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Introduction

In the theory of multiple Fourier series, problems of convergence of the so-called spherical partial
sums have been studied for a long time. A multiple Fourier series can be interpreted as an
expansion in eigenfunctions of the Laplace operator, and, moreover, the natural way of ordering
of the eigenfunctions which corresponds to the increasing order of the eigenvalues leads just to
the spherical means. This makes the interest in the spherical means understandable.

As is well known, spherical means di�er drastically in their properties from the rectangular
means, and �rst of all, in such problems as convergence in C and in Lp, p ≥ 1, and almost
everywhere convergence. It is clear that in these questions of crucial importance are asymptotic
properties of the corresponding Dirichlet kernel, or, if one takes into account the relation with
the boundary problem, asymptotic properties of the spectral function.

Let x ∈ Rm, x = (x1, ..., xm), let Zm be the lattice grid in Rm, with n ∈ Zm, n = (n1, ..., nm),
nj are integers; and set n · x = n1x1 + ...+ nmxm. Let I be the interval in Rm

I = {x ∈ Rm : |xj| ≤
1

2
, 1 ≤ j ≤ m},

and let f(x) be de�ned in it and Lebesgue integrable. Let us expand f(x) in the multiple Fourier
series

f(x) ∼
∑
n∈Zm

an exp{2πin · x}. (0.5)

The spherical means of order α of series (0.5) are of the form∑
′

0≤|n|≤N

an

(
1− |n|

2

N2

)α
exp{2πin · x} = SαN(x; f), (0.6)

where ′ after the sign of the sum means that the summands corresponding to |n|2 = N2 are
taken with the factor 1

2
.
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Sum (0.6) is associated with the Dirichlet kernel

Dα
N(x) =

∑
′

0≤|n|≤N

(
1− |n|

2

N2

)α
exp{2πin · x}, (0.7)

asymptotic properties of which are investigated in the �rst part of the present work. But the
asymptotics of the kernel Dα

N is intimately related with the classical and well studied problem of
the representation of numbers by the sums of squares. Denote by rm(k) the number of integer
solutions of the Diophantine equation

n2
1 + ...+ n2

m = k.

It is plain to show that

Dα
N(x) =

Γ(α + 1)

πα
N

m
2
−α
∑
n∈Zm

Jm
2

+α(2πN |n+ x|)
|n+ x|m2 +α

, x ∈ I, (0.8)

where for α ≤ m−1
2

the series is summable by the Riesz means of high enough order. Taking
x = 0, we obtain

Dα
N(0) =

∑
′

0≤k≤N2

(
1− k

N2

)α
rm(k) = π

m
2

Γ(α + 1)

Γ(m
2

+ α + 1)
Nm

+
Γ(α + 1)

πα
N

m
2
−α

∞∑
k=1

rm(k)
Jm

2
+α(2πN

√
k)

k
m
4

+α
2

, (0.9)

which, for α = 0, yields the Hardy-Landau formula [2] if m = 2 and that of Wal�sch [13] and
Oppenheim [6] if m > 2.

Formulas (0.8) and (0.9) are inconvenient, therefore more convenient asymptotic formulas
are desirable for the study of summability of multiple Fourier series. It is advisable to establish
such a formula for the kernel

SαN(x) =
∑

′

0≤|n|≤N

(
1− |n|

2

N2

)α
|n|−κ exp(2πin · x),

with κ ≥ 0, rather than for the kernel Dα
N(x). Let T be some quantity subject to condition

T ≥ CN , where C is a constant independent of N and T . The following relation takes place:

SαN(x) = 2πN
m
2
−κ+1|x|−

m
2

+1

∫ 1

0

(1− u2)αJm
2
−1(2πN |x|u)u

m
2
−κdu

+
Γ(α + 1)

πα+1
N

m−1
2
−α−κ

× Re
∑

|n+x|≤ 2
π TN

−1

n 6=0

exp{2πiN |x| − ωm}
|n+ x|m+1

2
+α

q∑
ν=0

aν(|n+ x|)
(|n+ x|N)ν

+Nm−κ+εT−α
∑

1
2
N≤|n|≤2N

|n|−m−εΨα

(
2T log

T

|n|
, T

)
exp(2πin · x)

+

≤κ+ε
2∑

ν=0

(−1)νN−2ν Γ(α + 1)

ν!(α + 1− ν)
η(κ, 2νx)

+O
(
ε−1N−

ε
2 + T−

m
2
−α−εNm−x) . (0.10)
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Here ωm = π
2
(m+1

2
+ α), q = [m

2
+ ε − α] + 2, and ε is an arbitrary quantity from the interval

[0, 1]. Further, aν(u), 0 ≤ u < ∞, are functions of the complicated concrete form; note only
that aν(u) ∈ C l[0,∞) and aν(u) ≡ 0 for u ≥ 2

π
NT−1, 0 ≤ ν ≤ q. The quantity l can be taken

arbitrary but �xed. The function Ψα(u, v) is such that |Ψα(u, v)| ≤ C|u|−l and |Ψα(u, v)| ≤ C0

uniformly in α ≥ 0. Finally, let us de�ne the function η(s, x). For Re s > m, introduce the
zeta-function

ζ(s, x) =
∑
n∈Zm
n 6=0

exp(2πin · x)

|n|s
=
∞∑
k=1

1

k
s
2

∑
|n|2=k

exp(2πin · x), (0.11)

and if x 6= 0, x ∈ I, it is easy to show that ζ(s, x) is an entire function. By de�nition,

η(s, x) = ζ(s, x)− πs−
m
2

Γ(m−s
2

)

Γ( s
2
)
|x|s−m.

Formula (0.10) is applicable for any x ∈ I. If |x| ≥ CN−1, then one can modify this formula
by changing the integral on the right-hand side of (0.10) in an appropriate manner. Despite of
the awkwardness of (0.10), it is convenient in applications and yields the following results.

Denoting by ‖f‖ the Lp(I)-norm of f , we set

Λp(N,α) = sup
‖f‖≤1

‖SαN(x, f)‖.

If p′ = p
p−1

, then Λp′(N,α) = Λp(N,α). It is shown by means of (0.10) that if p ∈ [1, 2m
m+1

] and

0 ≤ α ≤ αp = m
p
− m+1

2
, then

Λp(N,α) ≥ A

[
Np(αp−α) − 1

p(αp − α)

] 1
p

, (0.12)

where the constant A depends only upon m and p. Stein has shown in [9] that SαN(x, f) is
bounded in the Lp norm, 1 < p ≤ 2, if α > αp + 1

p′
. Thus the question on behavior of the means

SαN(x, f) in the domain

{α, p : 1 ≤ p < 2, α ≥ 0, α > αp, α ≤ αp +
1

p′
}

remains open. It is expected that the means SαN(x, f) converge to f in Lp(I).
It is quite probable that inequality (0.12) cannot be improved in growth of the order. In the

case p =∞, it is shown that for α ≤ α1 = m−1
2
,

A
Nα1−α − 1

α1 − α
≤ Λ∞(N,α) ≤ B

Nα1−α − 1

α1 − α
. (0.13)

Series (0.11) has remarkable properties. Say, if p ∈ [1, 2m
m+1

), α < αp, and κ satis�es the

inequalities m − m
p
< κ < m−1

2
− α, then ζ(κ, x) ∈ Lp(I), and its spherical means of order α

diverge almost everywhere. It would be extremely interesting to �gure out the question whether
these means diverge everywhere.

There are no analogs of the mentioned theorems for m = 1. Concerning the behavior of the
means of order α = αp, 1 ≤ p ≤ 2m

m+1
, the problem is open, but what is expected is an analog

of the famous Kolmogorov's example [4]. More precisely, that there exists a function f ∈ Lp(I),
1 ≤ p ≤ 2m

m+1
, such that the means of order αp diverge almost everywhere.
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Inequality (0.13) sheds light on the question about su�cient conditions, which ensure the
uniform convergence of spherical partial sums. Using (0.10), one may show that if f(x) is
representable as

f(x) = a0 +
1

(2π)κ

∫
g(ξ)ζ(κ, x− ξ) dξ, (0.14)

where g ∈ Lp(I), p > m
κ
, 0 < κ ≤ m−1

2
, then the Fourier series of f(x) is uniformly summable

by the means of order α = m−1
2
− κ. This result is sharper than the results of B. Levitan [5].

Much earlier, V. Ilyin [3] obtained theorems on the convergence of eigenfunction expansions
for the Laplace operator that are close to the formulated above. However, our theorem is more
precise for even m.

In the preceding theorem the order of the means α = m−1
2
−κ cannot be taken smaller, since

there exist functions f(x), satisfying the above assumptions, for which

lim
N→∞

|SαN(0, f)| =∞

if α < m−1
2
− κ.

� 1

1. For the reader's convenience, we present well-known facts on the theory of zeta-functions.
Let x = (x1, ..., xm) ∈ Rm, let

f(x) =
m∑

k,l=1

aklxkxl

be a positive de�nite quadratic form of discriminant d, and let the form
∑
Aklxkxl be its alge-

braically reciprocal. Set

g(x) =
1

d

m∑
k,l=1

Aklxkxl.

Let Zm be the lattice of integers in Rm, n ∈ Zm, n = (n1, ..., nm), where nj are integers. Consider
the theta-series

θ(f ; t, x) = θ(t, x) =
∑
n∈Zm

exp{−πtf(n) + 2πn · x}, Re t > 0,

and
υ(g; t, x) = υ(t, x) =

∑
n∈Zm

exp{−πtg(n+ x)}, Re t > 0.

It is easy to see that these theta-series are subject to the classical functional equality

θ(t, x) = d−
1
2 t−

m
2 υ

(
1

t
, x

)
. (1.1)

We associate with the forms f and g the two zeta-series

ζ(f ; s, x) = ζ(s, x) =
∑

n∈Zm, n 6=0

exp(2πin · x)

[f(n)]
s
2

and, if x 6∈ Zm,
ζ(g; s, x) = ζ(s | x) =

∑
n∈Zm

1

[g(n+ x)]
s
2

.
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These series converge in the half-plane Re s > m and de�ne there regular functions of variable
s.

In what follows, we shall hold, not mentioning this in a special way, that point x belongs to
the interval

I = {x ∈ Rm : |xj| ≤
1

2
, 1 ≤ j ≤ m}.

If Re s > m, it is easy to see that

ζ(s, x) =
π
s
2

Γ( s
2
)

∞∫
0

[θ(ξ, x)− 1]ξ
s
2
−1dξ.

Splitting the integral into the sum of two integrals, over [0, 1] and [1,∞], applying (1.1) to the
function in the �rst integral and substituting further under the integral sign, we obtain, for
x 6= 0,

ζ(s, x) =
π
s
2

Γ( s
2
)


∞∫

1

[θ(ξ, x)− 1]ξ
s
2
−1dξ + d−

1
2

∞∫
1

υ(ξ, x)ξ
m−s

2
−1dξ−

2
s

 . (1.2)

This formula delivers analytic extension of the function ζ(s, x) to the whole plane. Thus, ζ(s, x)
is an entire function for x 6= 0. The following relation can easily be derived from the last formula:

ζ(s, x)− πs−
m
2

d
1
2

Γ(m−s
2

)

Γ( s
2
)

[g(x)]
s−m

2 =
π
s
2

Γ( s
2
)

{ ∞∫
1

[θ(ξ, x)− 1]ξ
s
2
−1dξ

+ d−
1
2

∞∫
1

[υ(ξ, x)− exp(−πξg(x))]ξ
m−s

2
−1dξ−

2
s

− d−
1
2

1∫
0

ξ
m−s

2
−1dξ exp[−πξg(x)]dξ−

2
s

}
(1.3)

provided that Re s ≥ m.
Introduce the notation

η(s, x) = ζ(s, x)− πs−
m
2

d
1
2

Γ(m−s
2

)

Γ( s
2
)

[g(x)]
s−m

2 . (1.4)

Observing that

1∫
0

ξ
m−s

2
−1 exp{−πξg(x)} dξ

=
2

m− s
exp{−πg(x)}+

2πg(x)

m− s

1∫
0

ξ
m−s

2 exp{−πξg(x)} dξ,

we derive from (1.3) the inequality

|η(s, x)| ≤ C exp
(π

2
|t|
)
, s = σ + it, (1.5)
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provided −1 ≤ σ ≤ m + 1, |t| ≥ 1. In the half-plane Res < 0, we transform the �rst integral
in formula (1.2) �rst by means of relation (1.1) and then integrating by parts under the integral
sign. This yields

ζ(s, x) =
π
s
2

d
1
2 Γ( s

2
)

∞∫
0

υ(ξ, x)ξ
m−s

2
−1dξ, x 6= 0,

from which the next functional equation follows in a trivial manner:

ζ(s, x) =
πs−

m
2 Γ(m−s

2
)

d
1
2 Γ( s

2
)

ζ(m− s | x). (1.6)

In what follows, we shall denote by ε an arbitrary quantity from the interval [0, 1].

Proposition 1.1. In the strip −ε ≤ Re s ≤ m+ ε, the estimate

|η(s, x)| ≤ Bε−1(|t|+ 1)
m+ε−σ

2 , s = σ + it, (1.7)

holds, where the constant B depends only upon m.

Proof. The function

χ(s, x) =
s(m− s)Γ( s

4
)

(s+ 1)(m+ 1− s)Γ(m+ε
2
− s

4
)
η(s, x)

is regular in the strip −ε ≤ Re s ≤ m + ε. It follows from the asymptotic formula for the
gamma-function that for Im a = 0∣∣∣∣Γ(a− s)

Γ(s)

∣∣∣∣ = |t|a−2σ(1 +O(t−1)), (1.8)

with a constant in O depending only on a. Therefore, (1.6) yields

|χ(−ε+ it, x)| ≤ C1

∑
n∈Zm,n6=0

|n|−m−ε ≤ C2ε
−1.

On the other hand, it is easy to see that

|χ(m+ ε+ it, x)| ≤ C3ε
−1,

where the constants C2 and C3 depend only on m. In the considered strip, (1.5) and (1.8) imply
the inequality

|χ(s, x)| ≤ C4 exp(C5|t|), s = σ + it,

which yields, by the Phragm�en-Lindel�of theorem,

|χ(s, x)| ≤ ε−1 max(C2, C3).

From the last inequality (1.7) follows, because of (1.8). �

2. Let us give a few simple facts of auxiliary nature. Let ϕ ∈ C∞[a, b], and h(t) ∈ C l[a, b].
Set

Ik =

b∫
a

tk−1h(t) exp{iϕ(t)} dt, k > 0.
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Proposition 1.2. If h(ν)(a) = h(ν)(b) = 0, 0 ≤ ν ≤ l − 1, and ϕ(t) ≡ κt, then

|I1| ≤ κ−l
b∫

a

|h(l)(t)| dt = Clκ
−l. (1.9)

Proof. Integrating by parts, (1.9) follows. �

Proposition 1.3. If h(t) satis�es the assumptions of the preceding proposition, and ϕ(t) =
κϕ0(t), with |ϕ′0(t)| ≥ 1 for t ∈ [a, b], then for b− a <∞,

|I1| ≤ Dlκ
−l. (1.10)

Proof. By assumption, ϕ0(t) is a monotone function. Introducing a new variable ξ = ϕ0(t)
under the integral sign, we arrive at the situation of Proposition 1.2, and thus (1.10) follows
from (1.9).

Let h(t) satisfy the assumptions of Proposition 1.2 and, besides that, the condition

|h(ν)(t)| ≤ Cνt
−ν , 0 ≤ ν ≤ l, t ∈ [a, b], a > 0. (1.11)

Proposition 1.4. Suppose that h(t) satis�es the above conditions, and ϕ(t) is such that
1. |ϕ′(t)| ≥ δ > 0

2. |ϕ(ν)(t)| ≤ C̃νt
−ν+1, 0 ≤ ν ≤ l, t ∈ [a, b]

Then for l ≥ k + 2,

|Ik| ≤ Ala
k−l, (1.12)

where the constant Al does not depend on a nor on b.

Proof. Setting g0(t) = tk−1h(t), we de�ne functions g1, ..., gl by means of the recurrent relation

gν(t) =
d

dt

gν−1(t)

ϕ′(t)
.

It can easily be checked by induction in ν that

gν(t) =
ν∑

µ=0

g
(µ)
0 (t)Pµ(ϕ),

with
Pµ(ϕ) =

∑
µ1+...+µr=ν−µ

µj≥0

Aµµ1,...,µrϕ
(µ1+1)...ϕ(µr+1),

where the coe�cients Aµµ1,...,µr are of the form
υ

[ϕ′]s
, with υ integer and s natural. This implies

|gν(t)| ≤ Dνt
k−ν−1.

From this inequality for ν = l and obvious relation

Ik = il
b∫

a

gl(t) exp[iϕ(t)] dt
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(1.12) follows. �

Let us �nd an asymptotics of the integral Ik by means of the Stationary Phase Method. For
our goals, it su�ces to consider only such functions ϕ(t) that satisfy the conditions:

1. ϕ′(t) has the only zero on (0,∞) at t = t0.
2. The function ψ(ξ) = t−1

0 ϕ(t0(1 + ξ)) is regular in the interval (−1,∞) and is independent
of t0.

3. There exists δ > 0 such that

inf |ψ′(ξ)| ≥ δ0, ξ ∈ (−1,∞) \ [−δ,+δ].
Let function h(t) satisfy conditions (1.11) and the conditions

h(ν)(a) = h(ν)(b) = 0, 0 ≤ ν ≤ [k] + 2. (1.13)

In what follows, we shall set

τ = t0ψ
′′(0).

Proposition 1.5. If the functions h(t) and ϕ(t) satisfy the above mentioned conditions and
l ≥ 4([k] + 2), then

Ik =

√
2π

|τ |
tk0 exp{iϕ(t0) +

πi

4
sgn τ}

[k]+1∑
ν=0

αντ
−ν +O(a−1), (1.14)

where α0 = h(t0), and αν, ν ≥ 1, is a linear combination of the quantities h(µ)(t0), 0 ≤ µ ≤ 2ν.

Proof. Let θ(t) ∈ C∞(−∞,∞) be a "cap"-like function. It obeys the conditions:
1. 0 ≤ θ(t) ≤ 1
2. θ(t) = 0 for t ∈ (−∞,∞) \ [1− δ, 1 + δ]
3. θ(t) = 1 for t ∈ [1− δ

2
, 1 + δ

2
]

Setting θ0(t) = θ( t−t0
t0

) and θ1(t) = 1− θ0(t), we correspondingly have

Ik =

b∫
a

tk−1θ0(t)h(t) exp(iϕ(t)) dt

+

b∫
a

tk−1θ1(t)h(t) exp(iϕ(t)) dt = Ik1 + Ik2.

The integral Ik2 can be split into the sum of two integrals, wherein to each of them Proposition 1.4
is applicable, with the quantity [k] + 1 assumed to be l. We will obtain Ik2 = O(a−1) in this

way. Substituting t = t0(1 + ξ) in the integral Ik1, we set ψ(ξ) = ψ(0) + ψ′′(0)
2
u2 then. Without

loss of generality, we may consider δ to be such that for |ξ| ≤ δ the function ψ(ξ) is expandable
in the convergent power series

ψ(ξ) = ξ2

(
ψ′′(0)

2
+
ψ′′′(0)

3!
ξ + ...

)
and that the function

ψ
1
2 (ξ) =

√
ψ′′(0)

2
ξ(1 + a2ξ + ...)
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is schlicht in the disk |ξ| ≤ δ. Therefore, ξ = ξ(u), with ξ(0) = 0 and ξ′(0) = 1. This substitution
will move the interval [−δ, δ] of the ξ axis to the interval [−u0, u1], u0 > 0, with the orientation
preserved. Hence, we obtain

Ik = tk0 exp(iϕ(t0))

u1∫
−u0

θ̃(u)H(u) exp(
iτ

2
u2) du+O(a−1),

where
H(u) = [1 + ξ(u)]k−1ξ′(u)h[t0(1 + ξ(u))], θ̃(u) = θ(ξ(u)).

The posed assumptions yield H(u) ∈ C l[−u0, u1], and, in addition, inequalities (1.11) imply

H(ν)(u) = O(1), 0 ≤ ν ≤ l,

with the constant in O independent of t0. The Taylor formula gives

H(u) =

q−1∑
l=0

ul

l!
H(l)(0) + uqHq(u),

where

Hq(u) =
1

(q − 1)!

1∫
0

(1− v)q−1H(q)(vu) dv, q = 2([k] + 2).

Integrating by parts, we get for even µ, µ = 2s,

jµ =

u1∫
−u0

θ̃(u)uµ exp

(
iτ

2
u2

)
du

=

(
i

τ

)s u1∫
−u0

[
(2s− 1)!!θ̃(u) +

s∑
r=1

γsru
rθ̃(r)(u)

]
exp

(
iτu2

2

)
du,

where γsr are certain constants, which depend only upon s and r. The function

s∑
r=1

γsru
rθ̃(r)(u)

is identically zero in a neighborhood of the point u = 0. Therefore, by Proposition 1.3,(
i

τ

)s u1∫
−u0

s∑
r=1

γsru
rθ̃(r)(u) exp

(
iτ

2
u2

)
du = O(τ−k−1).

Thus,

jµ =

(
i

τ

)s
(2s− 1)!!

{ ∞∫
−∞

exp

(
iτ

2
u2

)
du

+

∞∫
−∞

[θ̃(u)− 1] exp(
iτu2

2
) du

}
+O(τ−k−1).
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The integral

∞∫
−∞

[θ̃(u)− 1] exp

(
iτu2

2

)
du (1.15)

can be split into two, over the intervals (−∞, 0) and (0,∞), and the change of variables u2 = v
can be made in each one. The obtained thus integrals are estimated by means of Proposition 1.2.
This leads to the bound O(τ−k−1) for integral (1.15). Finally,

jµ = (2s− 1)!!

(
i

τ

)s√
2π

|τ |
exp(

πi

4
sgn τ) +O(τ−k−1).

If µ is odd, µ = 2s+ 1, similar argument will give jµ = O(τ−k−1). It is also clear that

u1∫
−u0

θ̃(u)uqHq(u) exp

(
iτu2

2

)
du = O(τ−

q
2 ) = O(τ−[k]−2).

Finally,

Ik = tk0

√
2π

|τ |
exp

(
iϕ(t0) +

πi

4
sgn τ

) [k]+1∑
s=0

is(2s− 1)!!

(2s)!
H(rs)(0)τ−s +O(a−1),

which is equivalent to (1.14). �

3. We are going to derive auxiliary asymptotic formulas for the Riesz means of a multiple
trigonometric series. Assume that the form f(x) = x2

1 + ...+x2
m = |x|2. Then g(x) = |x|2 as well.

We shall denote the corresponding zeta-functions by ζ(s, x) and ζ(s | x) as above. Let α ≥ 0,
m > κ ≥ 0, and x ∈ I, x 6= 0. Set

SαN,κ(x) = SαN(x) =
∑

′

0≤|n|≤N

(
1− |n|

2

N2

)α
|n|−κ exp(2πin · x), (1.16)

where ′ after the sign of the sum means that the summands corresponding to |n|2 = N2 are
taken with the factor 1

2
.

We will derive a formula for SαN(x) by means of contour integrals. This argument is well known
in the theory of zeta-function and can be found in Chapter 3 of monograph [10]. However, we
shall insert in it a technical novelty, due to which the problem of the estimate of the remainder
term will be trivialized. Introduce a function

Ψ(s) =
Γ(α + 1)Γ(s)

Γ(s+ α + 1)
.

It is known that for Res > 0,

Ψ(s) =

∞∫
0

e−vs(1− e−v)α dv, (1.17)

or

Ψ(s) =

1∫
0

us−1(1− u)α du. (1.18)
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It follows from (1.17) that

Ψ(s) =
r−1∑
ν=0

bνα
sα+ν+1

+O(s−α−r−1), (1.19)

where b0α = Γ(α + 1) and bν0 = 0 if ν ≥ 1. In the last formula, the branch of the function sα is
taken which is positive for s > 0. Formula (1.17) after simple calculations reduces to the relation

Ψ(ν)(σ + it) = O(|t|−ν−α−1), ν ≥ 0. (1.20)

Now, let us introduce a smoothing function. Let l be a natural number considered to be
large enough as compared with m. Introduce parameter T , and assume that T ≥ C0N . Set

χ(u) = Al

2−u∫
0

vl(1− v)l dv, (1.21)

where the constant Al is determined from the condition χ(1) = 1. Let θ(t) = 0 for |t| ≥ 2T ,

θ(t) = 1 for |t| ≤ T , and θ(t) = χ( |t|
T

) for T ≤ |t| ≤ 2T . It is clear that θ(t) ∈ C l(−∞,∞) and

|θ(ν)(t)| ≤ BνT
−ν , 0 ≤ ν ≤ l, (1.22)

where the constants Bν are independent of T .
For σ > 0, by Mellin's theorem,

I(y) =
1

2πi

σ+i∞∫
σ−i∞

Ψ(s)ysds =

{
(1− y−1)α, if y > 1

0, if 0 < y < 1
(1.23)

On the other hand, we can represent this integral as

I(y) =
1

2π

2T∫
−2T

θ(t)Ψ(σ + it)yσ+itdt+ I1(y),

where

I1(y) =
yσ

2π

∞∫
−∞

Φ(t)yitdt,

with Φ(t) = [1− θ(t)]Ψ(σ + it). It is easy to see that

I1(y) =
yσ

2π

∞∫
T

[1− θ(t)]
{

Ψ(σ + it)yit + Ψ(σ − it)y−it
}
dt.

Based on (1.19), after simple calculations the relation follows

I1(y) =
yσ

2π

r−1∑
ν=0

aνα

∞∫
T

[1− θ(t)]
sin(t log y − π

2
(α + ν))

tα+ν+1
dt+O(yσT−α−r).

Setting r = m+ 2 and introducing

Ψα(z, T ) =
1

π

r−1∑
ν=0

aνα
T ν

∞∫
1

[1− θ(Tt)]
sin(zt− π

2
(α + ν))

tα+ν+1
dt,
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we then have

I1(y) =
yσ

Tα
Ψα(T log y, T ) +O

(
yσ

Tα+r

)
. (1.24)

By Proposition 1.2,

|Ψα(z, T )| ≤ C|z|−l. (1.25)

A routine calculation shows that uniformly in α, for α ≥ 0,

|Ψα(z, T )| ≤ C0. (1.26)

De�ning σ0 from the relation κ+ 2σ0 = m+ ε, where ε > 0 and ε < 1, and taking σ = σ0 in
(1.23), we derive from this formula

SαN(x) =
∑

0 6=n∈Zm
|n|−κI

(
N2

|n|2

)
exp(2πin · x).

This yields

SαN(x) =
1

2π

2T∫
−2T

θ(t)Ψ(s)ζ(κ+ 2s, x)N2sdt+RN(x), (1.27)

where s = σ + it. By (1.24) and condition r = m+ 2,

RN(x) =
∑

06=n∈Zm
|n|−κ−2σ0Ψα

(
2T log

N

|n|
, T

)
exp(2πin · x)

+O(ε−1N−1−κT−α).

Note that in accordance with de�nition of SαN(x), we have

Ψ0 = Ψ0(0, T ) = −
r−1∑
ν=1

aν0
πν

sin πν
2

T ν
.

Using inequality (1.25), we can simplify a little the last formula for RN(x) by moving a part of
the summands to the remainder. Thus,

RN(x) =
N2σ0

Tα

∑
1
2
N≤|n|≤2N

|n|−κ−2σ0Ψα

(
2T log

N

|n|
, T

)
exp(2πin · x)

+O

(
1

ε
N−1−κT−α

)
.

Set

J(x) =
1

2π

2T∫
−2T

θ(t)Ψ(s)ζ(κ+ 2s, x)N2sdt (1.28)

and

Rα
N(x) = Nm−κ+εT−α

∑
1
2
N≤|n|≤2N

|n|−m−εΨα

(
2T log

N

|n|
, T

)
exp(2πin · x).
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Then

SαN(x) = J(x) +Rα
N(x) +O(ε−1N−1−κT−α). (1.29)

By this, derivation of asymptotic formulas for the means of high order trivializes. Consider an
analogue of the de la Vall�ee-Poussin means of the function ζ(κ, x).

Let a function Φ(x) ∈ C∞(−∞,∞) and satisfy the conditions: a) Φ(x) ≡ 1 for x ≤ 1
2
and

b) Φ(x) ≡ 0 for x ≥ 1. Denote by Φ̃(s) the Mellin transform of function Φ(x). Clearly,

Φ̃(s) =

1∫
0

xs−1Φ(x) dx = −1

s

1∫
1
2

xsΦ′(x) dx,

which implies that sΦ̃(s) is an entire function of exponential type, and Φ̃(s) is meromorphic with

the unique pole of �rst order at s = 0 and residue equal 1. It is clear that Φ̃(s) decreases faster
than any power of |t|−1 as |t| → ∞. Therefore,

VN(x) =
∑

0≤|n|≤N

|n|−κΦ
(
|n|2

N2

)
exp(2πin · x)

=
1

2πi

σ0+i∞∫
σ0−i∞

Φ̃(s)ζ(κ+ 2s, x)N2sds.

This yields

VN(x) =
1

2πi

σ0+i∞∫
σ0−i∞

Φ̃(s)η(κ+ 2s, x)N2sds

+
1

2πi

σ0+i∞∫
σ0−i∞

Φ̃(s)h(s, x)N2sds, (1.30)

where

h(s, x) = πκ−
m
2

+2sΓ(m−κ
2
− s)

Γ(κ
2

+ s)
|x|2s−m+κ. (1.31)

Denoting the integrals on the right-hand side of (1.30) by J̃0(x) and J̃1(x), we have

VN(x) = J̃0(x) + J̃1(x). (1.32)

4. Transform integral (1.28) by shifting the path of integration to the left in such a
way that using the functional equation becomes possible. However, if we wish to obtain an
asymptotic formula operable for arbitrary x ∈ I, x 6= 0, then it is better to apply the mentioned
transformation to the function η(κ+ 2s, x) rather than to ζ(κ+ 2s, x). Setting

f(s) = Ψ(s)η(κ+ 2s, x)N2s (1.33)

and

g(s) = Ψ(s)πκ−
m
2

+2sΓ(m−κ
2
− s)

Γ(κ
2

+ s)
|x|−m+κ+2sN2s, (1.34)
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we obtain

J(x) =
1

2π

2T∫
−2T

θ(t)f(s) dt+
1

2π

2T∫
−2T

θ(t)g(s) dt = J0(x) + J1(x), (1.35)

with s = σ0 + it in the last formula. Observing that

J0(x) =
1

2πi

σ0−iT∫
σ0−2iT

χ(−s− σ0

iT
)f(s) ds+

1

2πi

σ0+iT∫
σ0−iT

f(s) ds

+
1

2πi

σ0+2iT∫
σ0+iT

χ(
s− σ0

iT
)f(s) ds = J01(x) + J02(x) + J03(x),

and shifting the path of integration to the left, we transform each of the integrals J0k(x), 1 ≤
k ≤ 3, to have lain on the line Re s = σ1, where

σ1 = −κ+ ε

2
.

Setting Am = π
m
2

Γ(α+1)Γ(m−κ
2

)

Γ(α+1+m−κ
2

)Γ(m
2

)
, we derive that AmN

m−κ is the residue of f(s) at the pole

s = m−κ
2
, and hence, by the Cauchy theorem,

J02(x) =

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
η(κ− 2ν, x) + AmN

m−κ

+
1

2πi

σ1+iT∫
σ1−iT

f(s) ds+
1

2πi

σ0+iT∫
σ1+iT

f(s) ds− 1

2πi

σ0+iT∫
σ1−iT

f(s) ds. (1.36)

If we proceed in the same way to the integrals J01 and J03 and then sum up the obtained expres-
sions, the integrals over the horizontal intervals will interfere, which make their contribution to
move to the remainder. Indeed, taking, for example, the integral J01, we have

J01(x) =
1

2πi

σ1−iT∫
σ1−2iT

χ(−s− σ0

iT
)f(s) ds+

1

2πi

σ0−iT∫
σ1−iT

χ(−s− σ0

iT
)f(s) ds

− 1

2πi

σ0−2iT∫
σ1−2iT

χ(
s− σ0

iT
)f(s) ds. (1.37)

By Proposition 1.1, the function in the last integral of formula (1.37) will be an O(ε−1N2σT β−σ)
quantity, where β = −l − 1 − α + m−κ+ε

2
. Hence, considering T ≥ N δ, δ > 0, we can choose l

in such a way that this integral be O(ε−1N−1). The di�erence of the last integral in (1.36) and
that before the last one in (1.37) gives

1

2πi

σ0−iT∫
σ1−iT

[
χ(−s− σ0

iT
)− 1

]
f(s) ds,
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and since χ(− s−σ0
iT

) = 1 + O(T−l) for s = σ − iT , σ1 ≤ σ ≤ σ0, the last integral is O(ε−1N−1)
as well. Thus,

J0(x) = j(x) +

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
η(κ− 2ν, x)

+ AmN
m−κ +O(ε−1N−1), (1.38)

where

j(x) =
1

2πi

σ1+iT∫
σ1−iT

ξ(s)f(s) ds,

with the function ξ(s) de�ned by

ξ(s) = ξ(σ + it) =


χ(− s−σ0

iT
), if − 2T < t < −T

1, if |t| < T

χ( s−σ0
iT

), if T < t < 2T.

If x ∈ I and

|x| ≥ C0N
−1, (1.39)

where C0 is a constant, then it worth transforming the integral J1(x) in (1.35) in an analogous
manner as well. On the basis of the above arguments, we obtain, for l large enough,

J(x) = j(x) +
1

2πi

σ1+2iT∫
σ1−2iT

ξ(s)f(s) ds

+

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x) +O(ε−1N−1). (1.40)

5. The study of integral (1.38) and its estimation are ful�lled in a di�erent way accordingly
to whether the quantity T0 = Nβ, β = κ+ε

m+2ε−2α
, is greater than T , or smaller than T . Using

functional equation (1.6), we get

f(s) = Ψ(s)π2s+κ−m
2

Γ(m−κ
2
− s)

Γ(κ
2

+ s)
N2s

[
ζ(m− κ− 2s | x)− |x|s−

m−κ
2

]
.

Since x ∈ I, it follows from (1.8) and (1.19) that

|f(σ1 + it)| < C(|t|
m
2

+ε−α−1 + 1)N−κ−ε
∑

06=n∈Zm
|n|−m−ε

≤ C1

ε
(|t|

m
2

+ε−α−1 + 1)N−κ−ε.

Therefore, if T0 ≥ T , then

|j(x)| ≤ 1

2π

2T0∫
−2T0

C1ε
−1N−κ−ε

(
|t|

m
2

+ε−α−1 + 1
)
dt ≤ C2ε

−1N−
κ+ε
2 . (1.41)
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In the case where T0 < T we introduce a partition of unity by means of the function Φ0(t) ∈
C[−∞,∞], subject to conditions: a) 0 ≤ Φ0(t) ≤ 1, b) Φ0 ≡ 0 for t ≤ 1

2
, and c) Φ0 ≡ 1 for

t ≥ 1. Further, set Φ(t) = Φ0( t
T0

) and Φ̃(t) = 1− Φ(t). Then

j(x) =
1

2π

2T∫
−2T

Φ(t)ξ(σ1 + it)f(σ1 + it) dt+
1

2π

T0∫
−T0

Φ̃(t)ξ(σ1 + it)f(σ1 + it) dt.

Taking into account the preceding estimates, we obtain

j(x) =
1

2π

2T∫
−2T

Φ(t)ξ(σ1 + it)f(σ1 + it) dt+O(ε−1N−
κ+ε
2 )

or

j(x) = Re

 1

π

2T∫
T0

Φ(t)ξ(σ1 + it)f(σ1 + it) dt

+O(ε−1N−
κ+ε
2 ).

Due to the classical asymptotic formula for the gamma-function, if | arg s| ≤ π − δ, δ > 0,
and |s| is large,

log Γ(s) = (s− 1

2
) log s− s+

1

2
log 2π +

q0∑
ν=1

(−1)ν−1

(2ν − 1)2ν
Bνs

−2ν+1 +O(s−2q0−1),

where log s is the branch of the logarithm positive for s > 1, and Bj, 1 ≤ j ≤ q0, are the
Bernoulli numbers. By a simple calculation, we derive from this

Ψ(s) = π2s+κ−m
2

Γ(α + 1)Γ(s)Γ(m−κ
2
− s)

Γ(α + 1 + s)Γ(κ
2

+ s)

= π2s+κ−m
2

Γ(α + 1)

sα+1
exp

{
−m− 1

2
πi+ (2 + πi)(

κ

2
+ s)

+ (
m

2
− κ− 2s) log(

κ

2
+ s)

} [ q−1∑
ν=0

Bν

sν
+O(s−q)

]
.

Setting s = σ1 + it for t >> 1, we get after simple calculations

Ψ(σ1 + it) = Atγ−1 exp
{

2it+ 2it log
π

t

}[ q−1∑
ν=0

αν
tν

+O(t−q)

]
, (1.42)

where

A = π−
m
2
−εΓ(α + 1) exp

{
−πi

2

(m
2

+ α
)}

(1.43)

and

γ =
m

2
+ ε− α. (1.44)

Note also that α0 = 1.
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Setting q = [γ] + 2 in formula (1.42), we will use that formula for transforming the integral
j(x). After simple calculations, we obtain

j(x) = N2σ1Re

{
A

∑
06=n∈Zm

|n+ x|−m−ε 1

π

2T∫
T0

Φ(t)ξ(σ1 + it)tγ−1

× exp(2iϕn(t))

q−1∑
ν=0

αν
tν
dt

}
+O(ε−1N−

κ+ε
2 ), (1.45)

where

ϕn(t) = t+ t log
tn
t
, tn = π|n+ x|N.

On the interval [T, 2T ], we introduce the auxiliary polynomials

Pj(t) =
r∑

ν=0

χ(ν)(σ1−σ0
lT

+ 1 + j)

ν!

(
t− T − jT

T

)ν
+ j − 1, j = 0, 1,

and then extend the functions Pj(t) to (0,∞) by letting them be zero for t ∈ (0,∞) \ [T, 2T ].
We shall denote the obtained functions by Pj(t) as well. By means of the function Φ0(t), de�ned
in the beginning of this subsection, we introduce on (0,∞) the function

ξ∗(t) = ξ(σ1 + it)−
[
1− Φ0

(
2
t− T
T

)]
P0(t)−

[
1− Φ0

(
2

2T − t
T

)]
P1(t).

The following properties of ξ∗(t) are obvious: 1) ξ∗ ∈ C2(0,∞), 2)

ξ(ν)
∗ (t) = O(T−ν), ν = 0, 1, ..., r. (1.46)

It is easy to check that

Pj(t) = O(T r−l), j = 0, 1. (1.47)

Choose l so large that r = [ l
2
] >> 4([γ] + 2). If we replace the function ξ(σ1 + it) by ξ∗(t) in

the integral in (1.45), the error we make will not exceed O(ε−1N−
κ+ε
2 ) by (1.47). Applying then

Proposition 1.5 to the obtained integral and setting ωm = π
2
(m+1

2
+ α), we will �nd that

j(x) =
Γ(α + 1)

πα+1
N

m−1
2
−α−κ

× Re
∑

|n+x|≤ 2
π
T
N

n 6=0

exp{2πiN |n+ x| − iωm}
|n+ x|m+1

2
+α

q−1∑
ν=0

αν(|n+ x|)
(|n+ x|N)ν

+O(ε−1N−
κ+ε
2 ), (1.48)

where αν(|n+ x|) is a linear combination of the quantities

ξ(µ)
∗ (π|n+ x|N), µ = 0, ..., 2ν,

with

α0(|n+ x|) = ξ∗(π|n+ x|N). (1.49)
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Recall that

q = [
m

2
+ ε− α] + 2. (1.50)

Formulas can be given for calculating αν(|n+x|) but they are cumbersome enough if π|n+x|N >
T , and we will not dwell on them.

Let us now proceed to transforming the integral J̃0(x) in (1.32). The Cauchy theorem yields

J̃0(x) = Φ̃

(
m− κ

2

)
AmN

m−κ + η(κ, x) +
1

2πi

σ1+i∞∫
σ1−i∞

Φ̃(s)η(κ+ 2s, x)N2sds.

Denoting the last integral by I(x) and applying the functional equality, we obtain

I(x) =
∑

06=n∈Zm

πκ−
m
2

|n+ x|m−κ
1

2πi

σ1+i∞∫
σ1−i∞

Φ̃(s)
Γ(m−κ

2
− s)

Γ(κ
2

+ s)
(π2|n+ x|2N2)s ds.

Since Φ̃(s) decreases faster than any power of |t|−1, the line of integration can be shifted to the
left arbitrarily far away. Therefore,

|I(x)| ≤ CµN
−µ,

where any arbitrary positive quantity can be taken as µ, and Cµ is a constant depending only
on µ. Thus,

J̃0(x) = Φ̃(
m− κ

2
)AmN

m−κ + η(κ, x) +O(N−µ). (1.51)

6. Let us �nd the asymptotics of the integral J1(x) and of the integral

j1(x) =
1

2πi

σ1+2iT∫
σ1−2iT

ξ(s)g(s) ds.

In virtue of the calculations of Subsection 5 for t0 ≥ T0, where t0 = π|x|N ,

j1(x) =
Γ(α + 1)N

m−1
2
−α−κ

πα+1|x|m+1
2

+α
Re exp{2πi|x|N − iωm}

q−1∑
ν=0

αν(|x|)
(|x|N)ν

+O(Ω(N, x)), (1.52)

with Ω(N, x) = ε−1N−
κ+ε
2 . If 1 << t0 < T0, then only Ω will change in the last formula. To

prove this, it su�ces to observe that taking t0
2
in place of T0 in the calculations of Subsection

5 and, in accordance with this, setting Φ(t) = Φ0(2t
t0

) and Φ̃(t) = 1 − Φ(t), we get that for the
integral

1

2π

2T∫
−2T

Φ(t)ξ(σ1 + it)g(σ1 + it) dt

asymptotic formula (1.52) holds, with

Ω(N, x) = N
m−1

2
−α−κ−q−1|x|−

m+1
2
−α−q−1.
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It is easy to see that

1

2π

t0
2∫

− t0
2

Φ̃(t)g(σ1 + it) dt = O(N−κ−ε|x|−m−ε). (1.53)

Indeed, for this, it su�ces to observe that

dν

dtν

{
Φ̃(t)Ψ(σ1 + it)

Γ(m−κ
2
− σ1 − it)

Γ(κ
2

+ σ1 + it)

}
= O

[
(|t|+ 1)γ−ν−1

]
,

where γ is given by formula (1.44). Therefore, from Proposition 1.2 estimate (1.53) follows, and
taking q so that

q + 1 ≥ m− 1

2
+ ε,

we conclude in the general case that

Ω(N, x) = ε−1N−
κ+ε
2 +N−κ−ε|x|−m−ε. (1.54)

Consider now the integral J1(x). It is clear that

J1(x) =
1

2πi

σ2+i∞∫
σ2−i∞

g(s) ds− AmNm−κ + J11(x),

where the quantity σ2 satis�es the inequalities 0 < σ2 <
m−κ

2
and

J11(x) =
1

2π

∞∫
−∞

[θ(t)− 1]g(σ0 + it) dt.

If m
4
− κ

2
− 1

4
< Res < m−κ

2
, then the classical Weber formula in the theory of Bessel functions

gives
∞∫

0

Jm
2
−1(t)t

m
2
−κ−2sdt = 2

m
2
−κ−2sΓ(m−κ

2
− s)

Γ(κ
2

+ s)
,

and hence the convolution theorem for the Mellin transform yields

J1(x) =
(2π)κ−

m
2

|x|m−κ

2π|x|N∫
0

(
1− t2

(2π|x|N)2

)α
Jm

2
−1(t)t

m
2
−κ dt

− AmNm−κ + J11(x). (1.55)

It is easy to see that for |t| ≥ T ,

dν

dtν

{
[θ(t)− 1]Ψ(σ0 + it)

Γ(m−κ
2
− σ0 − it)

Γ(κ
2

+ σ0 + it)

}
= O(|t|−β−ν−1),

where β = m
2

+ α + ε. Therefore, by Proposition 1.2,

J11(x) = O
{
Nm−κ+ε|x|εT−β−ν | log(π|x|N)|−ν

}
,



On the mean convergence of multiple Fourier series 41

which yields, by choosing an appropriate ν,

J11(x) = O

{
Nm−κ T−

m
2
−α−ε

(1 + T | log(πN |x|)|)m

}
. (1.56)

The �nal formula for the integral J(x) will be obtained on the basis of (1.35), (1.38), (1.48),
(1.55) and (1.56). Moreover, it is advisable to specify the case where condition (1.39) is valid.
Set

LαN(x) =
Γ(α + 1)

πα+1
N

m−1
2
−α−κ

× Re
∑

|n+x|≤ 2
π
TN−1

exp{2πiN |n+ x| − iωm}
|n+ x|m+1

2
+α

q∑
ν=0

αν(|n+ x|)
(|n+ x|N)ν

and

L̃αN(x) = LαN(x)− Γ(α + 1)N
m−1

2
−α−κ

πα+1|x|m+1
2

+α
Re

{
exp[2πiN |x| − iωm]

q∑
ν=0

αν(|x|)
(|x|N)ν

}
.

In this notation

J(x) = 2πN
m
2
−κ+1|x|−

m
2

+1

1∫
0

(1− u2)αJm
2
−1(2πN |x|u)u

m
2
−κ du

+L̃αN(x) +

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x)

+O{ε−1N−
ε
2 +Nm−κT−

m
2
−α−ε}. (1.57)

If condition (1.39) is valid, that is,
N |x| ≥ C0,

then, by (1.40), (1.48), (1.57) and (1.60),

J(x) = L̃αN(x) +

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x)

+O
{
ε−1N−

ε
2 +N−κ−ε|x|−m−ε +Nm−κT−

m
2
−α−ε} . (1.58)

Now, (1.29) and (1.57) imply the basic relation

SαN,κ(x) = 2πN
m
2
−κ+1|x|−

m
2

+1

1∫
0

(1− u2)αJm
2
−1(2πN |x|u)u

m
2
−κ du

+L̃αN(x) +Rα
N(x) +

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x)

+O

{
ε−1N−

ε
2 +

Nm−κT−
m
2
−α−ε

(1 + T | log(πN |x|)|)m

}
. (1.59)

If here |x| ≥ C0N
−1, then

SαN,κ(x) = L̃αN(x) +Rα
N(x)

+

[κ+ε
2

]∑
ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x)

+O{ε−1N−
ε
2 +Nm−κT−

m
2
−α−ε +N−κ−ε|x|−m−ε}. (1.60)
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7. The integral J̃1(x) in (1.32) is calculated in a trivial way. Indeed,

J̃1(x) = −Φ̃

(
m− κ

2

)
AmN

m−κ − 1

2πi

σ2+i∞∫
σ2−i∞

Φ̃(s)h(s, x)N2sds.

Applying, as above, the Weber formula and the convolution theorem, we obtain

J̃1(x) = 2π
N

m
2
−κ+1

|x|m2 −1

1∫
0

Jm
2
−1(2πN |x|t)t

m
2
−κΦ(t2) dt− Φ̃

(
m− κ

2

)
AmN

m−κ.

In virtue of (1.32), (1.51) and the last formula, it turns out that

VN(x) = 2π
N

m
2
−κ+1

|x|m2 −1

1∫
0

Jm
2
−1(2πN |x|t)t

m
2
−κΦ(t2) dt

+ η(κ, x) +O(N−µ). (1.61)

If |x| ≥ C0N
−1, then the integral J̃1(x) can be processed in the same way as the integral J̃0(x).

Hence,

VN(x) = ζ(κ, x) +O(|x|κ−µNm−µ), (1.62)

where any arbitrarily large �xed quantity can be taken as µ.

� 2

1. Let us consider the question of the boundedness in the Lp metrics of the Riesz means
SαN(x).

We shall need a few simple statements of auxiliary nature concerning the asymptotics of the
number of integer solutions of the Diophantine equation

n2
1 + ...+ n2

m = k,

denoted above by rm(k).

Proposition 2.1. For an arbitrary small quantity δ > 0,

rm(k) ≤ Cm,δk
m
2
−1+δ. (2.1)

Proof. By a classical result,

r2(k) = 4
∑
d|k

(−1)
d−1
2 ,

where the sum is taken over the odd divisors of k. If τ(k) denotes the number of divisors, it
follows from this that

r2(k) ≤ 4τ(k).

The next argument concerning the estimate of τ(k) can be found in [12]. Let p1, ..., pν be the
prime divisors of k, so that k = pα1

1 . . . pανν . Then, as is known, τ(k) = (α1 + 1)...(αν + 1), and

τ(k)

kδ
=
∏ αj + 1

p
δαj
j

≤ Cδ,
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since for p > 2
1
δ , the inequality holds

α + 1

pαδ
≤ 1,

while for an arbitrary p, there holds α+1
pαδ
≤ 1

δ
. Thus, (2.1) holds true for m = 2, where from the

general case can easily be derived by induction. Indeed, for m > 2,

rm(k) =
∑
|ν|≤
√
k

rm−1(k − ν2) ≤ Cm−1,δ

∑
|ν|≤
√
k

(k − ν2)
m−1

2
−1+δ

≤ Cm−1,δk
m−1

2
−1+δ

∑
|ν|≤
√
k

1 ≤ Cm,δk
m
2
−1+δ,

where 3Cm−1,δ can be taken as Cm,δ. �

Remark. The bound (2.1) is can be easily proved for m > 4, since it is well known, [14], that

rm(k) =
π
m
2

Γ(m
2

)
k
m
2
−1Sm(k) +O(k

m
4 ), m ≥ 4,

where Sm(k) is a so-called special series, and if m > 4, then Sm(k) ≤ Cm.

Proposition 2.2. Let τ > 0, 0 < γ < 1 and υ ≥ 2. Then∑
1
4
N2≤k≤4N2

rγm(k)

(τ |N2 − k|+ 1)υ
≤ C(1 + τ−1)N2γ(m

2
−1+δ). (2.2)

Proof. The following chain of inequalities holds, each step of which is obvious:

∑
1
4
N2≤k≤4N2

rγm(k)

(τ |N2 − k|+ 1)υ
≤ C1N

2γ(m
2
−1+δ)

∞∑
k=−∞

1

(τ |N2 − k|+ 1)υ

≤ C1N
2γ(m

2
−1+δ)

[
2 + 2

∞∑
1

1

(kτ + 1)υ

]

≤ 2C1N
2γ(m

2
−1+δ)

1 +

∞∫
0

dx

(τx+ 1)υ

 ≤ 2C1

(
1 +

1

τ(υ − 1)

)
N2γ(m

2
−1+δ),

�

Proposition 2.3. The relation holds

∑
′

0≤k≤N2

rm(k) =
π
m
2

Γ(m
2

+ 1)
Nm +O

(
N

(m−1)m
m+1

+δ
)
. (2.3)

Proof. We will make use of formula (1.59) in � 1, with α = κ = 0, by setting x = 0 in it.
Elementary calculations yield then

∑
′

0≤k≤N2

rm(k) =
π
m
2

Γ(m
2

+ 1)
Nm + L̃0

N(0) +R0
N(0)

+O(1 + ε−1N−
ε
2 +NmT−

m
2
−ε). (2.4)



44 K.I. Babenko

It is easy to see that

|L̃0
N(0)| ≤ C1N

m−1
2

∑
0<|n|≤TN−1

|n|−
m+1

2

≤ C2N
m−1

2

∫
|x|≤2TN−1

dx

|x|m+1
2

≤ C3T
m−1

2 . (2.5)

Since

|R0
N(0)| ≤ 2m+ε

∑
1
4
N2≤k≤4N2

rm(k)

∣∣∣∣Ψ0

(
T log

N2

k
, T

)∣∣∣∣ ,
it follows from inequalities (1.25), (1.26) in � 1 and Proposition 2.2 that

|R0
N(0)| ≤ CNm−2+2δ(1 +N2T−1). (2.6)

Setting T = N
2(m+2δ)
m+1 and taking into account that δ is arbitrary, we derive (2.3) from (2.4)�

(2.6).

Proposition 2.4. If τ ≤ N−
2

m+1
−δ and υ ≥ 2, then∑

1
4
N2≤k≤4N2

rm(k)

(τ |N2 − k|+ 1)υ
≤ CNm−2τ−1. (2.7)

Proof. Set

σν =
∑

′

N2− ν
τ
<k≤N2− ν−1

τ

rm(k), ων =
∑

′

N2+ ν−1
τ
≤k<N2+ ν

τ

rm(k),

where the prime ′ after the summation sign means that the summands corresponding to the
minimal and to the maximal values of k are taken with the factor 1

2
. It is easy to see that

∑
1
4
N2≤k≤4N2

rm(k)

(τ |N2 − k|+ 1)υ
≤ 2

3
4
τN2+1∑
ν=1

σν

νυ
+ 2

3
4
τN2+1∑
ν=1

ων

νυ
. (2.8)

Since, by Proposition 2.3,

σν = O(Nm−2τ−1), ων = O(Nm−2τ−1),

inequality (2.7) follows from (2.8) in an obvious way. �

2. In what follows, we shall consider 1 ≤ p ≤ 2, and denote the Lp-norm of the function
f(x), de�ned on the interval I, by ‖f‖. Let E ⊆ I be an arbitrary Lebesgue measurable set,
χ(x) be its characteristic function, and |E| be its measure. By the triangular inequality,

‖χRα
N(x)‖ ≤ 2m+εN−κT−α

∑
1
4
N2≤k≤4N2

∣∣∣∣Ψα(T log
N2

k
, T )

∣∣∣∣
× ‖χ

∑
|n|2=k

exp(2πin · x)‖.
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H�older's inequality gives

‖χ
∑
|n|2=k

exp(2πin · x)‖ ≤ |E|
2−p
2p r

1
2
m(k).

Applying estimates (1.25) and (1.26) in � 1 and Proposition 2.2, with γ = 1
2
, we obtain

‖χRα
N‖ ≤ CN

m
2

+1−κ+δT−1−α|E|
2−p
2p . (2.9)

3. Let us proceed to the study of the function LαN(x). Let ψ(x) ∈ C∞(−∞,∞) satisfy the
conditions: a) ψ(x) ≡ 0 if x ≤ 1

2
and b) ψ(x) ≡ 1 if x ≥ 1. Let M be a quantity to be

speci�ed further, and let

ϕ(|n+ x|) = ψ

(
|n+ x|
M

) q∑
ν=0

aν(|n+ x|)
(|n+ x|N)ν

. (2.10)

Set

Φ(x) = Re
∑

|n+x|≤ 2T
πN

exp{2πiN |n+ x| − iωm}
|n+ x|m+1

2
+α

ϕ(|n+ x|) (2.11)

and

Ψ(x) = Re
∑

|n+x|≤M

[
1− ψ

(
|n+ x|
M

)]
exp{2πiN |n+ x| − iωm}

|n+ x|m+1
2

+α

×
q∑

ν=0

aν(|n+ x|)
(|n+ x|N)ν

. (2.12)

Then

LαN(x) =
Γ(α + 1)

πα+1
N

m−1
2
−α−κ [Φ(x) + Ψ(x)]. (2.13)

While estimating ‖LαN‖, essential and the most complicated is the estimate of the integral

j =

∫
I

|Φ(x)|2dx.

Expand Φ(x) in the Fourier series

Φ(x) =
∑
ν∈Zm

cν exp(2πiν · x).

In virtue of Parseval's equality,

j =
∑
ν∈Zm

|cν |2, (2.14)

and it remains to estimate the coe�cients cν . A simple calculation gives

cν =

∫
|x|≤R

exp[−2πiν · x]

|x|m+1
2

+α
Re {exp[2πiN |n+ x| − iωm]ϕ(|x|)} dx,
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where R = 2
π
TN−1. Let us pass to the polar coordinates in this integral and then, for simpli�-

cation, make use of the classical integral∫
Sm−1

exp{−2πirν · y} dωy = 2π
Jm

2
−1(2πr|ν|)

(r|ν|)m2 −1
,

where Sm−1 = {y : y ∈ Rm, |y| = 1} and dωy is the area element of this sphere. We remind the
reader that Jm

2
−1 is the Bessel function of index m

2
− 1. Thus,

cν =
2π

|ν|m2 −1
Re

R∫
1
2
M

Jm
2
−1(2π|ν|r)ϕ(r) exp[2πiNr − iωm]

dr

rα+ 1
2

, (2.15)

if ν 6= 0. For ν = 0, the last formula undergoes a trivial modi�cation. It follows from formula
(2.10), on the basis of the de�nition of functions aν , that ϕ ∈ Ck, where an arbitrary �xed
quantity can be taken as k, provided a natural l is chosen in an appropriate way in formula
(1.21) in � 1. It comes out from formula (1.21) in � 1 and de�nition of the function ψ that

ϕ(µ)(r) = O

[(
N

T

)µ
+M−µ

]
= O(1), 0 ≤ µ ≤ k, (2.16)

provided that T ≥ CN .
According to the asymptotic formula for the Bessel functions,

Jm
2
−1(x) =

(
2

πx

) 1
2

Re

{
ei[x−

π(m−1)
4

]

P∑
ν=0

αν
(2ix)ν

}
+O(x−P−

1
2 ), (2.17)

where αν are real-valued quantities, α0 = 1. Note also that

dµ

drµ
Jm

2
−1(2πr|ν|) = O(|ν|µ−

1
2 r−

1
2 ).

Hence, by Proposition 1.2,

cν = O

{
M−α|ν|−

m−1
2

(
|ν|
N

)k
log

R

M

}
,

and therefore if |ν| ≤ N1−δ,

cν = O(M−α|ν|
m+1

2 N−
m
2 ), c0 = O(N−

m
2 ). (2.18)

If |ν| ≥ N1−δ and | |ν| − N | ≥ 1
2
N, we will use relation (1.23), specifying the quantity P in an

appropriate way, and then apply Proposition 1.2. This results in

cν = O(M−α|ν|−
m−1

2 | |ν| −N |−k). (2.19)

It follows from (1.24) and (1.25) that

j =
∑

| |ν|−N |≤ 1
2
N

|cν |2 +O(N−mM−2α). (2.20)
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If | |ν| −N | < 1
2
N , then we get a satisfactory bound for cν by taking only the leading terms in

formulas (1.16) and (1.23). Thus,

cν =
2

|ν|m−1
2

Re

R∫
1
2
M

cos

(
2π|ν|r − π(m− 1)

4

)

× exp[2πiNr − iωm]ψ(
r

M
)a0(r)

dr

r1+α

+O(|ν|−
m+1

2 M−1−α).

We have, by formula (1.49) in � 1, that a0(r) = ξ∗(πrN), from which, in turn, in virtue of (1.47)
in � 1 and de�nition of the function ξ∗,

a0(r) = ξ(πrN) +O(T−1) = θ(πrN) +O(T−1) (2.21)

follows. Taking into account that the function θ is real-valued, we conclude that the real part
of the integrand will be equal to

cos

(
2π|ν|r − π(m− 1)

4

)
cos

[
2πNr − π

2

(
m+ 1

2
− α

)]
× ψ(

r

M
)θ(πrN)r−1−α

=
1

2
ψ(

r

M
)θ(πrN)r−1−α

{
sin[2π(N − |ν|)r +

π

2
α]

+ cos[2π(N + |ν|)r − π

2
(m− α)]

}
.

It is clear that the integral with the cosine will be O(|ν|−1M−1−α), thus taking into account
(2.21), we obtain

cν =
1

|ν|m−1
2

R∫
1
2
M

ψ(
r

M
)θ(πrN) sin[2π(N − |ν|)r +

π

2
α]

dr

r1+α

+O

{
M−α|ν|−

m+1
2

(
M−1 +

N

T
log

R

M

)}
,

with a constant in O independent of α. It is easy to see that the last integral is

O
{
M−α[1 +M | |ν| −N |]−1

}
,

with a constant in O independent of α. Hence,

|cν | ≤
C

|ν|m−1
2 Mα

{
[1 +M | |ν| −N |]−1 + |ν|−1

(
M−1 +

N

T
log

R

M

)}
.

It follows from this, by (2.20), that

j ≤ C1M
−2α

{ ∑
1
4
N2≤k≤4N2

rm(k)

[1 + M
N
|N2 − k|]2km−1

2

+

(
M−1 +

N

T
log

R

M

)2 ∑
1
2
N≤|ν|≤2N

1

|ν|m+1

}
+O(N−mM−2α).
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Since ∑
1
2
N≤|ν|≤2N

|ν|−m−1 ≤
∫

1
4
N≤|x|≤3N

|x|−m−1 dx ≤ C2

N
,

it follows for

M ≤ N
m−1
m+1

−δ, (2.22)

by Proposition 2.4, that

j ≤ C2M
−2α

{
M−1 +

(
M−1 +

N

T
log

R

M

)2

N−1

}
,

and since T ≥ CN , ∫
I

|Φ(x)|2dx ≤ C3M
−1−2α. (2.23)

As above, by means of H�older's inequality, we get

‖χΦ‖ ≤ C4|E|
2−p
2p M− 1

2
−α. (2.24)

4. Let us �nd the lower bound for ‖SαN(x)‖. We will assume that p ∈ [1, 2m
m+1

]. For each
p, de�ne the critical order αp by

αp =
m

p
− m+ 1

2
.

In the sequel we shall assume that

α ≤ αp.

Restricting ourselves to the case E ⊆ T \ {x : |x| ≤ C0N
−1} so far, we make use of the formula

(1.60) in � 1, putting T = N2 in it. Take the constant C0 large enough to have, for |x|N ≥ C0,∣∣∣∣∣
q∑

ν=1

aν(|x|)
(|x|N)ν−1

∣∣∣∣∣ ≤ 2 max |a1| = Cm. (2.25)

It is easy to see that (1.5) in � 1 yields∣∣∣∣∣∣
[κ+ε

2
]∑

ν=0

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x)

∣∣∣∣∣∣ ≤ Am|x|−m+κ. (2.26)

By estimates (2.9) and (2.24) and inequality (2.26), it follows from (1.60) by means of the
triangular inequality that

‖χSαN‖ ≤
Γ(α + 1)

πα+1
N

m−1
2
−α−κ‖χΨ‖+ J (2.27)

and

‖χSαN‖ ≥
Γ(α + 1)

πα+1
N

m−1
2
−α−κ‖χΨ‖ − J, (2.28)
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where

J = C|E|
2−p
2p N

m−1
2
−α−κ[N δ−1−2α +M− 1

2
−α]

+ Am

∫
I

χ(x)|x|−p(m−κ)dx

 1
p

+ CN−κ−ε

∫
I

χ(x)|x|−p(m+ε)dx

 1
p

+ Cε|E|
1
pN−

ε
2 . (2.29)

It is easy to check that the estimates hold∫
I

χ(x)|x|−p(m+ε)dx ≤ vm−1

p(m+ ε)−m

(
N

C0

)p(m+ε)−m

(2.30)

and ∫
I

χ(x)|x|−p(m−κ)dx ≤ vm−1

m− p(m− κ)
[1− (C0N

−1)m−p(m−κ)], (2.31)

where vm−1 is the volume of the m− 1 dimensional unit sphere. Keeping in mind that N �M
and taking into account the last two inequalities, we obtain

‖χSαN‖ ≥
Γ(α + 1)

πα+1
N

m−1
2
−α−κ

{
‖χΨ‖ − C1|E|

2−p
2p M− 1

2
−α

− C1C
−(1− 1

p
)m−ε

0 Nα−αp
}
− C1

[
1− (C0N

−1)γm

γm

] 1
p

− Cε|E|
1
pN−

ε
2 , (2.32)

where γm = m− p(m− κ).
Let us estimate ‖χΨ‖ from below. Since∣∣∣∣∣∣∣Re

∑
|n+x|≤M
n 6=0

[
1− ψ

(
|n+ x|
M

)]
exp[2πiN |n+ x| − iωm]

|n+ x|m+1
2

+α

q∑
ν=0

aν(|n+ x|)
(|n+ x|N)ν

∣∣∣∣∣∣∣
≤ B′m

∑
0<|n|≤M+

√
m

|n|−
m+1

2
−α ≤ BmM

m−1
2
−α, (2.33)

it follows from formula (2.12) and inequality (2.25) that

‖χΨ‖ ≥ J0 − J1, ‖χΨ‖ ≤ J0 + J1,

where

J0 =

∫
I

χ(x) |cos[2πN |x| − ωm]|p |x|−p(
m+1

2
+α) dx

 1
p

and

J1 =
Cm
C0

∫
I

χ(x) |x|−p(
m+1

2
+α) dx

 1
p

+ C|E|
1
pM

m−1
2
−α.
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Considering ∆ to be a small constant, we take in the previous formulas the spherical layer

E = {x : C0N
−1 ≤ |x| ≤ ∆}

as E . It is easy to see that the following relations take place:

Jp0 ≥ vm−1

∆∫
C0N−1

ρp(αp−α)−1 cos2[2πNρ− ωm] dρ

=
vm−1

2

∆p(αp−α) − (C0N
−1)p(αp−α)

p(αp − α)

+
vm−1

2
N−p(αp−α)

N∆∫
C0

ρp(αp−α)−1 cos[4πρ− 2ωm] dρ.

From this, by means of simple calculations, we obtain for N ≥ N0,

Jp0 ≥
vm−1

4

∆p(αp−α) − (C0N
−1)p(αp−α)

p(αp − α)
.

Set

ΨN,α =

[
1− (C0∆−1N−1)p(αp−α)

p(αp − α)

] 1
p

v
1
p

m−1.

Thus,

‖χΨ‖ ≥ ∆αp−α(4−
1
p − CmC−1

0 )ΨN,α − C1∆
m
pM

m−1
2
−α.

Take relation (2.32), with ε = 1, and make use of the last inequality. Then

‖χSαN‖ ≥ AN
m−1

2
−α−κ

[
∆αp−αΨN,α −B∆m 2−p

2p M− 1
2
−α

−B∆
m
pM

m−1
2
−α −BC−1

0 Nα−αp
]
− C1

[
1− (C0N

−1)γm

γm

] 1
p

− C2∆
m
p N−

1
2 .

Consider the expression in the brackets. After elementary transformations, it can be written as

∆αp−α
[
ΨN,α −B∆−α−

1
2M− 1

2
−α(1 +M

m
2 ∆

m
2 )
]
−BC−1

0 Nα−αp .

Taking ∆ = M−1 and choosing M large enough, we conclude that, for N ≥ N0, the last
expression will be not less than

1

2
∆αp−αΨN,α.

Assuming that

m− 1

2
− α− κ ≥ 0, (2.34)

we obtain, for N ≥ N0,

‖SαN‖ ≥ A0

[
1−N−p(αp−α)

p(αp − α)

] 1
p

N
m−1

2
−α−κ − C1

[
1− (C0N

−1)γm

γm

] 1
p

. (2.35)
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5. Let us introduce the Lebesgue constants of spherical means of periodic functions in the
Lp class. If f ∈ Lp, we will denote by SαN(x, f) the Riesz mean of order α of a function f . We
will call the quantity

Λp(N,α) = sup
‖f‖≤1

‖SαN(x, f)‖

the Lebesgue constant of these means. It is well known that if p ≥ 1, 1
p′

+ 1
p

= 1, then

Λp′(N,α) = Λp(N,α). (2.36)

By this, it su�ces to consider the case 1 ≤ p ≤ 2. The critical order αp has been de�ned above
for p ∈ [1, 2m

m+1
]. For p′ ∈ [ 2m

m−1
,∞), set

αp′ =
m− 1

2
− m

p′
= αp.

Theorem 2.1. If p ∈ [1, 2m
m+1

], 0 ≤ α ≤ αp, then

Λp(N,α) = Λp′(N,α) ≥ A

[
Np(αp−α) − 1

p(αp − α)

] 1
p

. (2.37)

Proof. Let p ∈ [1, 2m
m+1

]. Let us specify some quantity κ so that

m− p(m− κ) < 0.

We de�ne SαN,κ(x) and V2N(x) according to this κ. Setting f(x) = V2N (x)
‖V2N‖

, we derive that

SαN(x, f) =
1

‖V2N‖
SαN,κ(x).

Therefore,

Λp(N,α) ≥
‖SαN,κ‖
‖V2N‖

. (2.38)

Let us estimate ‖V2N‖ from above by making use of relations (1.61) and (1.62) in � 1. It follows
from (1.61) in � 1 that for N |x| ≤ C0,

|V2N(x)| ≤ CNm−κ,

and from (1.62) in � 1 and (1.3) in � 1 it follows that for N |x| ≥ C0,

|V2N(x)| ≤ C
[
|x|−m+κ + |x|κ−µNm−κ] .

Hence,

‖V2N‖p ≤ C1N
p(m−κ)−m + C1

∫
CN−1≤|x|≤1

[
|x|−(m−κ)p + |x|p(κ−µ)Np(m−κ)

]
dx

≤ C2
N (m−κ)p−m

(m− κ)p−m
,
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where the constant C2 depends only on m and p. The last estimate and inequalities (2.35) and
(2.38) give (2.37). �

Remark 1. It is quite probable that inequality (2.37) is sharp in power degree and

Λp(N,α) ≤ B

[
Np(αp−α) − 1

p(αp − α)

] 1
p

.

However, we have failed to prove this in the whole range. Mention that it is easy to do this for
p =∞. It is clear that

Λ∞(N,α) =

∫
I

|Dα
N(x)| dx,

where Dα
N(x) is de�ned from formula (1.16) in � 1 by letting κ = 0.

Theorem 2.2. If 0 ≤ α ≤ α1 = m−1
2

, then

A
Nα1−α − 1

α1 − α
≤ Λ∞(N,α) ≤ B

Nα1−α − 1

α1 − α
. (2.39)

Proof. It su�ces for us to establish the right inequality in (2.39), since the left one is contained
in (2.37) as a particular case. Note that

|Dα
N(x)| ≤ CNm,

therefore ∫
|x|≤C0N−1

|Dα
N(x)| dx ≤ C1. (2.40)

To estimate the integral over the domain E = I \ {x : |x| ≤ C0N
−1}, let us apply inequality

(2.27), with κ = 0 and M = 1 in it. It follows from (2.29) that

J ≤ C2(Nα1−α + logN). (2.41)

The upper estimate for ‖χΨ‖ is trivial, and we get

‖χΨ‖ ≤ C3
1−N−(α1−α)

α1 − α
. (2.42)

The right inequality in (2.39) follows now from (2.27) by (2.40), (2.41) and (2.42). �

Remark 2. It could be tempting to �nd an asymptotics of Λ∞(N,α), but this question seems
to be extremely di�cult.

� 3

1. Let us apply previous results to the problem of divergence almost everywhere of multiple
Fourier series. Consider the means of a function

ζ(κ, x) =
∑

06=n∈Zm
|n|−κ exp(2πin · x) =

∞∑
k=1

k−
κ
2

∑
|n|2=k

e2πin·x. (3.1)
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Theorem 3.1. If p ∈ [1, 2m
m+1

), α < αp and κ satis�es the inequalities

m− m

p
< κ <

m− 1

2
− α, (3.2)

then ζ(κ, x) ∈ Lp, and its spherical means of order α diverge almost everywhere.

Proof. If the left inequality in (3.2) holds, then ζ(κ, x) ∈ Lp trivially follows from (1.4) and (1.5)
in � 1. If we show that for an arbitrary measurable set E ⊂ I, |E| > 0,

lim
N→∞

∫
E

|SαN(x)|p dx =∞, (3.3)

then the divergence almost everywhere of the SαN(x) means will be proved. Indeed, if the sequence
{SαN(x)} converges on a set E0, |E0| > 0, then the Egorov theorem yields the uniform convergence
on a set E ⊂ E0, such that |E| > |E0|−ε > 0, and thus (3.3) is invalid for this E . This contradiction
proves the divergence almost everywhere of the sequence {SαN(x)}. Note that it su�ces to prove
(3.3) only for sets E which do not intersect with a small enough neighborhood of the point x = 0.
So, the following will be devoted to the proof of (3.3). Make use of the relation (2.32) in � 2, in
which χ is the characteristic function of E . It is clear that

lim
N→∞

N−
m−1

2
+α+κ‖χSαN‖ ≥

Γ(α + 1)

πα+1

{
lim
N→∞

‖χΨ‖ − C1|E|
2−p
2p M− 1

2
−α
}
, (3.4)

and it remains to study lim
N→∞

‖χΨ‖. Since the quantity M is �xed, we have, by (1.49) in � 1 and

(2.12) in � 2,

Ψ(x) =
∑

|n+x|≤M

[
1− ψ

(
|n+ x|
M

)]
cos(2πN |n+ x| − ωm)

|n+ x|m+1
2

+α
+O(N−1),

and, consequently,

‖χΨ‖ ≥
∫
I

χ(x)Ψ(x) cos(2πN |x| − ωm) dx

=

∫
I

χ(x)
cos2(2πN |x| − ωm)

|x|m+1
2

+α
dx+ j +O(N−1), (3.5)

where

j =

∫
I

χ(x) cos(2πN |x| − ωm)
∑
|n|6=0

[
1− ψ

(
|n+ x|
M

)]

× cos(2πN |n+ x| − ωm)

|n+ x|m+1
2

+α
dx.

In order to estimate the obtained integrals, we shall prove a few simple statements.

2.

Proposition 3.1. If f(x) is integrable on Rm, then

lim
λ→∞

∫
Rm

f(x) exp(iλ|x|) dx = 0. (3.6)
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Proof. It is clear that ∫
Rm

f(x) exp(iλ|x|) dx =

∞∫
0

g(ρ) exp(iλρ) dρ,

with

g(ρ) = ρm−1

∫
|x|=ρ

f(x) dvm−1,

where dvm−1 is the element of the volume of the m−1 dimensional unit sphere. Therefore, (3.6)
follows from the classical Riemann-Lebesgue theorem. �

Proposition 3.2. If n 6= 0, then

lim
N→∞

∫
I

[
1− ψ

(
|n+ x|
M

)]
cos(2πN |x| − ωm) cos(2πN |n+ x| − ωm)

|n+ x|m+1
2

+α

× χ(x) dx = 0. (3.7)

Proof. Since the system {exp[2πiν · x]} is dense in L(I), we will have (3.7) if for any ν ∈ Zm,

lim
N→∞

∫
I

[
1− ψ

(
|n+ x|
M

)]
e2πiν·x

× cos(2πN |x| − ωm) cos(2πN |n+ x| − ωm)

|n+ x|m+1
2

+α
dx = 0.

Let

JN =

∫
I

F (x) exp{2πif±(x)} dx,

where

f±(x) = |x| ± |n+ x|+ νx

N
, F (x) =

1− ψ( |n+x|
M

)

|n+ x|m+1
2

+α
.

First of all, note that if g±(x) = |x| ± |n + x|, then grad g±(x) = 0 if and only if x = tn,
−∞ < t < ∞. Hence, if we construct a cylinder with axis x = tn based on the ball |x| ≤ h
of a su�ciently small radius, and then remove from I the corresponding part of the indicated
cylinder, then in the remaining set Ih

min
x∈Ih
|gradf±(x)| = δ > 0,

provided N ≥ N0(ν). Mention also that if x ∈ Ih, then∣∣∣∣∂2f±(x)

∂xl∂xk

∣∣∣∣ ≤ C, k, l = 1, ...,m.

Make use of the obvious identity

exp[2πiNf±(x)] = − 1

4π2N2

∆[exp(2πiNf±(x))]

|gradf±(x)|2
− i

2πN

∆f±(x)

|gradf±(x)|2
e2πiNf±(x),
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where ∆ is the Laplace operator. This yields

JN,h =

∫
Ih

F (x) exp[2πiNf±(x)] dx

=− 1

4π2N2

∫
Ih

F (x)
∆[exp(2πiNf±(x))]

|gradf±(x)|2
dx+O(N−1).

Making obvious transforms, we obtain∫
Ih

F (x)
∆[exp(2πiNf±(x))]

|gradf±(x)|2
dx

= −
∫
Ih

F (x)
m∑

k,l=1

∂

∂xl

(
e2πiNf±(x)

) ∂

∂xk

(
1

|gradf±(x)|2

)
dx+O(N)

= O(N)

∫
Ih

( m∑
k,l=1

∣∣∣∣∂2f±(x)

∂xk∂xl

∣∣∣∣2) 1
2 dx

|gradf±(x)|2
+O(N) = O(N).

Thus,
JN,h = O(N−1),

and since
JN = JN,h +O(hm),

we have lim
N→∞

JN = 0, by the arbitrariness of h, and hence, in turn, relation (3.7) holds true. �

3. It follows from Proposition 3.2 that

lim
N→∞

j = 0,

and by Proposition 3.1,

lim
N→∞

∫
I

χ(x)
cos2(2πN |x| − ωm)

|x|m+1
2

+α
dx =

1

2

∫
I

χ(x)
dx

|x|m+1
2

+α
.

Therefore, it follows from (3.5) that

lim
N→∞

‖χΨ‖ ≥ 1

2

∫
I

χ(x)
dx

|x|m+1
2

+α
,

and from (3.4) we derive, by the arbitrariness of M ,

lim
N→∞

N−
m−1

2
+α+κ‖χSαN‖ ≥

Γ(α + 1)

2πα+1

∫
I

χ(x)

|x|m+1
2

+α
dx,

which proves (3.3) and hence the theorem. �

Remark. In the plane of the variables α and p∗ consider the set Rm by relating to it the points
(α, p), p ≥ 1, for which f(x) ∈ Lp exists such that the Riesz means of order α diverge almost
everywhere.
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If m = 1, then the known result due to A.N. Kolmogorov asserts that (0, 1) ⊆ R1. As is now
became known, the set R1 consists of one point. For m ≥ 2, the picture is essentially di�erent.
In virtue of the proven above,

Rm ⊃
{
α, p : 0 ≤ α < αp, 1 ≤ p <

2m

m+ 1

}
.

In our next work we shall study the set of the points{
α, p : α = αp, 1 ≤ p ≤ 2m

m+ 1

}
.

It is quite possible that the conjecture

Rm =

{
α, p : 0 ≤ α ≤ αp, 1 ≤ p ≤ 2m

m+ 1

}
can be proved in a�rmative.

� 4

1. The results in � 2 shed light on the problem of summability by the Riesz means of order
α < m−1

2
. It is well known that if α > m−1

2
, then the Fourier series of a continuous function is

uniformly summable by the means of order α. This is not the case for α < m−1
2
, and additional

constraints should be posed on the function for the summability to take place.
We will consider one type of such constraints connected with the extension of the fractional

di�erentiation to the case of many variables. More precisely, we will consider the classes of
periodic function which admit the representation

f(x) = a0 +
1

(2π)κ

∫
I

g(ξ)ζ(κ, x− ξ) dξ, (4.1)

where g(ξ) ∈ Lp(I), p ≥ 1.

Theorem 4.1. If f(x) is representable in form (4.1), where g(ξ) ∈ Lp(I), p > m
κ
, κ ≤ m−1

2
,

then the Fourier series of the function f(x) is uniformly summable by the Riesz means of order
α = m−1

2
− κ.

Proof. It is clear that

f(x)− SαN(x, f) = (2π)−κ
∫
I

g(x− ξ)
[
ζ(x, ξ)− SαN,κ(ξ)

]
dξ.

Alter this integral, assuming g ∈ L2(I) so far. Make use of formulas (1.59) and (1.60) in � 1
by taking T = N2 in them. In virtue of (2.9) in � 2 the convolution of Rα

N(x) and g(x) will be

O(Nκ−m
2

+δ) = O(1), and in virtue of (2.23) in � 2 the convolution of Φ and g will be O(M− 1
2
−α).

It follows from (1.5) in � 1 that for N |x| ≥ C0,

[κ+ε
2

]∑
ν=1

(−1)νN−2ν Γ(α + 1)

ν!Γ(α + 1− ν)
ζ(κ− 2ν, x) = O(N−ε|x|−m+κ−ε).
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Finally, mention that SαN,κ(x) = O(Nm−κ). Taking into account all these remarks, we get

f(x)− SαN(x, f) = − Γ(α + 1)

2κπα+κ+1

∫
IN

g(x− ξ)Ψ(ξ) dξ

+

∫
IN

g(x− ξ)[ζ(κ, ξ) +O(Nm−κ)] dξ

+O(N−ε)

∫
IN

|g(x− ξ)| |ξ|−m+κ−ε dξ +O(M− 1
2
−α) + o(1),

where IN = I \ {x : |x| ≤ C0N
−1}, and Ψ is given by formula (2.12) in � 2.

Applying (1.49) in � 1 and (2.33) in � 2, we obtain after obvious transformations∫
IN

g(x− ξ)Ψ(ξ) dξ =

∫
IN

g(x− ξ)cos(2πN |ξ| − ωm)

|ξ|m−κ
dξ

+

∫
I

∑
|n|6=0

[
1− ψ

(
|n+ ξ|
M

)]
cos(2πN |n+ ξ| − ωm)

|n+ ξ|m+1
2

+α
g(x− ξ) dξ

+O(M
m−1

2
−α)

∫
|ξ|≤C0N−1

|g(x− ξ)| dξ +O(N−1M
m−1

2
−α).

Set

Kε(ξ,N) =

{
|ξ|−m+κ, |ξ| ≤ C0N

−1

N−ε|ξ|−m+κ−ε, |ξ| > C0N
−1,

and

Ψ0(ξ) =
∑
|n|6=0

[
1− ψ

(
|n+ ξ|
M

)]
cos(2πN |n+ ξ| − ωm)

|n+ ξ|m+1
2

+α
.

Estimating ζ(κ, x) by means of (1.5) in � 1, we obtain, for an arbitrary g ∈ L2(I),

f(x)− SαN(x, f) = − Γ(α + 1)

2κπα+κ+1

∫
I

g(x− ξ)
[

cos(2πN |ξ| − ωm)

|ξ|m−κ
+ Ψ0(ξ)

]
dξ

+O(1)

∫
I

|g(x− ξ)|Kε(ξ,N) dξ

+O(M− 1
2
−α +M

m−1
2 N−1) + o(1). (4.2)

Now, taking g ∈ Lp(I), p > m
κ
, we easily estimate the integrals in (4.2). Indeed, it follows from

H�older's inequality that the second integral is o(1) uniformly in x and M , and Proposition 3.1
easily yields that, for any �xed M , the �rst integral tends to zero uniformly in x. By the
arbitrariness of M , this implies

|f(x)− SαN(x, f)| ≤ δ

for N ≥ Nδ. �

Remark. Changing slightly the �nal part of the proof of Theorem 4.1, it is easy to get formally
more general
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Theorem 4.1′. Let f(x) be representable in the form (4.1), where g(ξ) ∈ L2(I), κ ≤ m−1
2
. Let

I ⊂ I be an open set, and g ∈ Lp(I), where p > m
κ
. Then, uniformly in any inner subdomain

I1 ⊂ I,
lim
N→∞

SαN(x, f) = f(x), α =
m− 1

2
− κ.

It is absolutely clear that Theorem 4.1 is sharp in the sense that the order of the means
α = m−1

2
− κ cannot be taken smaller with the assertion of the theorem still to be valid.

Theorem 4.2. Let 0 < κ < m−1
2

and p > m
κ

be constants such as in Theorem 4.1 and let
0 ≤ α < m−1

2
− κ. Then there exists a function g ∈ Lp(I), and such a function f(x), de�ned by

(4.1), that

lim
N→∞

|SαN(0, f)| =∞. (4.3)

Proof. Since p > 2m
m−1

, we have that p′ = p
p−1

satis�es the inequality p′ < 2m
m+1

. Since α < m−1
2
−κ,

it is easy to check that α < αp′ and γm = m− p′(m− κ) > 0. Hence it follows from inequality
(2.35) in � 2, taken for the Lp

′
-norm, that

lim
N→∞

∫
I

|SαN(x)|p′dx =∞,

and thus there exists g(ξ) ∈ Lp such that

lim
N→∞

∣∣∣∣∣∣
∫
I

g(−ξ)SαN(ξ) dξ

∣∣∣∣∣∣ =∞.

By this, (4.3) holds for the function f(x) de�ned by relation (4.1). �

2. Condition p > m
κ
is essential in the formulation of Theorem 4.1, since for p ≤ m

κ
,

generally speaking, f(x) 6∈ C(I), where from its Fourier series cannot be uniformly summable.
It is clear that if 2 ≤ p ≤ m

κ
, the Fourier series of f(x) will converge almost everywhere, and

hence will be summable almost everywhere by the Riesz means. It is not di�cult to characterize
the set of divergence points for the means of order α = m−1

2
− κ. Indeed, by Proposition 3.1, it

follows from (4.2) that

lim
N→∞

SαN(x, f) = f(x), α =
m− 1

2
− κ, (4.4)

provided ∫
I

|g(x− ξ)|
|ξ|m−κ+ε

dξ <∞.

Taking ε > 0 su�ciently small and applying the Sobolev-Kondrashov theorem [8], we conclude
that (4.4) holds almost everywhere in every k-dimensional hyperplane, provided

k > m− pκ. (4.5)

Theorem 4.3. Let f(x) be representable in the form (4.1), where g ∈ Lp(I), 2 ≤ p ≤ m
κ
. If

α = m−1
2
− κ and a natural k satis�es (4.5), then in any k-dimensional hyperplane (4.4) holds

almost everywhere.
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In the theory of Fourier series for functions of one variable a number of results is known [1],
[7] in which for those or another classes of functions with almost everywhere convergent Fourier
series additional information is pointed out on the exceptional set, for instance, in terms of its
capacity. Though for functions of one variable such a setting may look somewhat precious, for
functions of several variables it seems to be necessary. Say, for functions which satisfy H�older's
condition of order γ, 0 < γ ≤ m−1

2
, it seems natural to give a subtle characteristic of the

exceptional set of measure zero, where the Fourier series may be not summable by means of
order α ≤ m−1

2
− γ. Though Theorem 4.3 gives an example of such a characteristic, it might

be more fruitful to characterize an exceptional set by means of either its Hausdor� measures or
capacity.
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