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1 Introduction

In the case of �nite dimensional systems H. Poincaré [4] introduced the notion of integral in-
variants and found their connection with �rst integrals of the given equations in variations,
Hamilton's equations and others. In the paper some of these questions are investigated for in�-
nite dimensional systems. The development of the qualitative theory for such systems of motion
is rather important for specialists in mathematics, mechanics, physics and is being at the initial
stage of study. Note that methods of investigation of in�nite dimensional systems have been
systematically presented in [5], [7]. In what follows we shall use notation and terminology of
[1]-[3], [6], [8].

2 Evolutionary equations and their equations in variations

Consider the system of evolutionary equations

N i (u) ≡ ∂ui

∂t
−X i (x, t, uα) = 0, (2.1)

(x, t) ∈ QT = Ω× (0, T ) , i = 1, n, |α| = 0, s,

where u (x, t) = (u1 (x, t) , u2 (x, t) , . . . , un (x, t)) is an unknown vector-function; Ω is a bounded
domain in R3 with piecewise smooth boundary ∂Ω;
X i ∈ Cs+1

(
QT × Rq

) (
i = 1, n

)
; q is the dimension of the vector {uα}, uα = Dαu, Dα =

∂|α|/ (∂x1)
α1 . . . (∂xn)αn .

Assume that there are given the boundary conditions

∂νu

∂nνx

∣∣∣∣
ΓT

= 0, ν = 0, s− 1, (2.2)

where ΓT = ∂Ω× (0, T ); nx is the unit vector of the exterior normal to ∂Ω.
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Suppose that the domain D (N) of the operator N = (N1, . . . , Nn) consists of all vector-
functions u ∈ U = (U1, ..., Un), ui ∈ U i = C1,s

t,x

(
[0, T ]× Ω

) (
i = 1, n

)
that satisfy condi-

tions (2.2).
Let

u = u (λ;x, t) , λ ∈ [0, 1] , (2.3)

be a one-parameter set of elements from D (N) continuously di�erentiable with respect to λ.
This set can be considered as a line on D (N).

Let us introduce the notation

δu =
∂u (λ;x, t)

∂λ
dλ.

Suppose that u and u+ δu are two in�nitesimally closed solutions of system (2.1).
By substituting u+ δu instead of u into (2.1) and using the equalities

X i (x, t, uα + δuα) = X i (x, t, uα) +
∂X i

∂urα
δurα + o (dλ) , i = 1, n, (2.4)

we obtain
∂δui

∂t
=
∂X i

∂urα
δurα + o (dλ) , i = 1, n.

The summation on indexes of di�erent levels is accepted.
Consider the system

∂δui

∂t
=
∂X i

∂urα
δurα, i = 1, n. (2.5)

If a particular solution u = u (x, t) of system (2.1) is known, then by substituting it into
system of di�erential equations (2.5), we obtain the system of n linear equations for �nding
δu = (δu1, . . . , δun). Such equations are called equations in variations for system of evolutionary
equations (2.1).

Let us introduce the function

ρ (t) =

√√√√∫
Ω

n∑
i=1

s∑
|α|=0

(δuiα)2 (x, t) dx

describing the measure of deviation of the basic trajectory u = u (x, t) from the trajectory with
the initial value u (x, 0) + δu (x, 0) .

3 First integrals and absolute integral invariants

Let us establish the connection between some �rst integrals of evolutionary equations (2.1) and
absolute integral invariants of the �rst order.

Let u = u (λ;x, t) ∈ D (N) be the set of all solutions to system (2.1), where λ ∈ Λ ⊂ [0,1] ;
Λ is an interval, V = C([0, T ]× Ω).

Let an operator A : D (N) → W be de�ned on D (N) and, in general, be given a local

bilinear form
T∫
0

〈·, ·〉udt : W × U → R. By a local bilinear form we mean a two-variable function

which is linear in each argument separately and depends, in general, in a non-linear way on u.
Then the integral ∫

Λ

〈A (u) , δu〉u ≡
∫
Λ

〈A (u) , ∂u/∂λ〉udλ (3.1)
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can depend on t.
De�nition 1. The integral ∫

Λ

〈A(u), δu〉u (3.2)

is called an absolute integral invariant of the �rst order of system of evolutionary equations (2.1),
if for any interval Λ ⊂ [0, 1] its value does not depend on t.

Consider the case of

〈A(u), δu〉 =

∫
Ω

ai (x, t, uα) δuidx, (3.3)

where ai ∈ Cs(QT × Rq), i = 1, n.

Theorem 3.1. The integral ∫
Λ

∫
Ω

aiδu
idx (3.4)

is an absolute integral invariant of system (2.1) if and only if the following conditions are satis-
�ed:

∂ai
∂t

+
∂ai

∂ujα
Xj
α + (−1)|α|Dα

(
aj ·

∂Xj

∂uiα

)
= 0 ∀u ∈ D (N) , i = 1, n. (3.5)

Proof. Let (3.4) be an absolute integral invariant of system (2.1). Then, bearing in mind the
arbitrariness of the interval Λ, we obtain

d

dt

∫
Ω

aiδu
idx = 0, (3.6)

where the derivatives of δui must be de�ned according to (2.5). From (3.6) we obtain∫
Ω

(
∂ai
∂t
δui +

∂ai

∂ujα
Xj
αδu

i + ai
∂X i

∂ujα
δujα

)
dx = 0. (3.7)

Integrating by parts and taking into consideration that in accordance with (2.2)

δuiα
∣∣
ΓT

= 0, i = 1, n, |α| = 0, s− 1,

we get ∫
Ω

[
∂ai
∂t

+
∂ai

∂ujα
Xj
α + (−1)|α|Dα

(
aj ·

∂Xj

∂uiα

)]
δuidx = 0. (3.8)

Since the values of δui
(
i = 1, n

)
can be arbitrary for any �xed t we come to the conclusion

that conditions (3.5) are necessary. Their su�ciency can be proved by the reverse reasoning. �
De�nition 2. The integral

F [t, u] =

∫
Ω

F (x, t, uα) dx, F ∈ Cs+1
(
QT × Rq

)
, (3.9)

is called a �rst integral of equations (2.1) under conditions (2.2), if F [t, u (x, t)] does not depend
on t, when u (x, t) is a solution to problem (2.1) - (2.2).
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Theorem 3.2. If functional (3.9) is a �rst integral of equations (2.1) under conditions (2.2),
then ∫

Λ

∫
Ω

δF

δui
δuidx (3.10)

is an absolute integral invariant of these equations, where

δF

δui
= (−1)|α|Dα

(
∂F

∂uiα

)
is the functional derivative of F with respect to ui.

Proof. We have
dF

dt

∣∣∣∣
(2.1),(2.2)

=

∫
Ω

(
∂F

∂t
+
δF

δuj
Xj

)
dx, (3.11)

where the lower index (2.1), (2.2) means the value of dF
dt

along solutions to problem (2.1)�(2.2).
It follows

δ

δui

(
dF

dt

∣∣∣∣
(2.1),(2.2)

)
=

∂

∂t

δF

δui
+ (−1)|α|Dα

[(
∂

∂uiα

δF

δuj

)
Xj

]
+

+ (−1)|α|Dα

(
δF

δuj
∂Xj

∂uiα

)
, i = 1, n. (3.12)

According to the Leibniz formula

(−1)|α|Dα

[(
∂

∂uiα

δF

δuj

)
Xj

]
=

s∑
|β|=0

(−1)|α|
(
α

β

)
Dα−β

(
∂

∂uiα

δF

δuj

)
Xj
β, (3.13)

i = 1, n.

Since the operator of the functional derivative δ
δui

is potential on the given domain D (N) with
respect to the classical bilinear form

Φ(v, g) =

T∫
0

∫
Ω

n∑
i=1

vi(x, t)gi(x, t)dxdt,

then the following conditions are satis�ed [5, p. 108]:

(−1)|α|
(
α

β

)
Dα−β

(
∂

∂uiα

δF

δuj

)
=

∂

∂ujβ

δF

δui
∀u ∈ D (N) , i, j = 1, n, |β| = 0, s. (3.14)

Taking into consideration (3.13), from (3.12) we obtain

∂

∂t

δF

δui
+

∂

∂ujα

(
δF

δui

)
Xj
α + (−1)|α|Dα

(
δF

δuj
∂Xj

∂uiα

)
= 0 ∀u ∈ D (N) , i = 1, n. (3.15)

Under ai = δF/δui (i = 1, n) these relations are the same as conditions (3.5). Thus from that
the validity of the theorem follows. �
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Theorem 3.3. If ∫
Λ

∫
Ω

δF

δui
δuidx (3.16)

is an absolute integral invariant of system (2.1), then functional of kind (3.9) is a �rst integral
of these equations under conditions (2.2).

Proof. We obtain

0 =
∂

∂t

δF

δui
+

∂

∂ujα

(
δF

δui

)
Xj
α + (−1)|α|Dα

(
δF

δuj
∂Xj

∂uiα

)
=

δ

δui

(
dF

dt

∣∣∣∣
(2.1),(2.2)

)
.

Then it follows that (see [3])
d

dt
F

∣∣∣∣
(2.1),(2.2)

=

∫
Ω

divRdx, (3.17)

where R = (R1,R2,R3) is a vector-function, depending on x, t, uα,Ri|∂Ω = 0, i = 1, 3.
From (3.17) we obtain that the functional

F1 [t, u] ≡ F [t, u]−
t∫

0

∫
Ω

divRdxdt (3.18)

which is a �rst integral of problem (2.1) - (2.2). �

4 Linear integral invariant of the �rst order

In some cases the method of construction of integral invariants can be based on the use of
Lagrangians of given systems.

Let us consider a density L = L (t, x, uα, u̇α) of the Lagrangian

L =

∫
Ω

Ldx, (4.1)

where x ∈ Ω ⊂ Rm , |α| = 0, s, ∂νu
∂nνx

∣∣∣
ΓT

= ϕν(t, x)
(
ν = 0, s− 1

)
; ϕν(t, x) are some given

functions.
Then the variation takes the form

δ

t1∫
t0

Ldt =

t1∫
t0

∫
Ω

(
∂L
∂u̇α

δu̇α +
∂L
∂uα

δuα

)
dxdt. (4.2)

Integrating by parts, from (4.2) we get

δ

t1∫
t0

Ldt =

t1∫
t0

∫
Ω

[
(−1)|α|Dα

(
∂L
∂u̇α

)
δu̇+ (−1)|α|Dα

(
∂L
∂uα

)
δu

]
dxdt =

=

t1∫
t0

∫
Ω

[
d

dt

(
δL

δu̇
· δu
)
− d

dt

(
δL

δu̇

)
· δu+

δL

δu
δu

]
dxdt,
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where (t0, t1) ⊂ (0, T ).
Consequently

δ

t1∫
t0

Ldt =

∫
Ω

δL

δu̇
δu

∣∣∣∣
t=t1

dx−
∫
Ω

δL

δu̇
δu

∣∣∣∣
t=t0

dx+

t1∫
t0

∫
Ω

(
δL

δu
− d

dt

(
δL

δu̇

))
δudxdt.

Thus, along the real trajectories we have

δ

t1∫
t0

Ldt =

∫
Ω

δL

δu̇
δu

∣∣∣∣
t=t1

dx−
∫
Ω

δL

δu̇
δu

∣∣∣∣
t=t0

dx.

Introducing the density of the generalized impulse p = δL
δu̇
, from here we obtain

δ

t1∫
t0

Ldt =

∫
Ω

pδu|t=t1 dx−
∫
Ω

pδu|t=t0 dx.

Let the initial state u0 of the given system depends on a parameter λ ∈ (λ1, λ2) and
u0 (x, λ1) = u0 (x, λ2) .

Then ∫
Λ

∫
Ω

pδu|t=t0 dx =

∫
Λ

∫
Ω

pδu|t=t1 dx.

Thus ∫
Λ

∫
Ω

pδudx (4.3)

is a �rst order linear integral invariant of the system described by Lagrangian (4.1).

5 The in�nite dimensional conservative systems

Let us consider the evolutionary problem{
N (u) ≡ ∂2u

∂t2
−K (x, uα, u̇α) = 0, u ∈ D (N) , (x, t) ∈ QT = Ω× (0, T ) ,

∂νu
∂nνx

∣∣∣
ΓT

= 0, |α| = 0, s, ν = 0, s− 1,
(5.1)

where K is a su�ciently smooth function. Suppose that there exists the energy �rst integral.

Theorem 5.1. Problem (5.1) has the �rst integral of the kind

I [u] =

∫
Ω

(
1

2
u2
t + f (x, uα)

)
dx (5.2)

if and only if K does not depend on u̇α, that is

K = K (x, uα) .

Moreover,

V [u] ≡
∫
Ω

f (x, uα)dx = −
∫
Ω

1∫
0

K (x, λuα)udλdx.
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Proof. Let u (x, t) be a solution to (5.1). Then

dI [u (x, t)]

dt

∣∣∣∣
(5.1)

=

∫
Ω

(
ut · utt +

∂f

∂uα
u̇α

)
dx

∣∣∣∣
(5.1)

=

=

∫
Ω

[
ut ·K (x, uα, u̇α) +

δV

δu
ut

]
dx =

∫
Ω

[
K (x, uα, u̇α) +

δV

δu

]
utdx ≡ 0

∀t ∈ [0, T ] .

That condition is ful�lled if and only if[
K (x, uα, u̇α) +

δV

δu

]
ut ≡ 0.

If ut is not identical zero it follows that K de�nes a potential operator [2], which does not depend
on u̇α and thus

K (x, uα) = −δV
δu

and V [u] = −
∫
Ω

1∫
0

K (x, λuα)udλdx+ const. �

Since 1
2
u2
t ≥ 0, then the inequality V [u] ≤ h is always valid in evolution.

Let us de�ne the domain of motion opportunity by

Mh = {u (x, t) ∈ D (N):V [u (x, t)] ≤ h} .

According to Theorem 5.1, equation (5.1) can be written as follows:

utt = −δV [u]

δu
. (5.3)

The critical points of the functional V - the energy potential - have the clear dynamical
sence � each of them is a state of equilibrium. The solution u ≡ u∗ is admissible if and only if
δV [u∗]
δu

= 0.
The energy value h∗ = V [u∗] corresponding to u∗ is a critical value of the functional V .
If the value of h changes, the domain Mh also changes.

6 Example

Consider the following partial di�erential equation

N (u) ≡ ∂2u

∂t2
− a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ 2k2∂u

∂t
= 0, (6.1)

describing the motion of a membrane.
Here u = u (x, y, t) is an unknown function; a, k are constants, (x, y, t) ∈ QT = (0, l1) ×

(0, l2)× (0, T ).
We set

D (N) =
{
u ∈ U = C2

(
QT

)
: u|x=0 = u|y=0 = 0, u|x=l1 = u|y=l2 = 0

}
. (6.2)
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Let us denote V = C
(
QT

)
and determine the bilinear form by setting

Φ(v, h) =

T∫
0

l2∫
0

l1∫
0

v (x, y, t) · h (x, y, t) dxdydt. (6.3)

Since the condition Φ(N ′uh, g) = Φ(N ′ug, h) ∀u ∈ D(N), ∀h, g ∈ D(N ′u) is not true, then operator
N (6.1) is not potential [2] on D (N) (6.2) with respect to bilinear form (6.3). It is easy to �nd
a variational multiplier M for equation (6.1) in the form

M = exp
(
2k2t

)
.

Then the equivalent equation
Ñ (u) ≡ e2k2t ·N (u) = 0 (6.4)

admits the variational formulation with the Hamiltonian action F [u] =
T∫
0

Ldt, with the La-

grangian

L [u] =
1

2

l2∫
0

l1∫
0

e2k2t

{(
∂u

∂t

)2

− a2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)}

dxdy. (6.5)

Introducing the density of generalized impulse

p =
δL

δut
,

we get

p = e2k2t∂u

∂t
. (6.6)

In accordance with (4.3) we obtain the following �rst order linear integral invariant

∫
Λ

l2∫
0

l1∫
0

pδudxdy

of equation (6.1).
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