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Bashkir State Pedagogical University, member of the Editorial Board
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on the occasion of his 70th birthday and wishes him good health and new achievements in
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1 Preliminaries

Hypergraphs of models of a theory are related to derivative objects allowing to obtain an essential
structural information both on theories themselves and related semantical objects including
graph ones [11, 12, 13, 1, 14, 5, 15, 6].

In the present paper, notions of relative separability for hypergraphs of models of a theory
are de�ned. Properties of these notions and applications to ordered theories are studied: char-
acterizations of relative separability both in a general case and for almost ω-categorical quite
o-minimal theories are established.

Recall that a hypergraph is a pair of sets (X, Y ), where Y is a subset of the Boolean set P(X)
of the set X.

LetM be a model of a complete theory T . Following [14], we denote by H(M) the family of
all subsets N of the universeM ofM that are universes of elementary submodels N of the model
M: H(M) = {N | N 4M, i.e. N is an elementary submodel ofM}. The pair (M,H(M)) is
called the hypergraph of elementary submodels of the modelM and denoted by H(M).

For a cardinality λ by Hλ(M) and Hλ(M) are denoted restrictions for H(M) and H(M)
respectively on the class of all elementary submodels N of modelsM such that |N | < λ.

ByHp(M) we denote the restriction of the hypergraphHω1(M) on the class of all elementary
submodels N of the modelM that are prime over �nite sets. Similarly by Hp(M), is denoted
the corresponding restriction for Hω1(M).

De�nition 1. [14, 3]. Let (X, Y ) be a hypergraph, x1, x2 be distinct elements of X. We say
that the element x1 is separated or separable from the element x2, or T0-separable if there is
y ∈ Y such that x1 ∈ y and x2 /∈ y. The elements x1 and x2 are called separable, T2-separable,
or Hausdor� separable if there are disjoint y1, y2 ∈ Y such that x1 ∈ y1 and x2 ∈ y2.

Recall that for a set A in a structure M, an element b is called algebraic (respectively,
de�nable) over A, if it satis�es M |= ϕ(b, a) ∧ ∃=nxϕ(x, a) for some formula ϕ(x, y), a ∈ A,



On relative separability in hypergraphs of models of theories 69

n ∈ ω (n = 1). The set of all algebraic (de�nable) elements over A is called the algebraic
(de�nable) closure of A and denoted by acl(A) (dcl(A)). If A = {a} the algebraic (de�nable)
closure is denoted by acl(a) (dcl(a)).

Theorem 1.1. [14]. LetM be an ω-saturated model of a countable complete theory T , a and b
be elements ofM. The following conditions are equivalent:

(1) the element a is separable from the element b in H(M);
(2) the element a is separable from the element b in Hω1(M);
(3) b /∈ acl(a).

Theorem 1.2. [14]. LetM be an ω-saturated model of a countable complete theory T , a and b
be elements ofM. The following conditions are equivalent:

(1) the elements a and b are separable in H(M);
(2) the elements a and b are separable in Hω1(M);
(3) acl(a) ∩ acl(b) = ∅.

Corollary 1.1. [14]. LetM be an ω-saturated model of a countable complete theory T , a and b be
elements ofM, and there exists a prime model over a. The following conditions are equivalent:

(1) the element a is separable from the element b in H(M);
(2) the element a is separable from the element b in Hω1(M);
(3) the element a is separable from the element b in Hp(M);
(4) b /∈ acl(a).

Corollary 1.2. [14]. Let M be an ω-saturated model of a countable complete theory T , a and
b be elements of M, and there exist prime models over a and b respectively. The following
conditions are equivalent:

(1) the elements a and b are separable in H(M);
(2) the elements a and b are separable in Hω1(M);
(3) the elements a and b are separable in Hp(M);
(4) acl(a) ∩ acl(b) = ∅.

De�nition 2. [14]. Let (X, Y ) be a hypergraph, X1, X2 be disjoint nonempty subsets of the set
X. We say that the set X1 is separated or separable from the set X2, or T0-separable if there is
y ∈ Y such that X1 ⊆ y and X2 ∩ y = ∅. The sets X1 and X2 are called separable, T2-separable,
or Hausdor� separable if there are disjunct y1, y2 ∈ Y such that X1 ⊆ y1 and X2 ⊆ y2.

By using the proofs of Theorems 1.1 and 1.2, the following generalizations of these theorems
are established.

Theorem 1.3. [14] Let M be a λ-saturated model of a complete theory T , λ ≥ max{|Σ(T )|,
ω}, A and B be nonempty sets inM having the cardinalities < λ. The following conditions are
equivalent:

(1) the set A is separable from the set B in H(M);
(2) the set A is separable from the set B in Hλ(M);
(3) acl(A) ∩B = ∅.

Theorem 1.4. [14] Let M be a λ-saturated model of a complete theory T , λ ≥ max{|Σ(T )|,
ω}, A è B be nonempty sets in M having the cardinalities < λ. The following conditions are
equivalent:

(1) the sets A and B are separable in H(M);
(2) the sets A and B are separable in Hλ(M);
(3) acl(A) ∩ acl(B) = ∅.
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Recall that a complete theory T of a countable language is said to be small if it has countably
many types over the empty set: |S(∅)| = ω.

We have by analogy with Corollaries 1.1 and 1.2

Corollary 1.3. [14]. Let M be an ω-saturated model of a small theory T , A and B be �nite
nonempty sets inM. The following conditions are equivalent:

(1) the set A is separable from the set B in H(M);
(2) the set A is separable from the set B in Hω1(M);
(3) the set A is separable from the set B in Hp(M);
(4) acl(A) ∩B = ∅.

Corollary 1.4. [14]. Let M be an ω-saturated model of a small theory T , A and B be �nite
nonempty sets inM. The following conditions are equivalent:

(1) the sets A and B are separable in H(M);
(2) the sets A and B are separable in Hω1(M);
(3) the sets A and B are separable in Hp(M);
(4) acl(A) ∩ acl(B) = ∅.

The following proposition extends Theorem 1.4 with an additional criterion.

Proposition 1.1. Let T be a theory, M |= T , ∅ 6= A ⊆ M , ∅ 6= B ⊆ M , M be |A ∪ B|+-
saturated. Then A and B are separable from each other in H(M) if and only if the following
conditions hold:

(1) acl(A) ∩ acl(B) = ∅;
(2) for any isolated type p ∈ S1(∅), p(M) \ acl(A) 6= ∅ and p(M) \ acl(B) 6= ∅.
Proof. If A and B are separable from each other in H(M) then by Theorem 1.4 we have

acl(A) ∩ acl(B) = ∅. If there is an isolated type p ∈ S1(∅) such that p(M) ⊆ acl(A) then
there is M2 ≺ M with B ⊆ M2 and p(M) ∩M2 = ∅, i.e. p is not realized in M2. Similarly,
p(M) 6⊆ acl(A).

If the conditions (1), (2) hold then A and B are separable from each other in H(M) by
Theorem 1.4. �

Recall that a subset A of a linearly ordered structure M is called convex if for any a, b ∈ A
and c ∈ M whenever a < c < b we have c ∈ A. A weakly o-minimal structure is a linearly
ordered structure M = 〈M,=, <, . . .〉 such that any de�nable (with parameters) subset of the
structure M is a union of �nitely many convex sets in M .

In the following de�nitions M is a weakly o-minimal structure, A,B ⊆ M , M be |A|+-
saturated, p, q ∈ S1(A) be non-algebraic types.

De�nition 3. [2] We say that p is not weakly orthogonal to q (p 6⊥w q) if there exist an A-de�nable
formula H(x, y), α ∈ p(M) and β1, β2 ∈ q(M) such that β1 ∈ H(M,α) and β2 6∈ H(M,α).

De�nition 4. [8] We say that p is not quite orthogonal to q (p 6⊥q q) if there exists an A-de�nable
bijection f : p(M) → q(M). We say that a weakly o-minimal theory is quite o-minimal if the
notions of weak and quite orthogonality of 1-types coincide.

In the work [9] the countable spectrum for quite o-minimal theories with non-maximal number
of countable models has been described:

Theorem 1.5. Let T be a quite o-minimal theory with non-maximal number of countable models.
Then T has exactly 3k · 6s countable models, where k and s are natural numbers. Moreover, for
any k, s ∈ ω there exists a quite o-minimal theory T having exactly 3k · 6s countable models.

Realizations of these theories with a �nite number of countable models are natural generali-
zations of Ehrenfeucht examples obtained by expansions of dense linear orderings by a countable
set of constants, and they are called theories of Ehrenfeucht type. Moreover, these realizations
are representative examples for hypergraphs of prime models [11, 13, 14].
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2 Relative separability in hypergraphs of models of theories

Observe that since by Theorem 1.4 and Corollary 1.4 separability of sets A and B in hypergraphs
H(M) is possible only when acl(A)∩acl(B) = ∅, such a separability doesn't hold when acl(∅) 6=
∅. Thus, it is natural to consider the following notions of relative separability.

De�nition 5. Let (X, Y ) be a hypergraph, x1, x2 be distinct elements of X, Z ⊂ X, x2 /∈ Z. We
say that the element x1 is Z-separated or Z-separable from the element x2, or (T0, Z)-separable
if there is y ∈ Y such that x1 ∈ y ∪ Z and x2 /∈ y. In this case the set y is called Z-separating
x1 from x2. At the additional condition x1 /∈ Z the elements x1 and x2 are called Z-separable,
(T2, Z)-separable, or Hausdor� Z-separable if there are y1, y2 ∈ Y such that (y1 ∩ y2) \ Z = ∅,
x1 ∈ y1 and x2 ∈ y2.

Let X1, X2 be nonempty subsets of the set X, (X1 ∩X2) \ Z = ∅, X2 6⊆ Z. We say that the
set X1 is Z-separated or Z-separable from the set X2, or (T0, Z)-separable if there is y ∈ Y such
that X1 ⊆ y ∪Z and (X2 ∩ y) \Z = ∅. At the additional condition X1 6⊆ Z the sets X1 and X2

are called Z-separable, (T2, Z)-separable, or Hausdor� Z-separable if there are y1, y2 ∈ Y such
that (y1 ∩ y2) \ Z = ∅, X1 ⊆ y1 ∪ Z and X2 ⊆ y2 ∪ Z.

Note 2.1. 1. The notions of separability given in Section 1 correspond to Z-separability for
Z = ∅, X1 6= ∅, X2 6= ∅.

2. If X2 ⊆ Z then the set X2 can also be assumed Z-separable from X1, although there is
no reason to say on real separability of elements of the set X2 from X1.

For a tuple ā and a set Z we denote by āZ the union of the set Z with the set of all elements
contained in ā.

The following theorem modi�es Theorem 1.1, and it is a generalization of the theorem for
acl(∅) = ∅.

Theorem 2.1. Let M be an ω-saturated model of a countable complete theory T , Z be the
algebraic closure of some �nite set in M, a and b be elements of M, b /∈ Z. The following
conditions are equivalent:

(1) the element a is Z-separable from the element b in H(M) by some set y from H(M)
containing Z;

(2) the element a is Z-separable from the element b in Hω1(M) by some set y from Hω1(M)
containing Z;

(3) b /∈ acl(aZ).

Proof. The implications (2) ⇒ (1) and (1) ⇒ (3) are obvious (clearly, if b ∈ acl(Z ∪ {a})
then b belongs to any model N 4M containing Z ∪ {a}).

To prove the implication (3)⇒ (2) we need the following lemma.

Lemma 2.1. Let ā be a tuple, B be a �nite set for which (acl(āZ)∩B) \Z = ∅, and ϕ(x, ā) be
some consistent formula. Then there is an element c ∈ ϕ(M, ā) such that (acl(ācZ)∩B)\Z = ∅.

Proof. If ϕ(M, ā)∩Z 6= ∅ then there is nothing to prove since as c we can take an arbitrary
element of ϕ(M, ā) ∩ Z.

Suppose that ϕ(M, ā)∩Z = ∅. By compactness and using consistent formulas ϕ′(x, ā) with
the condition ϕ′(x, ā) ` ϕ(x, ā) instead of ϕ(x, ā), it su�ces to prove that for any d ∈ B \Z and
a �nite set of formulas ψ1(x, ā, y), . . . , ψn(x, ā, y) with the condition

ψi(x, ā, y) ` ϕ′(x, ā) ∧ ∀x
(
ϕ′(x, ā)→ ∃=kiyψi(x, ā, y)

)
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for some natural ki, i = 1, . . . , n, there is an element c ∈ ϕ′(M, ā) such that

|=
n∧
i=1

¬ψi(c, ā, d).

Assume to the contrary that for any c ∈ ϕ′(M, ā) there is i such that |= ψi(c, ā, d). Then

the formula χ(x, ā, y)

n∨
i=1

ψi(x, ā, y) satis�es the following condition: for any c ∈ ϕ′(M, ā), |=

χ(c, ā, d) and χ(c, ā, y) has �nitely many, no more thanm = k1+. . .+kn solutions. Consequently,
the formula

θ(ā, y)
 ∃x(χ(x, ā, y) ∧ ∀z((ϕ′(z, ā)→ (χ(x, ā, y) ∧ χ(z, ā, y)))

satis�es d and has no more than m solutions.
This fact contradicts the condition d /∈ acl(āZ). �

Continuation of the proof of Theorem 2.1.
Assuming that b /∈ acl(aZ), we construct by induction a countable model N 4M such that

acl(aZ) ⊂ N , b /∈ N , and N =
⋃
n∈ω

An for a chain of some sets An.

In the initial step we consider the set A0 = acl(aZ) and renumber all consistent formulas
of the form ϕ(x, ā), ā ∈ A0: Φ0 = {ϕ0,m(x, ām) | m ∈ ω}. According to this numeration we
construct at most a countable set A1 =

⋃
m∈ω∪{−1}

A1,m ⊃ A0 with the condition b /∈ acl(A1).

Let A1,−1 
 A0. If the set A1,m−1 had been already de�ned and ϕ0,m(M, ām) ∩ A1,m−1 6= ∅
then we put A1,m 
 A1,m−1; if ϕ0,m(M, ām) ∩ A1,m−1 = ∅ we choose by Lemma 2.1 an element
cm ∈ ϕm(M, ām) such that b /∈ acl(cmA1,m−1), and put A1,m 
 acl(cmA1,m−1).

If at most a countable set An had been already constructed, we renumber all consistent
formulas of the form ϕ(x, ā), ā ∈ An: Φn = {ϕn,m(x, ām) | m ∈ ω}. According to this enu-
meration we construct at most a countable set An+1 =

⋃
m∈ω∪{−1}

An+1,m ⊃ An with the con-

dition b /∈ acl(An+1). Let An+1,−1 
 An. If the set An+1,m−1 had been already de�ned and
ϕn,m(M, ām) ∩ An+1,m−1 6= ∅ then put An+1,m 
 An+1,m−1; if ϕn,m(M, ām) ∩ An+1,m−1 = ∅,
we choose by Lemma 2.1 an element cm ∈ ϕn,m(M, ām) such that b /∈ acl(cmAn+1,m−1) and put
An+1,m 
 acl(cmAn+1,m−1).

By constructing the set
⋃
n∈ω

An forms a required universe N of a countable model N 4M

such that acl(Z ∪ {a}) ⊆ N and b /∈ N . �

Applying Lemma 2.1, we obtain the following lemma.

Lemma 2.2. Let M be an ω-saturated model of a complete theory T , ā, b̄ ∈ M , Z be the
algebraic closure of some �nite set in M. If (acl(āZ) ∩ acl(b̄Z)) \ Z = ∅ and ϕ(x, ā′) is a
consistent formula, ā′ ∈ āZ, then there is c ∈ ϕ(M, ā′) such that (acl(ācZ) ∩ acl(b̄Z)) \ Z = ∅.

Theorem 2.2. Let M be an ω-saturated model of a countable complete theory T , Z be the
algebraic closure of some �nite set in M, a and b be elements of M, a, b /∈ Z. The following
conditions are equivalent:

(1) the elements a and b are Z-separable in H(M) by some sets y and z from H(M) con-
taining Z;

(2) the elements a and b are Z-separable in Hω1(M) by some sets y and z from Hω1(M)
containing Z;

(3) (acl(aZ) ∩ acl(bZ)) \ Z = ∅.
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Proof. As in the proof of Theorem 2.1 it su�ces to prove the implication (3)⇒ (2). Assuming
(acl(aZ)∩acl(bZ))\Z = ∅, we construct by induction countable models Na,Nb 4M such that
acl(aZ) ⊆ Na, acl(bZ) ⊆ Nb, (Na ∩ Nb) \ Z = ∅, Na =

⋃
n∈ω

An for a chain of some sets An and

Nb =
⋃
n∈ω

Bn for a chain of some sets Bn.

In the initial step we consider the sets A0 = acl(aZ), B0 = acl(bZ) and enumerate all
consistent formulas of the form ϕ(x, ā), ā ∈ A0: Φ0 = {ϕ0,m(x, ām) | m ∈ ω}. According to this
enumeration we construct at most a countable set A1 =

⋃
m∈ω∪{−1}

A1,m ⊃ A0 with the condition

(acl(A1) ∩ B0) \ Z = ∅. Let A1,−1 
 A0. If the set A1,m−1 had been already de�ned and
ϕ0,m(M, ām) ∩ A1,m−1 6= ∅, then put A1,m 
 A1,m−1; if ϕ0,m(M, ām) ∩ A1,m−1 = ∅ then by
Lemma 2.2 we choose an element cm ∈ ϕm(M, ām) such that (acl(cmA1,m−1)∩ acl(B0)) \Z = ∅
and put A1,m 
 acl(cmA1,m−1).

If the set A1 had been already de�ned, we extend symmetrically the set B0 to an algebraically
closed set B1 such that B1 ⊇ Z, all consistent formulas ϕ(x, b̄), b̄ ∈ B0, are realized in B1 è
(acl(A1) ∩ acl(B1)) \ Z = ∅.

If at most countable sets An and Bn had been already constructed, we renumber all con-
sistent formulas of the form ϕ(x, ā), ā ∈ An: Φn = {ϕn,m(x, ām) | m ∈ ω}. According to
this numeration we construct at most a countable set An+1 =

⋃
m∈ω∪{−1}

An+1,m ⊃ An with

the condition (acl(An+1) ∩ acl(B1)) \ Z = ∅. Let An+1,−1 
 An. If the set An+1,m−1 had
been already de�ned and ϕ0,m(M, ām) ∩ An+1,m−1 6= ∅, then put An+1,m 
 An+1,m−1; if
ϕ0,m(M, ām) ∩ An+1,m−1 = ∅, then by Lemma 2.2 we choose an element cm ∈ ϕn,m(M, ām)
such that (acl(cmAn+1,m−1) ∩ acl(Bn)) \ Z = ∅, and put An+1,m 
 An+1,m−1 ∪ {cm}.

If we have the set An+1 then we extend symmetrically the set Bn to at most a countable
set Bn+1 such that all consistent formulas ϕ(x, b̄), b̄ ∈ Bn, are realized in Bn+1 è (acl(An+1) ∩
acl(Bn+1)) \ Z = ∅.

By constructing the sets
⋃
n∈ω

An and
⋃
n∈ω

Bn we form required universes Na and Nb respectively

of Z-separable countable models Na,Nb 4M such that a ∈ Na and b ∈ Nb. �
Combining the proofs of Claims 1.1�1.4 and Theorems 2.1, 2.2, we obtain the following

assertions.

Corollary 2.1. LetM be an ω-saturated model of a small theory T , Z be the algebraic closure
of some �nite set in M, a and b be elements of M, a, b /∈ Z. The following conditions are
equivalent:

(1) the element a is Z-separable from the element b in H(M) by some set y from H(M)
containing Z;

(2) the element a is Z-separable from the element b in Hω1(M) by some set y from Hω1(M)
containing Z;

(3) the element a is Z-separable from the element b in Hp(M) by some set y from Hp(M)
containing Z;

(4) b /∈ acl(aZ).

Corollary 2.2. LetM be an ω-saturated model of a small theory T , Z be the algebraic closure
of some �nite set in M, a and b be elements of M, a, b /∈ Z. The following conditions are
equivalent:

(1) the elements a and b are Z-separable in H(M) by some sets y and z from H(M) con-
taining Z;

(2) the elements a and b are Z-separable in Hω1(M) by some sets y and z from Hω1(M)
containing Z;
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(3) the elements a and b are separable in Hp(M) by some sets y and z from Hp(M) containing
Z;

(4) (acl(aZ) ∩ acl(bZ)) \ Z = ∅.

Theorem 2.3. LetM be a λ-saturated model of a complete theory T , λ ≥ max{|Σ(T )|, ω}, A
and B be nonempty sets in M having cardinalities < λ, Z be the algebraic closure of some set
of cardinality < λ inM. The following conditions are equivalent:

(1) the set A is Z-separable from the set B in H(M) by some set y from H(M) containing
Z;

(2) the set A is Z-separable from the set B in Hλ(M) by some set y from Hλ(M) containing
Z;

(3) (acl(A ∪ Z) ∩B) \ Z = ∅.

Theorem 2.4. LetM be a λ-saturated model of a complete theory T , λ ≥ max{|Σ(T )|, ω}, A
and B be nonempty sets in M having cardinalities < λ, Z be the algebraic closure of some set
of cardinality < λ inM. The following conditions are equivalent:

(1) the sets A and B are Z-separable in H(M) by some sets y and z from H(M) containing
Z;

(2) the sets A and B are Z-separable in Hλ(M) by some sets y and z from Hλ(M) containing
Z;

(3) (acl(A ∪ Z) ∩ acl(B ∪ Z)) \ Z = ∅.

Corollary 2.3. LetM be an ω-saturated model of a small theory T , A and B be �nite nonempty
sets in M, Z be the algebraic closure of some �nite set in M. The following conditions are
equivalent:

(1) the set A is Z-separable from the set B in H(M) by some set y from H(M) containing
Z;

(2) the set A is Z-separable from the set B in Hω1(M) by some set y from Hω1(M) containing
Z;

(3) the set A is Z-separable from the set B in Hp(M) by some set y from Hp(M) containing
Z;

(4) (acl(A ∪ Z) ∩B) \ Z = ∅.

Corollary 2.4. LetM be an ω-saturated model of a small theory T , A and B be �nite nonempty
sets in M, Z be the algebraic closure of some �nite set in M. The following conditions are
equivalent:

(1) the sets A and B are Z-separable in H(M) by some sets y and z from H(M) containing
Z;

(2) the sets A and B are Z-separable in Hω1(M) by some sets y and z from Hω1(M) con-
taining Z;

(3) the sets A and B are Z-separable in Hp(M) by some sets y and z from Hp(M) containing
Z;

(4) (acl(A ∪ Z) ∩ acl(B ∪ Z)) \ Z = ∅.

3 On separability in hypergraphs of models of ordered theories

De�nition 6. [11, 4] Let p1(x1), . . . , pn(xn) ∈ S1(T ). A type q(x1, . . . , xn) ∈ S(T ) is called

(p1, . . . , pn)-type if q(x1, . . . , xn) ⊇
n⋃
i=1

pi(xi). The set of all (p1, . . . , pn)-types of a theory T

is denoted by Sp1,...,pn(T ). A countable theory T is called almost ω-categorical if for any types
p1(x1), . . . , pn(xn) ∈ S(T ) there exist only �nitely many types q(x1, . . . , xn) ∈ Sp1,...,pn(T ).
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Theorem 3.1. Let T be an almost ω-categorical quite o-minimal theory, M be an ω-saturated
model of the theory T , Z be the algebraic closure of some �nite set in M, a, b ∈ M \ Z. Then
the following conditions are equivalent:

(1) a is Z-separable from b in H(M) by some set y from H(M) containing Z;
(2) b is Z-separable from a in H(M) by some set y from H(M) containing Z;
(3) the elements a and b are Z-separable in H(M) by some sets y and z from H(M) con-

taining Z;
(4) a 6∈ dcl({bZ});
(5) b 6∈ dcl({aZ}).
(6) (dcl(aZ) ∩ dcl(bZ)) \ Z = ∅.

Proof. By Proposition 3.9 [7] Exchange Principle for the algebraic closure of any set holds.
By the linear ordering of the modelM dcl(A) = acl(A) for any A ⊆ M . Then by the proofs of
Theorems 2.1 and 2.2 we have an equivalence of the conditions (1)�(6). �

Note 3.1. 1. Theorem 3.1 remains true for an arbitrary theory satisfying both Exchange
Principle for algebraic closures and the condition dcl(A) = acl(A) for any A ⊆M .

2. If Exchange Principle for algebraic closures holds and the condition dcl(A) = acl(A) for
any A ⊆M does not hold, Theorem 3.1 remains true if we replace dcl by acl.

3. If the condition dcl(A) = acl(A) for any A ⊆ M holds and Exchange Principle for
algebraic closures does not hold, Theorem 3.1 splits into three independent statements (1)⇔ (5),
(2)⇔ (4), (3)⇔ (6).

Theorem 3.1 immediately implies the following

Corollary 3.1. Let T be an almost ω-categorical quite o-minimal theory,M be an ω-saturated
model of the theory T , a, b ∈M \ dcl(∅). Then the following conditions are equivalent:

(1) a is separable from b in H(M);
(2) b is separable from a in H(M);
(3) a 6∈ dcl({b});
(4) b 6∈ dcl({a}).

Example 1. [10] Let M = 〈M ;<,P 1
1 , P

1
2 , f

1〉 be a linearly ordered structure such that M is
the disjoint union of interpretations of unary predicates P1 and P2 so that P1(M) < P2(M).
We identify an interpretation of P2 with the set of rational numbers Q, ordered as usual, and P1

with Q×Q, ordered lexicographically. The symbol f is interpreted by a partial unary function
with Dom(f) = P1(M) and Range(f) = P2(M) and is de�ned by the equality f((n,m)) = n
for all (n,m) ∈ Q×Q.

It is known that M is a countably categorical weakly o-minimal structure, and Th(M) is
not quite o-minimal. Take arbitrary a ∈ P1(M), b ∈ P2(M) such that f(a) = b. Then we obtain
that a is separable from b in H(M), but b is not separable from a in H(M).

Proposition 3.1. Let T be an almost ω-categorical quite o-minimal theory, M |= T , A =
{a1, . . . , an1}, B = {b1, . . . , bn2} ⊆M for some positive n1, n2 < ω. Then the following conditions
are equivalent:

(1) A and B are separable from each other in H(M);
(2) dcl(A) ∩ dcl(B) = ∅.
(3) dcl({ai}) ∩ dcl({bj}) = ∅ for any 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Proof. (1) ⇒ (2) Let A be separable from B in H(M). This means that there isM1 ≺ M
such that A ⊆ M1 and B ∩ M1 = ∅. Then we have: dcl(A) ⊆ M1, hence we obtain that
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dcl(A) ∩ B = ∅. Similarly, by the condition of separability of B from A in H(M) it can be
established that dcl(B) ∩ A = ∅.

Assume to the contrary that dcl(A) ∩ dcl(B) 6= ∅. Consequently, there is c ∈ M such that
c ∈ dcl(A) and c ∈ dcl(B). But then by the binarity of Th(M) there exist a ∈ A and b ∈ B
such that c ∈ dcl({a}) and c ∈ dcl({b}). By holding Exchange Principle for algebraic closures
we obtain that b ∈ dcl({a}). This contradicts the condition dcl(A) ∩B = ∅.

(2)⇒ (1) In this case we assert that M1 := M \ dcl(A) and M2 := M \ dcl(B) are universes
of elementary submodels of the modelM.

(2)⇔ (3) By binarity of Th(M). �

Proposition 3.2. Let T be an almost ω-categorical quite o-minimal theory,M |= T , Z = dcl(∅),
A = {a1, . . . , an1}, B = {b1, . . . , bn2} ⊆M for some positive n1, n2 < ω so that A∩Z = B∩Z = ∅.
Then the following conditions are equivalent:

(1) A and B are Z-separable in H(M);
(2) dcl(A) ∩ dcl(B) = Z.
(3) dcl({ai}) ∩ dcl({bj}) = Z for any 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Proof. (1) ⇒ (2) Let A and B be Z-separable in H(M). Then there exist M1,M2 ≺ M
such that (M1∩M2)\Z = ∅, A ⊆M1 and B ⊆M2. Consequently, dcl(A)∩dcl(B) ⊆M1∩M2.
Then [dcl(A) ∩ dcl(B)] \ Z = ∅, hence dcl(A) ∩ dcl(B) = Z.

(2)⇒ (1) In this case we assert that M1 := [M \ dcl(A)]∪Z and M2 := [M \ dcl(B)]∪Z are
universes of elementary submodels of the modelM. �

The arguments for Propositions 1.1 and 3.1 imply the following

Proposition 3.3. Let T be an almost ω-categorical quite o-minimal theory,M |= T , ∅ 6= A,B ⊆
M , M be |A ∪ B|+-saturated. Then A and B are separable from each other in H(M) if and
only if the following conditions hold:

(1) dcl({a}) ∩ dcl({b}) = ∅ for any a ∈ A and b ∈ B;
(2) for any isolated type p ∈ S1(∅), p(M) \ dcl(A) 6= ∅ and p(M) \ dcl(B) 6= ∅.

Corollary 3.2. Let T be an almost ω-categorical quite o-minimal theory,M |= T , Z = dcl(∅),
A,B be non-empty subsets of M such that A∩Z = B ∩Z = ∅,M be |A∪B|+-saturated. Then
A and B are Z-separable in H(M) if and only if the following conditions hold:

(1) dcl({a}) ∩ dcl({b}) = Z for any a ∈ A and b ∈ B;
(2) for any isolated type p ∈ S1(∅), p(M) \ dcl(A) 6= ∅ and p(M) \ dcl(B) 6= ∅.

The arguments for Propositions 1.1 and 3.1 as well as Theorem 2.4 imply the following

Proposition 3.4. Let T be an almost ω-categorical quite o-minimal theory, M |= T be λ-
saturated, λ ≥ max{|Σ(T )|, ω}, A and B be nonempty sets in M having cardinalities < λ, Z
be the algebraic closure of some set of cardinality < λ inM. Then the following conditions are
equivalent:

(1) A and B are Z-separable in H(M);
(2) (dcl(aZ) ∩ dcl(bZ)) \ Z = ∅ for any a ∈ A and b ∈ B.
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