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1 Introduction

Let ω = {z ∈ C : |z| < 1} be the unit disk on C and γ = ∂ω be its circumference.
Consider the following Dirichlet problem for the Laplace equation

∆u = 0, in ω ,
u |γ= f ,

}
(1.1)

where f : γ → R is a real-valued function. Let ur (t) = u (reit) and

hp =
{
u : ∆u = 0 in ω , and ‖u‖hp < +∞

}
,

where

‖u‖hp = sup
0<r<1

‖ur‖p ,

‖g‖p =

(∫ π

−π
|g (t)|p dt

) 1
p

, 1 ≤ p < +∞.

Denote by Pz (ϕ) the Poisson kernel for the unit circle

Pz (ϕ) = Re
eiϕ + reit

eiϕ − reit
=

1− r2

1− 2r cos (t− ϕ) + r2
, z = reit ∈ ω.

If f ∈ Lp (γ) =: Lp, then problem (1.1) is solvable in the class hp, 1 < p < +∞ (see e.g. [10])
and its solution can be represented as a Poisson-Lebesgue integral

u
(
reit
)

=
1

2π

∫ π

−π
Pz (ϕ) f (ϕ) dϕ =

1

2π

∫ π

−π

1− r2

1− 2r cos (t− ϕ) + r2
f (ϕ) dϕ,



10 N.R. Ahmedzade, Z.A. Kasumov

wherein a boundary value u |γ= f in (1.1) is understood in the sense that the nontangential
values on γ:

u
(
eit
)

= lim
z→eit

u (z) ,

exist and almost everywhere on γ coincide with f (eit), i.e.

u
(
eit
)

= f
(
eit
)
, a.e. t ∈ (−π, π) , (1.2)

and moreover

lim
r→1−

‖ur (·)− f (·)‖p = 0. (1.3)

These results are well known and illuminated, e.g., in the monograph I.I. Danilyuk [10] .
In this paper Morrey-Poisson class of harmonic functions in the unit circle ω is introduced,

Dirichlet problem (1.1) with the boundary value from the Morrey-Lebesgue space is considered.
The analogues of relations (1.2) and (1.3) in this case are proved.

It should be noted that the concept of Morrey space was introduced by C. Morrey [27] in
1938 in the study of qualitative properties of the solutions of elliptic type equations with BMO
(Bounded Mean Oscillations) coe�cients (see also [26, 8]). This space provides a large class of
weak solutions to the Navier-Stokes system [23]. In the context of �uid dynamics, Morrey-type
spaces have been used to model the �uid �ow in case where the vorticity is a singular measure
supported on some sets in Rn [14]. There appeared lately a large number of research works which
considered many problems of the theory of di�erential equations, potential theory, maximal and
singular operator theory, approximation theory, etc. in Morrey-type spaces (for more details see
[26, 8, 23, 14, 30, 44, 22, 19, 33, 34, 35, 17, 18, 2, 28, 40, 5, 3, 29, 9, 12, 11, 20, 39, 38, 37, 16,
25, 41, 42, 43, 1, 6, 7, 15, 24, 31, 32]). It should be noted that the matter of approximation in
Morrey-type spaces has only started to be studied recently (see, e.g., [17, 18, 5, 3]), and many
problems in this �eld are still unsolved.

In the present paper the class of Poisson-Morrey harmonic functions is introduced in the unit
circle, some properties of the functions of this class are studied. Nontangential maximal function
is considered and it is estimated from above a maximum operator, and the proof is carried out for
the Poisson-Stieltjes integral, when the density belongs to the corresponding Morrey-Lebesgue
space. The obtained results are applied to the solution of the Dirichlet problem for the Laplace
equation with boundary value from Morrey-Lebesgue space.

It should be noted that similar problems with respect to the analytical functions from Hardy
classes were considered in [5, 3, 4].

2 Preliminaries

We will need some facts about the theory of Morrey-type spaces. Let Γ be some recti�able
Jordan curve on the complex plane C. Denote by |M |Γ the linear Lebesgue measure of the set
M ⊂ Γ. All the constants throughout this paper (can be di�erent in di�erent places) will be
denoted by c.

By Morrey-Lebesgue space Lp, α (Γ), 0 < α ≤ 1, p ≥ 1, we mean the normed space of all
measurable functions f (·) on Γ with the �nite norm

‖f‖Lp, α(Γ) = sup
B

(∣∣∣B⋂Γ
∣∣∣α−1

Γ

∫
B

⋂
Γ

|f (ξ)|p |dξ|
) 1

p

< +∞.
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Lp, α (Γ) is a Banach space with Lp, 1 (Γ) = Lp (Γ), Lp, 0 (Γ) = L∞ (Γ). Similarly we de�ne the
weighted Morrey-Lebesgue space Lp, αµ (Γ) with the weight function µ (·) on Γ equipped with the
norm

‖f‖Lp, αµ (Γ) = ‖fµ‖Lp, α(Γ) , f ∈ L
p, α
µ (Γ) .

The inclusion Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is valid for 0 < α1 ≤ α2 ≤ 1. Thus, Lp, α (Γ) ⊂ L1 (Γ),
∀α ∈ (0, 1], ∀p ≥ 1. For Γ = γ we will use the notation Lp, α (γ) = Lp, α and the spaces Lp, α (γ)
and Lp, α (−π, π) we will identify by usual method.

More details on Morrey-type spaces can be found in [26, 8, 23, 14, 30, 44, 22, 19, 33, 17, 18,
2, 28, 40, 5, 3, 29, 9, 12, 11, 20, 39, 38, 37, 16].

We will use the following concepts. Let Γ ⊂ C be some bounded recti�able curve, t = t (σ),
0 ≤ σ ≤ 1, be its parametric representation with respect to the arc length σ, and l be the length
of Γ. Let dµ (t) = dσ, i.e. let µ (·) be a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).

De�nition 1. A curve Γ is said to satisfy the Carleson condition, if there exists c > 0 such
that

sup
t∈Γ

µ (Γt (r)) ≤ cr,∀r > 0.

A curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ if there exists
a constant m > 0 independent of t such that |s− s0| ≤ m |t (s)− t (s0)|, ∀t (s) ∈ Γ. Γ satis�es
the chord-arc condition uniformly on Γ if there exists m > 0 such that |s− σ| ≤ m |t (s)− t (σ)|,
∀t (s) , t (σ) ∈ Γ.

Let us recall some facts about the homogeneous Morrey-type spaces from the work [33]. Let
(X; d; ν) be a homogeneous space equipped with the quasi-distance d (· ; ·) and the measure
ν (·). Recall that a quasi-distance d : X2 → R+ = (0,+∞) is a function which satis�es the
following conditions:

i) d (x; y) ≥ 0 & d (x; y) = 0⇔ x = y; ∀x, y ∈ X;
ii) d (x; y) ≤ c (d (x; z) + d (z; y)), ∀x, y ∈ X.
Let Br (x) be the open ball

Br (x) = {y ∈ X : d (x; y) < r} .

Set

ν (Br (x)) =

∫
Br(x)

1 dν.

Assume that X has a constant homogeneous dimension æ > 0, i.e. there exist c1, c2 > 0 such
that

c1r
æ ≤ ν (Br (x)) ≤ c2r

æ, ∀x ∈ X, ∀r > 0. (2.1)

In this case, the Morrey space Lp, λ (X) is de�ned by means of the norm

‖f‖Lp, λ(X) = sup
x∈X, r>0

{
1

rλ

∫
Br(x)

|f (y)|p dν (y)

} 1
p

.

Theorem 2.1 ([33]). Let (X; d; ν) be a homogeneous space equipped with the quasi-metrics d
and the measure ν with ν (X) = +∞. If condition (2.1) is satis�ed, then the maximal operator
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Mνf (x) = sup
r>0

1

|Br (x)|ν

∫
Br(x)

|f (y)| dν (y) ,

where |Br (x)|ν =: ν (Br (x)), is bounded in Lp, λ (X) for 1 < p < +∞, 0 ≤ λ < æ.

3 hp, αρ classes and Hardy-Littlewood operator

Let ρ : [−π, π] → R+ be a weight function. Consider the weighted Morrey-type space hp, αρ of
harmonic functions in ω equipped with the norm

‖u‖hp, αρ
= sup

0<r<1
‖ur (·) ρ (·)‖p, α ,

where

ur (t) = u
(
reit
)

= u (r cos t; r sin t) .

Assume that the weight ρ (·) satis�es the following condition

ρ−1 ∈ Lq,
1

p
+

1

q
= 1. (3.1)

Applying H�older's inequality we obtain∫ π

−π
|ur (·)| dt ≤

(∫ π

−π
|ur (·) ρ (·)|p dt

) 1
p
(∫ π

−π
ρ−q (t) dt

) 1
q

≤

≤ (2π)
1−α
p sup

I∈[−π,π]

(
1

|I|1−α
∫
I

|urρ|p dt
) 1

p ∥∥ρ−1
∥∥
Lq

=

= (2π)
1−α
p

∥∥ρ−1
∥∥
Lq
‖ur‖hp, αρ

.

It follows immediately that if condition (3.1) is true, then u ∈ h1. Consequently, every function
u ∈ hp, αρ has the nontangential boundary values u+ (eit) on γ. Then, by Fatou's lemma (see e.g.
[21, 36, 13]) we have ur (eit) → u+ (eit) as r → 1− a.e. in [−π, π]. Applying Fatou's lemma on
passage to the limit, we obtain∫

I

∣∣u+
(
eit
)
ρ (t)

∣∣p dt ≤ lim
r→1−

∫
I

∣∣ur (eit) ρ (t)
∣∣p dt ≤

≤ ‖u‖p
hp, αρ
|I|1−α ,

because ∣∣ur (eit) ρ (t)
∣∣→ ∣∣u+

(
eit
)
ρ (t)

∣∣ , r → 1−, for a.e. t ∈ [−π, π] .

It follows immediately that u+ ∈ Lp, αρ and∥∥u+
∥∥
p, α; ρ

≤ ‖u‖hp, αρ
.

If the relation

ρ−1 ∈ Lq+0 (−π, π) , i.e. there exists ε > 0 such that ρ−1 ∈ Lq+ε (−π, π) , (3.2)

true, then we have
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∫ π

π

|ur (·)|1+δ dt ≤
(∫ π

−π
|ur (·) ρ (·)|p dt

) 1+δ
p
(∫ π

−π
|ρ (·)|

− pq
p−qδ

dt

) 1
q
− δ
p

≤ cδ ‖u‖1+δ
hp, αρ

,

where δ > 0 is a su�ciently small number, and cδ is a constant depending only on δ. Then, in
view of the classical results, the representation

u
(
reit
)

=
1

2π

∫ π

−π
u+ (s)P (r; s− t) ds, (3.3)

is true, where u+ (s) =: u+ (eis), s ∈ [−π, π], and Pz (ϕ) =: P (r; θ − ϕ) is a Poisson kernel for
the unit disk

Pz (ϕ) = Pr (θ − ϕ) = P (r; θ − ϕ) =
1

2π

1− r2

1− 2r cos (θ − ϕ) + r2
, z = reiθ.

Thus, if u ∈ hp, αρ and ρ (·) satis�es condition (3.2), then u+ ∈ Lp, αρ and relation (3.3) holds.
Now let us prove the converse. In other words, let us prove that if u+ ∈ Lp, αρ and represen-

tation (3.3) holds, then u ∈ hp, αρ . To do so, we need some auxiliary facts. First, in the following
section we will consider a more general case.

4 Nontangential maximal function

Consider an arbitrary nontangential internal angle θ0 with the vertex at a point z = eit ∈ γ,
t ∈ [−π, π]. Denote by Mµf (t) the Hardy-Littlewood type maximal function (or the Hardy-
Littlewood operator) of a function f (·):

Mµf (x) = sup
I�x

1

µ (I)

∫
I

|f (t)| dµ (t) ,

where sup is taken over all intervals I ⊂ [−π, π] which contain x, and µ (·) is a Borel measure
on [−π, π], which satis�es the condition

µ (I) > 0, for ∀I : |I| > 0.

Let us show that there exists a positive constant Cθ0 , depending only on θ0, such that

sup
z∈θ0
|uµ (z)| ≤ Cθ0Mµf (t) , ∀t ∈ [−π, π] ,

where

uµ (z) = u
(
reit
)

=
1

2π

∫ π

−π
P (r; s− t)u+ (s) dµ (s) .

For the usual maximal operator, this fact was established in [36, p. 237] and [13, p. 30].
Let us �rst prove this property for the Poisson kernel Pz (t) in the upper half-plane

Pz (t) =: Py (x− t) =
1

π

y

(x− t)2 + y2
, z = x+ iy, y > 0.

Namely, let f ∈ L1

(
dµ(t)
1+t2

)
and consider the Poisson integral

uµ (x; y) =

∫
R
Py (x− s) f (s) dµ (s) .
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Let us show that there exists Aα0 > 0 such that

sup
Γµ;α0 (t)

|uµ (x; y)| ≤ Aα0Mµf (t) ,∀t ∈ R, (4.1)

where

Γµ;α0 (t) = {(x; y) : µ ((− |x− t| , |x− t|)) < α0y, 0 < y <∞} ,

and Aα0 is a constant, depending only on α0 > 0.
The method of proving Theorem 4.2 in [13] is also applicable to our case. Without loss of

generality, it su�ces consider the case t = 0. Following that method, we �rst consider the case
x = 0. We have

uµ (0; y) =

∫
R
Py (s) f (s) dµ (s) .

Let Ih = (−h, h), ∀h > 0. Consider the sequence of step functions hn (s), which are nonnegative,
even, nondecreasing for s > 0, and tend to Py (s) as n → ∞ (for every �xed y > 0). Then it is
clear that hn (·) has the following form

hn (s) =
m∑
k=1

akχIhk (s) , ∀s ∈ R,

where ak ≥ 0. Assume that the measure µ (·) satis�es the condition

mµ = sup
y>0;x∈R

∫
R
Py (s− |x|) dµ (s) < +∞. (4.2)

Then we have ∫
R
hn (s) dµ (s) =

m∑
k=1

akµ (Ihk) ≤
∫
R
Py (s) dµ (s) ≤ mµ < +∞.

Thus ∣∣∣∣∫
R
hn (s) f (s) dµ (s)

∣∣∣∣ ≤ ∫
R
hn (s) |f (s)| dµ (s) =

=
m∑
k=1

akµ (Ihk)
1

µ (Ihk)

∫
Ihk

|f (s)| dµ (s) ≤

≤
m∑
k=1

akµ (Ihk)Mµf (0) ≤ mµMµf (0) .

Hence, applying Fatou's lemma, we obtain∫
R
Py (s) |f (s)| dµ (s) ≤ mµMµf (0) ,

and, consequently

|uµ (0; y)| ≤
∫
R
Py (s) |f (s)| dµ (s) ≤ mµMµf (0) .

In the general case, the existence of a number A1 > 0 such that
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|uµ (x; y)| ≤ A1Mµf (0) ,∀ (x; y) ∈ Γµ;α0 (0) ,

can be proved in a very similar way to [13] with the use of the above method.
Indeed, following the work [13], let us consider the function ψ (s), which is even on R and

majorizing Py (x− s), de�ned by the expression

ψ (s) = sup
|t|>s

Py (x− t) , s ≥ 0; andψ (−s) = ψ (s) ,∀s ∈ R,

where (x, y) ∈ Γα (0) is an arbitrary �xed point. Paying attention to the parity of the function
Py (·) : Py (x− t) = Py (t− x), for ψ (s) we obtain the expression

ψ (s) =

{
Py (s− |x|) , s ≥ |x| ,
Py (0) , 0 ≤ s < |x| ,

for ∀s ≥ 0. Let us approximate the function ψ (·) by step functions hn (·), as in the case Py (·),
that is even, non-negative, not increasing, and, as n→∞, increasingly tends to ψ (·). So, let

hn (s) =
m∑
k=1

akχ(−xk,xk) (s) , s ∈ R, ak ≥ 0.

We have ∫
R
hn (s) dµ (s) =

∑
k

akµ ((−xk, xk)) ≤
∫
R
ψ (s) dµ (s) =

=

∫ |x|
−|x|

Py (0) dµ (s) +

∫ −|x|
−∞

Py (s− |x|) dµ (s) +

∫ +∞

|x|
Py (s− |x|) dµ (s) ≤

≤ 1

π

µ ((− |x| , |x|))
y

+

∫ +∞

−∞
Py (s− |x|) dµ (s) .

Let α > 0 be a �xed number. Suppose that condition (4.2) holds. Then we have∫
R
hn (s) dµ (s) ≤ α

π
+ γ, ∀ (x; y) ∈ Γµ;α (0) .

Consequently,∣∣∣∣∫
R
hn (s) f (s) dµ (s)

∣∣∣∣ ≤ ∫
R
hn (s) |f (s)| dµ (s) =

∑
k

ak

∫ xk

−xk
|f (s)| dµ (s) =

=
∑
k

akµ ((−xk, xk))
1

µ ((−xk, xk))

∫ xk

−xk
|f (s)| dµ (s) ≤

≤
∑
k

akµ ((−xk, xk))Mµf (0) ≤ AαMµf (0) ,∀ (x, y) ∈ Γµ;α (0) ,

where Aα = α
π

+ γ.
So the following main lemma is true.

Lemma 4.1. Let µ (·) be a Borel measure on R with

µ (I) > 0,∀I : |I| > 0; sup
y>0;x∈R

∫
R
Py (s− |x|) dµ < +∞.
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Then, for f ∈ L1

(
dµ(t)
1+t2

)
, the function

uµ (x; y) =

∫
R
Py (x− s) f (s) dµ (s) ,

which is harmonic on the upper half-plane, satis�es the relation

sup
z∈Γµ;α0 (t)

|uµ (z)| ≤ Aα0Mµf (t) , t ∈ R,

where Mµ is the Hardy-Littlewood type maximal function

Mµf (x) = sup
I�x

1

µ (I)

∫
I

|f (t)| dµ (t) ,

Γµ;α0 (t) = {(x; y) ∈ C : µ ((− |x− t| , |x− t|)) < α0y; y > 0} , α0 > 0,

and Aα0 is a constant depending only on α0.

By M we denote the usual Hardy-Littlewood operator, i.e.

Mf (x) = sup
I�x

1

|I|

∫
I

|f (t)| dt,

where |I| is a Lebesgue measure of the interval I ⊂ [−π, π].

It is not di�cult to see that the Lebesgue measure on R satis�es all the conditions of Lemma
4.1. Therefore we get, in particular, the following corollary.

Corollary 4.1. Let f ∈ L1

(
dt

1+t2

)
. Then there exists Aα0 > 0 such that

sup
z∈Γα0 (t)

|u (z)| ≤ Aα0Mf (t) ,∀t ∈ R,

where u (·) is the corresponding harmonic function on Imz > 0, and M is the usual maximal
operator.

Let us go back to Theorem 1 [33]. Let condition (2.1) be satis�ed. Note that Theorem 1 [33]
is true in the case µ (X) < +∞, too. Since its proof is based on the Fe�erman-Stein inequality
which is also true in the case µ (X) < +∞. Let us apply this theorem to our case. In our case
we have X = R, d (x; y) = |x− y| and æ = 1. So, if the measure µ (·) satis�es the conditions of
Theorem 1 [33] in our case, then we have∫

I

|Mµf |p dµ ≤ c |I|1−α ,

where |I| is the Lebesgue measure of a set I ⊂ R. Then from (4.1) it directly follows that
uµ ∈ hp, α (dµ), where hp, α (dµ) is the class of all harmonic functions on the upper half-plane
equipped, for which the norm

‖uµ‖hp, α(dµ) = sup
y>0

sup
I⊂R

(
1

|I|1−α
∫
I

|uµ (x; y)|p dµ (x)

)1/p
<∞.

So we get the validity of the following theorem.
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Theorem 4.1. Assume that the measure µ (·) satis�es the conditions (I is an interval)

µ (I) ∼ |I| ,∀I ⊂ R; sup
y>0;x∈R

∫
R
Py (s− |x|) dµ (s) < +∞.

Let

uµ (z) = uµ (x; y) =

∫
R
Py (x− t) f (t) dµ (t) , f ∈ Lp, α (dµ) , 0 ≤ 1− α < 1,

where Lp, α (dµ) is the Morrey space equipped with the norm

‖f‖p, α; dµ = sup
I⊂R

{
1

|I|1−α
∫
I

|f (y)|p dµ (y)

} 1
p

.

Then for ∀α0 > 0, there exists Aα0 > 0 such that

sup
(x; y)∈Γα0 (t)

|uµ (x; y)| ≤ Aα0Mµf (t) ,∀t ∈ R, (4.3)

and u∗µ ∈ hp, α (dµ): ∥∥u∗µ∥∥hp, α(dµ)
≤ Aα0 ‖f‖p, α; dµ , (4.4)

where u∗µ (·) is the nontangential maximal function for u:

u∗µ (t) = sup
z∈Γα0 (t)

|uµ (z)| , t ∈ R.

In fact, the validity of inequality (4.3) is already proved, and inequality (4.4) follows directly
from (4.3) and from the boundedness of the maximal operator Mµ in M

p, α (dµ).
In the sequel we will need some properties of the Poisson kernel for the unit disk, namely
i) 1

2π

∫ π
−π Pr (t) dt = 1, ∀r ∈ [0; 1) ;

ii) sup
|t|>δ

Pr (t)→ 0, as r → 1−, ∀δ > 0;

iii)
∫
|t|>δ Pr (t) dt→ 0, as r → 1−, ∀δ > 0.

Using these properties of the kernel Pr (·) we obtain

‖(Pr ∗ f) (·)− f (·)‖p, α; ρ =

∥∥∥∥ 1

2π

∫ π

−π
Pr (t) f (t− s) dt −

− 1

2π

∫ π

−π
Pr (t) f (s) dt

∥∥∥∥
p, α; ρ

≤ 1

2π

∫ π

−π
Pr (t) ‖f (t− ·)−

−f (·)‖p, α; ρ dt =
1

2π

[∫
|t|>δ

Pr (t) ‖f (t− ·) −

−f (·)‖p,α; ρ dt+

∫
|t|≤δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt

]
.

We have

1

2π

∫
|t|≤δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; δ dt ≤

≤ sup
|t|≤δ
‖f (t− ·)− f (·)‖p, α; δ → 0, as δ → 0,



18 N.R. Ahmedzade, Z.A. Kasumov

if f ∈Mp, α
ρ . Assume

BMp, α
ρ =

{
f ∈Mp, α

ρ : sup
s∈R
‖f (· − s)‖p, α; ρ < +∞

}
.

Let f ∈ BMp, α
ρ

⋂
Mp, α

ρ . We have

‖f (t− ·)− f (·)‖p, α; ρ ≤ ‖f‖p, α; ρ + ‖f (t− ·)‖p, α; ρ ≤

2 sup
s∈R
‖f (· − s)‖p, α; ρ

∫
|t|>δ

Pr (t) dt→ 0, as r → 1−.

Thus, the following theorem is proved.

Theorem 4.2. Let f ∈ BMp, α
ρ

⋂
Mp, α

ρ , 1 < p < +∞, 0 < α ≤ 1. Then ‖Pr ∗ f − f‖p, α; ρ → 0,
as r → 1−.

This theorem has the following corollary.

Corollary 4.2. Let f ∈ BMp, α
ρ

⋂
Mp, α

ρ , 1 < p < +∞, 0 < α ≤ 1. Then Dirichlet problem (1.1)
is solvable in the classes hp, αρ .
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