〈M,K, . . . 〉 is circularly minimal
if any parametrically de�nable set is a �nite union of intervals and points [6]. Thus, the weak
circular minimality is a generalization of the circular minimality.

In [6] D. Macpherson and Ch. Steinhorn described circularly minimal circularly ordered
groups. In [3] B. Kulpeshov and D. Macpherson started studying weakly circularly minimal
circularly ordered structures. In [4] B. Kulpeshov and V. Verbovskiy proved that any weakly
circularly minimal circularly ordered group is Abelian and that they need not be divisible. Here
our aim is to study c-o-stable circularly ordered groups and to prove that they are commutative.

Let ϕ(x; y, z) , K0(y, x, z). A complete ϕ-type over a circularly ordered structure is called
a cut in this structure.

De�nition 1. A circularly ordered structure M = (M,K, . . . ) is said to be c-o-stable in a
cardinality λ if for any subset A ⊆ M with |A| ≤ λ and any cut s in M there exist at most λ
one-types over the set A which are consistent with the cut s.

A theory is c-o-stable in λ if each of its model is.
A theory is c-o-stable if there exists an in�nite cardinal λ in which the theory is c-o-stable.

This de�nition is similar to the next one.

De�nition 2. [1] A linearly ordered structure M = (M,<, . . . ) is said to be o-stable in a
cardinality λ if for any subset A ⊆ M with |A| ≤ λ and any cut s in M there exist at most λ
one-types over the set A which are consistent with the cut s.

A theory is o-stable in λ if each of its model is.
A theory is o-stable if there exists an in�nite cardinal λ in which the theory is o-stable.

These two de�nitions are partial cases of de�nition of a stable up to ∆ theory, which was
introduced in [9].

De�nition 3. [9] LetM be an arbitrary structure, A ⊆ M . Let ∆ and ∇ be sets of formulae
of the form ϕ(x; ȳ).
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1. The modelM is stable up to ∆ in (λ,∇) if for all A ⊆M with |A| ≤ λ, for any ∆-type p
over M there are at most λ ∇-types over A which are consistent with p, i.e. |S1

∇,p(A)| ≤ λ.

2. The theory T is stable up to ∆ in (λ,∇) if every model of T is. Sometimes we write that
T is (λ,∇)-stable up to ∆.

3. If ∇ = L we omit it and write that T is stable in λ or λ-stable up to ∆.

4. T is stable up to ∆ if there exists a λ in which T is stable up to ∆. We write that T is
stable up to ϕ meaning that T is stable up to ∆ = {ϕ}.

Lemma 1.1. An o-stable ordered structure is a c-o-stable circularly ordered structure under the
circular order K(x, y, z) , (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x).

Proof. LetM = (M,<, . . . ) be an o-stable in λ ordered structure.
Let sK be a cut in the sense of K, that is let sK(x) be a complete ∆-type over M , where

∆ = {K0(x, y, z)}. Note that here we use K0 because we are interested only in non-algebraic
types. Assume that for some a < b in M it holds that K0(x, b, a) ∈ sK . Then by de�nition
K0(x, b, a) is equivalent to

(x < b < a) ∨ (a < x < b) ∨ (b < a < x),

which can be reduced to a < x < b, because the other parentheses are false.
Now we de�ne a cut in the sense of ≤:

s≤(x) = {c < x, x < d : c, d ∈M, c < d, K(x, d, c) ∈ sK}

We show that s≤(x) is a complete ∆-type over M , where ∆ = {x < z, y < x}.
If c < a, then obviously c < x ∈ s≤(x). If b < c, then x < b ∈ s≤(x). Let c ∈ (a, b). By

de�nition of K0 it holds that K0(a, c, b) is true. By Axiom (co4) either K0(x, c, a) ∈ sK(x), or
K0(x, b, c) ∈ sK(x), because sK(x) is complete. Note that K0(x, c, a) is equivalent to a < x < c,
and K0(x, b, c) is equivalent to c < x < b. So, either x < c belongs to s≤(x), or c < x belongs to
s≤(x).

Moreover, s≤(x) ` sK(x) as well as sK(x) ` s≤(x). So, any one-type over a set A of cardinality
at most λ, which is consistent with sK(x), is also consistent with s≤(x). SinceM is o-stable in
λ, the cardinality of the set of all one-types over A, which are consistent with s≤(x) is at most
λ. Then (M,K, . . . ) is c-o-stable in λ.

Now assume that for any a < b the formula K0(x, b, a) does not belong to sK(x). By Axiom
(co4) K0(x, a, b) belongs to sK(x). By de�nition it is equivalent to

(x < a < b) ∨ (b < x < a) ∨ (a < b < x),

which can be reduced to (x < a) ∨ (b < x).
Now let s+(x) be the cut +∞, that is for any a ∈ M the formula a < x belongs to s+(x),

and let s−(x) be the cut −∞, that is for any a ∈M the formula x < a belongs to s−(x).
In this case the set of all realizations of sK(x) in any elementary extension is equal to the

union of the sets of all realizations of s−(x) and s+(x). Since each of s−(x) and s+(x) has at
most λ complete one-type over A which are consistent with them, so sK(x) has at most λ+λ = λ
complete one-type over A which are consistent with it, that is why (M,K, . . . ) is c-o-stable in
λ. �

The proof of the next lemma is similar to the proof of Lemma 1.1: one can easily show that
each cut in the sense of ≤ de�nes a unique cut in the set of K, so the number of types which
are consistent with a cut in the sense of ≤ is equal to the number of types which are consistent
with the corresponding cut in the sense of K.
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Lemma 1.2. Assume that M = (M,K, . . . ) is a c-o-stable circularly ordered structure. Then
for any element a ∈M the structure (M,≤, . . . ) is linearly ordered for the relation x ≤ y de�ned
by the formula K(a, x, y) and as a linearly ordered structure is o-stable. If K is also a linear
order, then (M,≤, . . . ) is o-stable.

Let T be a theory of a language L, and M ≺ N two models of T such that N is |M |+-
saturated. For any formula ϕ(x̄, ᾱ) with the parameters ᾱ in N we add a new relational symbol
Pφ(x̄,ᾱ)(x̄) interpreted by Pφ(x̄,ᾱ)(M) = φ(N, ᾱ) ∩ Mk in order to form language L∗. The set
φ(N, ᾱ) ∩Mk is said to be externally de�nable.

Fact 1.2. [8] Let T be an o-stable theory of a language L, and M ≺ N two models of T such
that N is |M |+-saturated. Then the elementary theory T ∗ of the expansionM∗ ofM is o-stable.

As a direct corollary of Lemma 1.2 and of Fact 1.2 we obtain the following theorem.

Theorem 1.1. Let T be an c-o-stable theory of a language L, and M ≺ N two models of T
such that N is |M |+-saturated. Then the elementary theory T ∗ of the expansion M∗ of M is
c-o-stable.

Since the union of an increasing chain of groups is a group, we can determine the subgroup Gc

of G as the union of all proper convex subgroups of G. Observe that the subgroup Gc is linearly
orderable. Also we can observe that the subgroup Gc is not necessarily de�nable. Indeed, take
the multiplicative group S1 of complex numbers moduluses of which are equal to 1 and realize a
type of in�nitesimal elements. Then the in�nitesimal elements will form the subgroup Gc which
obviously is not de�nable.

Fact 1.3. [4] If G = Gc then G is linearly orderable. Moreover, it will be linearly ordered by the
following ordering: x ≤ y , P (x−1y), where P (x) , K(1, x, x2).

Now we recall the basic fact on o-stable ordered groups, that they are commutative.

Fact 1.4. [8] Any ordered group, whose elementary theory is o-stable, is Abelian.

Lemma 1.3. Let G = (G,K, ·, . . . ) be a circularly ordered group, whose elementary theory is
c-o-stable. If G = Gc, then G is Abelian.

Proof. If G = Gc then by Fact 1.3 the group G is ordered relatively the relation x ≤ y ,
P (x−1y), where P (x) , K(1, x, x2). By Lemma 1.2 G is o-stable. So, by Fact 1.4 it is Abelian.
�

From now on we consider a circularly ordered group G whose elementary theory is c-o-stable.
It follows from Lemma 1.3 that if we assume that G is not Abelian then G 6= Gc, so G is not

linearly orderable and Gc is a maximal convex linearly orderable subgroup.
Let a 6∈ Gc. It is easy to see that Gc is linearly ordered by x ≤ y , K(a, x, y). So, the

elementary theory of Gc with the full induced structure is o-stable by Lemma 1.2. Then Gc is
Abelian.

We note that the property of being the maximal convex proper subgroup is preserved under
group automorphisms preserving circular ordering, so for any inner automorphism τ it holds
that τ(Gc) = Gc. Recall that τ(g) = h−1gh for some h ∈ G. So, the subgroup Gc is a normal
subgroup of G.

Now we may consider the quotient group G/Gc. Obviously, this group does not contain
non-trivial convex subgroups. The following assertion follows from the results in [7]:

Lemma 1.4. The quotient-group G/Gc as a cyclically ordered group is isomorphically embed-
ded into the multiplicative group of complex numbers moduluses of which are equal to 1. As a
corollary, it is Abelian.
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So, for the moment we have proved that G is metabelian.
Now we need some facts from [9].
Let ∆ be a family of formulae of the form ψ(x; ȳ).

De�nition 4. [9] A formula ϕ(x̄; ȳ) has the order property over B inside a partial type s(x̄) over
a set A if there are sequences ān and b̄n for n ∈ ω such that ān |= s(x̄) and b̄n ∈ B for each
n < ω and ϕ(ān, b̄m) holds if and only if n ≤ m.

A theory T has the order property in spite of ∆ if there is a model M of T and a ∆-type
s(x̄) over M such that some formula ϕ(x̄; ȳ) has the order property over M inside the type s.

Similarly one can de�ne the strict order property inside a partial type and the strict order
property in spite of ∆, the independence property inside a partial type, and the independence
order property in spite of ∆.

Fact 1.5. [9] A theory T is stable up to ∆ if and only if T does not have the order property in
spite of ∆.

In the further reasoning we shall use the following two facts from [4].

Fact 1.6. Let G be a cyclically ordered group, and the subgroup Gc is abelian. Suppose that
there are g ∈ G and a positive integer n such that gn ∈ Gc. Then the centralizer C(g) contains
Gc and, as a corollary, gkGc for any integer k.

Fact 1.7. Let G be a cyclically ordered group, and the subgroup Gc is abelian. Suppose that there
are g1, g2 ∈ G such that both g1G

c and g2G
c have a �nite order in the quotient-group G/Gc. Then

g1g2 = g2g1.

Now we prove a simple lemma.

Lemma 1.5. Let H and K ≤ G be such that some coset aH is a subset of K. Then H ≤ K.

Proof. Let aH ⊆ K and h ∈ H. Then ah and a ∈ K, so h ∈ K. �

Lemma 1.6. Let G be a circularly ordered group whose elementary theory is c-o-stable. If the
centralizer C(g) of some element g ∈ G has non-empty intersections with in�nitely many cosets
of Gc, then Gc ⊆ C(g).

Proof. Note that the element gGc of the quotient group G/Gc has the in�nite order, so without
loss of generality we may assume that there exists a sequence 〈bn : n < ω〉 of elements in C(g)
such that K(e, b0, b1, . . . , bn) holds for each n and bi 6∈ bjGc for any i < j < ω. Let the cut s(x)
be de�ned as sup{bn : n < ω} taking x ≤ y as K(e, x, y). Then in some saturated model N it
holds that:

1) if s(a) holds, then both s(ag) and s(ga) hold for any element g ∈ Gc;
2) s(N ) contains elements as from C(g) as not from C(g), because of Lemma 1.5.
Let a formula F (x, h) say that there exists an element y ∈ C(g), such that K(1, xy−1, h),

that is x ∈
⋃
y∈[1,h] yC(g).

Recall that Gc is an ordered group, where the order is de�nable by K(x, y, a) for some
a ∈ G \Gc, so we use order terminology working with Gc.

First we prove that the intersection C(g) ∩Gc is unbounded in Gc. Indeed, otherwise there
exists a positive element h ∈ Gc such that C(g) ∩ Gc ⊂ (e, h). Since Gc is ordered, so hn 6∈
C(g) ∩ Gc for any positive integer n. Then hn+1C(g) 6⊆

⋃
x∈[e,hn] xC(g). This implies that the

formula F (x, h) has the strict order property inside the cut s, for a contradiction by Fact 1.5.
Let H be the greatest convex subgroup of C(g) ∩ Gc. Recall that Gc is commutative, so it

is a normal subgroup. Consider the quotient group Gc/H. Since H is convex, we can de�ne an
order on Gc/H as aH ≤ bH if and only if a ≤ b.
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Now we de�ne the following subset A of Gc as: a ∈ A if and only if H < a and a < b for any
b ∈ C(g) ∩Gc ∩ (supH,+∞).

We claim that A/H is �nite. If it is in�nite, we may �nd an in�nite increasing sequence
〈ai : i ∈ I〉 of elements of the set A such that aiH < ajH whenever i < j. Then ajC(g) 6⊆⋃
x∈[e,ci]

xC(g) and we obtain that the formula F (x, h) has the strict order property inside the
cut s, which contradicts Fact 1.5.

Moreover, A is empty. Assume the contrary. Let the set A be not empty. Then the quotient
group G/H is discretely ordered and there are an injective homomorphism τ : Z → G/H,
such that τ(1) is the least positive coset of H, and there is a natural number n such that any
representative of τ(n) in G is in C(g).

Observe that τ(Z) is a subgroup of the center Z(G/H) of the quotient group G/H. Indeed, if
τ(1) 6∈ Z(G/H), then there is an element c ∈ G/H such that τ(1)c 6= cτ(1), say, τ(1)c < cτ(1).
Since τ(1) is positive, so c < τ(1)c < cτ(1). Eliminating c we obtain that τ(0) = c−1c <
c−1τ(1)c < τ(1), which contradicts to the fact that τ(1) is the least positive element in G/H.

Let b be a representative in G of the coset τ(1). Since b 6∈ C(g), so bg 6= gb. On the other
hand, the element bH is central in G/H. Hence, [b, g] ∈ H ≤ C(g)∩Gc. Since the subgroup Gc

is Abelian, the elements b and [b, g] commute. By easy calculations

bng= bn−1(bg) = bn−1gb[b, g] = bn−2gb[b, g]b[b, g] = bn−2gb2[b, g]2 = · · · = gbn[b, g]n,

we obtain that e = [bn, g] = [b, g]n, because the element bn ∈ C(g) as a representative in G of
the coset τ(n). This yields a contradiction, because any ordered group is torsion-free.

Since A = ∅, so C(g)/H is dense in Gc/H.
Note that in an ordered group both functions fa(x) = ax and ga(x) = xa are continuous.

Indeed, ax0ε
−1 < ax < ax0ε if and only if x0ε

−1 < x < x0ε.
Then since C(g) ∩ Gc/H is dense in Gc/H we obtain that C(g) ∩ Gc/H = Gc/H. Indeed,

Let b be an arbitrary element of Gc. Since C(g)/H is dense in Gc/H, there is a sequence {cα}
of elements from C(g)/H, which converges to bH. Recall also, that H ≤ C(g), so gH = Hg.
Then

gbH = g · lim cαH = lim gcαH = lim cαgH = lim cαHg = (lim cαH) · g = bHg = bgH.

Assume that there exists a positive element b ∈ Gc such that b 6∈ C(g). By above considera-
tion [g, b] ∈ H. Let c = [g, b]. As we did it before [g, bn] = [g, b]n = cn.

Consider the following formula: ϕ(x, g, d) , d−1 < [g, x] < d. Let f ∈ C(g) ·b, that is f = g1b
for some g1 ∈ C(g). Then

[g, f ] = [g, g1b] = g−1b−1g−1
1 gg1b = g−1b−1gb = [g, b]

because g−1
1 gg1 = g. Thus, ϕ(G, g, d) consists of cosets of C(g). It is easy to see that

C(g) · bn 6⊆ ϕ(G, g, cn) and C(g) · bn ⊆ ϕ(G, g, cn+1).

Thus we obtain the strict order property witnessed by ϕ(x; g, y) in the cut s. And this contradicts
the c-o-stability of G. �

Lemma 1.7. Let G be a circularly ordered group whose elementary theory is c-o-stable. Assume
that C(g) contains in�nitely many cosets of Gc. Then C(g) = G, that is g is central.

Proof. Assume that some element h is not in C(g). Then for any element a ∈ Gc the elements
ah and ha do not belong to C(g) by Lemma 1.6. But the quotient group G/Gc is commutative,
so hgGc = ghGc, that is c = [g, h] is in Gc and then commutes with g, because by Lemma 1.6
Gc ⊆ C(g).
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Note that

gnh = gn−1(gh) = gn−1hgc = gn−2hgcgc = gn−2hg2c2 = · · · = hgn[g, h]n

Thus, [gn, h] = [g, h]n. As in Lemma 1.6 we consider the following formula ϕ(x, g, d) , d−1 <
[g, x] < d. Recall that ϕ(G, g, d) consists of cosets of C(g). It is easy to see that

C(g) · hn 6⊆ ϕ(G, g, cn) and C(g) · hn ⊆ ϕ(G, g, cn+1).

Note that any element in G/Gc of in�nite order generates everywhere dense subgroup in
G/Gc. But in this case we obtain the strict order property inside the pre-image under the
natural homomorphism of G onto G/Gc of any cut in G/Gc, that contradicts to c-o-stability of
G. �

Theorem 1.2. Let G be a circularly ordered group whose elementary theory is c-o-stable. Then
G is Abelian.

Proof. Let a and b ∈ G. If aGc has in�nite order in Gc, then a is central by Lemma 1.7, so
ab = ba. If bGc has in�nite order in Gc, then b is central, and the elements a and b commutes.
If both aGc and bGc are of �nite order, then they commute by Fact 1.7. �
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