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1 Introduction

Motivated by the recent developments of the theory and applications of time scales, we will prove
some results on time scales. The calculus of time scales was introduced by Stefan Hilger [9]. A
time scale is an arbitrary nonempty closed subset of R of all real numbers. The theory of time
scales calculus is applied to harmonize results in one comprehensive form. The three most popular
examples of calculus on time scales are differential calculus, difference calculus, and quantum calculus,
i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. The three popular branches
of time scales calculus are delta calculus, nabla calculus and diamond-α calculus. Many dynamic
inequalities (see [1, 4, 6, 12, 13, 14, 15]) have been investigated by using this hybrid theory. Basic
work on dynamic inequalities is done by Agarwal, Anastassiou, Bohner, Peterson, O’Regan, Saker
and several other authors.

In this paper, it is assumed that all integrals exist and are finite and T is a time scale, a, b ∈ T
with a < b and an interval [a, b]T means the intersection of the interval [a, b] the given time scale.

2 Preliminaries

We present basic concepts of delta calculus. The results of delta calculus are taken from monographs
[4, 5].

For t ∈ T, the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.

The mapping µ : T → R+
0 = [0,+∞) such that µ(t) := σ(t) − t is called the forward graininess

function. The backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.
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The mapping ν : T → R+
0 = [0,+∞) such that ν(t) := t − ρ(t) is called the backward graininess

function. If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered.
Also, if t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then t is
called left-dense. If T has a left-scattered maximum M , then Tk = T− {M}, otherwise Tk = T.

For a function f : T→ R, the delta derivative f∆ is defined as follows:
Let t ∈ Tk. If there exists f∆(t) ∈ R, such that for all ε > 0, there is a neighborhood U of t, such

that
|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called the delta derivative of
f at t.

A function f : T → R is said to be right-dense continuous (rd-continuous), if it is continuous at
each right-dense point and there exists a finite left-sided limit at every left-dense point. The set of
all rd-continuous functions is denoted by Crd(T,R).

The next definition is given in [4, 5].

Definition 1. A function F : T → R is called a delta antiderivative of f : T → R, provided that
F∆(t) = f(t) holds for all t ∈ Tk. Then the delta integral of f is defined by∫ b

a

f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [2, 4, 5].
If T has a right-scattered minimum m, then Tk = T−{m}, otherwise Tk = T and Tkk = Tk ∩Tk.

A function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivative f∇(t), if there
exists f∇(t) ∈ R, such that for all ε > 0, there is a neighborhood V of t, such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,

for all s ∈ V .
A function f : T→ R is said to be left-dense continuous (ld-continuous), provided it is continuous

at all left-dense points in T and its right-sided limits exist (finite) at all right-dense points in T. The
set of all ld-continuous functions is denoted by Cld(T,R).

The next definition is given in [2, 4, 5].

Definition 2. A function G : T → R is called a nabla antiderivative of g : T → R, provided that
G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla integral of g is defined by∫ b

a

g(t)∇t = G(b)−G(a).

Next, we present an introduction to the diamond-α derivative, see [1, 16].

Definition 3. Let T be a time scale and f(t) be differentiable on T in the ∆ and ∇ senses. For
t ∈ T, the diamond-α dynamic derivative f �α(t) is defined by

f �α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

Thus f is diamond-α differentiable if and only if f is ∆ and ∇ differentiable.

The diamond-α derivative reduces to the standard ∆-derivative for α = 1, or the standard ∇-
derivative for α = 0. It represents a weighted dynamic derivative for α ∈ (0, 1).
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Theorem 2.1 (See [16]). Let f, g : T → R be diamond-α differentiable at t ∈ T and we write
fσ(t) = f(σ(t)), gσ(t) = g(σ(t)), fρ(t) = f(ρ(t)) and gρ(t) = g(ρ(t)). Then

(i) f ± g : T→ R is diamond-α differentiable at t ∈ T, with

(f ± g)�α(t) = f �α(t)± g�α(t).

(ii) fg : T→ R is diamond-α differentiable at t ∈ T, with

(fg)�α(t) = f �α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t).

(iii) For g(t)gσ(t)gρ(t) 6= 0, f
g

: T→ R is diamond-α differentiable at t ∈ T, with(
f

g

)�α
(t) =

f �α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)fρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.

Definition 4 (See [16]). Let a, t ∈ T and h : T→ R. Then the diamond-α integral from a to t of h
is defined by ∫ t

a

h(s) �α s = α

∫ t

a

h(s)∆s+ (1− α)

∫ t

a

h(s)∇s, 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 2.2 (See [16]). Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s) are �α-integrable
functions on [a, b]T. Then

(i)
∫ t
a
[f(s)± g(s)] �α s =

∫ t
a
f(s) �α s±

∫ t
a
g(s) �α s;

(ii)
∫ t
a
cf(s) �α s = c

∫ t
a
f(s) �α s;

(iii)
∫ t
a
f(s) �α s = −

∫ a
t
f(s) �α s;

(iv)
∫ t
a
f(s) �α s =

∫ b
a
f(s) �α s+

∫ t
b
f(s) �α s;

(v)
∫ a
a
f(s) �α s = 0.

We also consider Kantorovich’s ratio defined by

K(h) :=
(h+ 1)2

4h
, h > 0.

The function K is decreasing on (0, 1) and increasing on [1,+∞), K(h) ≥ 1 for any h > 0 and
K(h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement of Young’s inequality [20] in terms of Kantorovich’s ratio
holds

Kη
(a
b

)
a

1
p b

1
q ≤ a

p
+
b

q
(2.1)

for a, b > 0, 1
p

+ 1
q

= 1 with p > 1 and η = min
{

1
p
, 1
q

}
.

Specht’s ratio [7, 17] is defined by

S(h) =
h

1
h−1

e log h
1

h−1

(h > 0, h 6= 1).

We present here some properties of Specht’s ratio. See [7, 17, 18] for the proof and details:
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(i) S(1) = 1 and S(h) = S
(

1
h

)
> 1 for all h > 0.

(ii) S(h) is a monotone increasing function on (1,+∞) and monotone decreasing function on (0, 1).

The following inequality is due to Furuichi [8] and provides a refinement for Young’s inequality

S
((a

b

)η)
a

1
p b

1
q ≤ a

p
+
b

q
(2.2)

for a, b > 0, 1
p

+ 1
q

= 1 with p > 1 and η = min
{

1
p
, 1
q

}
.

3 Main results

In this section, we give the following extension of reverse Radon’s inequality on time scales.

Theorem 3.1. Let w, f, g ∈ C ([a, b]T,R \ {0}) be �α-integrable functions. If β > 0, γ ≥ 1 and

0 < m ≤
(
|f(x)|
|g(x)|

)β+γ

≤M <∞ on the set [a, b]T, then

∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x ≤

(
M

m

)β+γ−1
β+γ

(∫ b
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
a
|w(x)||g(x)|γ �α x

)β+γ−1
. (3.1)

Proof. Let p = β + γ and q = β+γ
β+γ−1

. Consider the conditions 0 < m ≤ |f(x)|p
|g(x)|q ≤M , therefore

|g(x)| ≥M− 1
q |f(x)|

p
q ⇒ |f(x)g(x)| ≥M− 1

q |f(x)|p, ∀x ∈ [a, b]T.

Thus, we have (∫ b

a

|w(x)||f(x)g(x)| �α x
) 1

p

≥M− 1
pq

(∫ b

a

|w(x)||f(x)|p �α x
) 1

p

. (3.2)

On the other hand, we have that

|f(x)| ≥ m
1
p |g(x)|

q
p ⇒ |f(x)g(x)| ≥ m

1
p |g(x)|q, ∀x ∈ [a, b]T.

Thus, (∫ b

a

|w(x)||f(x)g(x)| �α x
) 1

q

≥ m
1
pq

(∫ b

a

|w(x)||g(x)|q �α x
) 1

q

. (3.3)

Multiplying (3.2) and (3.3), we obtain(∫ b

a

|w(x)||f(x)|p �α x
) 1

p
(∫ b

a

|w(x)||g(x)|q �α x
) 1

q

≤
(
M

m

) 1
pq
∫ b

a

|w(x)||f(x)g(x)| �α x. (3.4)

Replacing |f(x)| by |f(x)|

|g(x)|
1
q
and |g(x)| by |g(x)|

1
q in inequality (3.4), simultaneously, we obtain

(∫ b

a

|w(x)||f(x)|p

|g(x)|
p
q

�α x

) 1
p (∫ b

a

|w(x)||g(x)| �α x
) 1

q

≤
(
M

m

) 1
pq
∫ b

a

|w(x)||f(x)| �α x. (3.5)
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Hence (3.5) takes the form

∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β+γ−1
�α x ≤

(
M

m

)β+γ−1
β+γ

(∫ b
a
|w(x)||f(x)| �α x

)β+γ

(∫ b
a
|w(x)||g(x)| �α x

)β+γ−1
. (3.6)

Replacing |w(x)| by |w(x)||g(x)|γ−1 in inequality (3.6), we obtain (3.1).

Next, we give extended reverse Bergström’s inequality on time scales.

Corollary 3.1. Let w, f, g ∈ C ([a, b]T,R \ {0}) be �α-integrable functions. If 0 < m ≤
(
|f(x)|
|g(x)|

)2

≤
M <∞ on the set [a, b]T, then

∫ b

a

|w(x)||f(x)|2

|g(x)|
�α x ≤

(
M

m

) 1
2

(∫ b
a
|w(x)||f(x)| �α x

)2

∫ b
a
|w(x)||g(x)| �α x

. (3.7)

Proof. Putting β = γ = 1 in Theorem 3.1, we get (3.7).

Remark 1. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk > 0 and g(k) = yk > 0 for
k ∈ {1, 2, . . . , n}. If γ = 1, then (3.1) reduces to

n∑
k=1

xβ+1
k

yβk
≤
(
M

m

) β
β+1

(
n∑
k=1

xk

)β+1

(
n∑
k=1

yk

)β . (3.8)

Inequality (3.8) is just the reverse of the classical inequality(
n∑
k=1

xk

)β+1

(
n∑
k=1

yk

)β ≤ n∑
k=1

xβ+1
k

yβk
. (3.9)

The inequality from (3.9) is called, in literature, Radon’s inequality [10].

Remark 2. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk > 0 and g(k) = yk > 0 for
k ∈ {1, 2, . . . , n}. Then inequality given in (3.7) reduces to

n∑
k=1

x2
k

yk
≤
(
M

m

) 1
2

(
n∑
k=1

xk

)2

n∑
k=1

yk

. (3.10)

Inequality (3.10) is just the reverse of the classical inequality(
n∑
k=1

xk

)2

n∑
k=1

yk

≤
n∑
k=1

x2
k

yk
. (3.11)

Inequality (3.11) is called Bergström’s or Titu Andreescu’s inequality or also Engel’s inequality in
literature as given in [3] with equality if and only if x1

y1
= x2

y2
= . . . = xn

yn
.
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The following result is an extension of dynamic Clarkson’s type inequality on time scales.

Theorem 3.2. Let p ≥ 1, w, f, g ∈ C ([a, b]T,R). If 1 < m ≤ |f(x)|
|g(x)| ≤M <∞, ∀x ∈ [a, b]T, then∫ b

a

|w(x)| (|f(x)|p + |g(x)|p) �α x

≤ Λ

∫ b

a

|w(x)| (|f(x)|+ |g(x)|)p �α x+ Ω

∫ b

a

|w(x)| (|f(x)| − |g(x)|)p �α x, (3.12)

where Λ = Mp(m+1)p+(M+1)p

2(M+1)p(m+1)p
and Ω = 1+mp

2(m−1)p
.

Proof. By using the given condition |f(x)|
|g(x)| ≤M , we have

(M + 1)p|f(x)|p ≤Mp (|f(x)|+ |g(x)|)p , ∀x ∈ [a, b]T.

Therefore ∫ b

a

|w(x)||f(x)|p �α x ≤
(

M

M + 1

)p ∫ b

a

|w(x)| (|f(x)|+ |g(x)|)p �α x. (3.13)

On the other hand, we have that(
1 +

1

m

)p
|g(x)|p ≤

(
1

m

)p
(|f(x)|+ |g(x)|)p , ∀x ∈ [a, b]T.

Thus, ∫ b

a

|w(x)||g(x)|p �α x ≤
(

1

m+ 1

)p ∫ b

a

|w(x)| (|f(x)|+ |g(x)|)p �α x. (3.14)

Adding (3.13) and (3.14), we obtain∫ b

a

|w(x)| (|f(x)|p + |g(x)|p) �α x

≤
{(

M

M + 1

)p
+

(
1

m+ 1

)p}∫ b

a

|w(x)| (|f(x)|+ |g(x)|)p �α x. (3.15)

By given hypothesis, we have

m− 1 ≤ |f(x)|
|g(x)|

− 1⇒ |g(x)| ≤ |f(x)| − |g(x)|
m− 1

,

where ∀x ∈ [a, b]T. Thus,∫ b

a

|w(x)||g(x)|p �α x ≤
(

1

m− 1

)p ∫ b

a

|w(x)| (|f(x)| − |g(x)|)p �α x. (3.16)

On the other hand, we have that

1− 1

m
≤ 1− |g(x)|

|f(x)|
⇒ |f(x)| ≤ m

m− 1
(|f(x)| − |g(x)|) , ∀x ∈ [a, b]T.

Thus, ∫ b

a

|w(x)||f(x)|p �α x ≤
(

m

m− 1

)p ∫ b

a

|w(x)| (|f(x)| − |g(x)|)p �α x. (3.17)
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Adding (3.16) and (3.17), we obtain∫ b

a

|w(x)| (|f(x)|p + |g(x)|p) �α x

≤
{(

m

m− 1

)p
+

(
1

m− 1

)p}∫ b

a

|w(x)| (|f(x)| − |g(x)|)p �α x. (3.18)

Adding (3.15) and (3.18), we get the desired inequality (3.12).

Remark 3. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk > 0 and g(k) = yk > 0 for
k ∈ {1, 2, . . . , n}. Then (3.12) reduces to

n∑
k=1

(xpk + ypk) ≤ Λ
n∑
k=1

(xk + yk)
p + Ω

n∑
k=1

(xk − yk)p . (3.19)

Our next result concerning extended Young’s inequality with Kantorovich’s ratio on time scales
is investigated.

Theorem 3.3. Let p > 1 with 1
p

+ 1
q

= 1. Let w, f, g ∈ C ([a, b]T,R), neither f ≡ 0 nor g ≡ 0. If

0 < m ≤
∣∣∣f(x)
g(x)

∣∣∣ ≤M <∞, ∀x ∈ [a, b]T, then

∫ b

a

Kη

(
|f(x)|p

|g(x)|q

)
|w(x)||f(x)g(x)| �α x ≤ Λ

∫ b

a

|w(x)| (|f(x)|p + |g(x)|p) �α x

+ Ω

∫ b

a

|w(x)| (|f(x)|q + |g(x)|q) �α x, (3.20)

where Λ = 2p−1Mp

p(M+1)p
, Ω = 2q−1

q(m+1)q
, η = min

{
1
p
, 1
q

}
and K(.) is Kantorovich’s ratio.

Proof. By using the given hypothesis, we have that

|f(x)|
|g(x)|

≤M ⇒ (M + 1)|f(x)| ≤M(|f(x)|+ |g(x)|), ∀x ∈ [a, b]T.

Therefore ∫ b

a

|w(x)||f(x)|p �α x ≤
(

M

M + 1

)p ∫ b

a

|w(x)|(|f(x)|+ |g(x)|)p �α x. (3.21)

On the other hand, we have that

m ≤ |f(x)|
|g(x)|

⇒ (m+ 1)|g(x)| ≤ |f(x)|+ |g(x)|, ∀x ∈ [a, b]T.

Thus, ∫ b

a

|w(x)||g(x)|q �α x ≤
(

1

m+ 1

)q ∫ b

a

|w(x)|(|f(x)|+ |g(x)|)q �α x. (3.22)

Now, using Young’s inequality (2.1), we have

Kη

(
|f(x)|p

|g(x)|q

)
|f(x)g(x)| ≤ 1

p
|f(x)|p +

1

q
|g(x)|q, ∀x ∈ [a, b]T. (3.23)
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Inequality (3.23) takes the form∫ b

a

Kη

(
|f(x)|p

|g(x)|q

)
|w(x)||f(x)g(x)| �α x

≤ 1

p

∫ b

a

|w(x)||f(x)|p �α x+
1

q

∫ b

a

|w(x)||g(x)|q �α x. (3.24)

By using the results from (3.21) and (3.22), inequality (3.24) becomes∫ b

a

Kη

(
|f(x)|p

|g(x)|q

)
|w(x)||f(x)g(x)| �α x

≤ 1

p

(
M

M + 1

)p ∫ b

a

|w(x)|(|f(x)|+ |g(x)|)p �α x

+
1

q

(
1

m+ 1

)q ∫ b

a

|w(x)|(|f(x)|+ |g(x)|)q �α x. (3.25)

Using the elementary inequality

(x+ y)δ ≤ 2δ−1(xδ + yδ), δ > 1, x, y ≥ 0,

inequality (3.20) follows from inequality (3.25).

Our next result concerning extended Young’s inequality with Specht’s ratio on time scales is
explored.

Theorem 3.4. Let p > 1 with 1
p

+ 1
q

= 1. Let w, f, g ∈ C ([a, b]T,R), neither f ≡ 0 nor g ≡ 0. If

0 < m ≤
∣∣∣f(x)
g(x)

∣∣∣ ≤M <∞, ∀x ∈ [a, b]T, then

∫ b

a

S

((
|f(x)|p

|g(x)|q

)η)
|w(x)||f(x)g(x)| �α x ≤ Λ

∫ b

a

|w(x)| (|f(x)|p + |g(x)|p) �α x

+ Ω

∫ b

a

|w(x)| (|f(x)|q + |g(x)|q) �α x, (3.26)

where Λ = 2p−1Mp

p(M+1)p
, Ω = 2q−1

q(m+1)q
, η = min

{
1
p
, 1
q

}
and S(.) is Specht’s ratio.

Proof. Applying (2.2) and the rest of this proof is similar to that of Theorem 3.3.

Remark 4. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk > 0 and g(k) = yk > 0 for
k ∈ {1, 2, . . . , n}. Then (3.20) reduces to

n∑
k=1

Kη

(
xpk
yqk

)
xkyk ≤ Λ

n∑
k=1

(xpk + ypk) + Ω
n∑
k=1

(xqk + yqk) (3.27)

and (3.26) reduces to

n∑
k=1

S

((
xpk
yqk

)η)
xkyk ≤ Λ

n∑
k=1

(xpk + ypk) + Ω
n∑
k=1

(xqk + yqk) . (3.28)
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4 Conclusion and future work

By using Hölder’s reverse fractional integral inequality, weighted Radon’s reverse integral inequality
[11] was established in continuous form. Inspired by this work, we have presented an extended
dynamic reverse Radon’s inequality given in Theorem 3.1 on time scales in a more general form. A
fractional integral Clarkson-type inequality [11] was also established in continuous form. We have
presented Clarkson-type dynamic inequality in the extended form given in Theorem 3.2 on time scales.
Motivated by the works of [6, 19], some dynamic inequalities in hybrid and comprehensive forms are
established in this research article by using Kantorovich’s ratio and Specht’s ratio, respectively.

In our future research work, we will continue to find further dynamic inequalities and their reverse
versions and applications in extended and generalized forms. It will be interesting to explore dynamic
inequalities by using fractional calculus on time scales.
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