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1 Introduction

This paper deals with the weighted Hardy spaces ep(B; ρ) , p ∈ (1,∞) , of harmonic functions
u on domains B of the special class (a) de�ned below. A domain of such type disposed
on the complex z �plane is simply connected, locally one�sheeted and possesses a recti�able
boundary C . A condition, ensuring that a function u belongs to the class ep(B; ρ) , is the
uniform boundedness of weighted Lp �norms over the family of parallel boundary contours Cr

approaching the boundary C as r → 1 , i. e.

sup
r∈(0, 1)

∫
Cr

|u(z)|p |ρ(z)| |dz| < ∞. (1.1)

Note that (1.1) is similar to the condition that de�nes the classical Hardy spaces Hp of
analytic functions and hp spaces of harmonic ones on the disk U := {|ζ| < 1} , as well as
the Hardy�Smirnov spaces Ep(B) of functions analytic on domains with recti�able boundaries
[6],[13],[20]. The weight is chosen to be the modulus of a function ρ analytic in B and subject
to some requirements (b)p of compatibility with the geometry of the domain B expressed in
terms of the so�called outer functions and the (Ap) Muckenhoupt condition [3]. The norm
‖u; ep(B; ρ)‖ is de�ned as the limit of the weighted Lp(Cr) �norms as r → 1− .

We show that a function u ∈ ep(B; ρ) possesses a trace u(z′) in Lp(C ; ρ) on the boundary
understood as the set of all non�tangential limits at C . We prove that a function u of the
class ep(B; ρ) possesses a harmonic conjugate v of the same class satisfying the M. Riesz�type
inequality [21]

‖v; ep (B; ρ)‖ ≤ C‖u; ep (B; ρ)‖ (1.2)

with the constant C independent of u , whenever v(z0) = 0 at a �xed point z0 ∈ B .
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For functions in ep (B; ρ) , an analogue of the F. Riesz theorem [22] is proved, and it is
established that the operator S : u(z) → u(z′) realizes an isometric isomorphism between the
spaces ep (B; ρ) and Lp(C ; ρ) . Hence, the Dirichlet problem

∆u = 0 in B, u(z′) = g(z′) ∈ Lp (C ; ρ), (1.3)

has a unique solution in the class ep (B; ρ) . We �nd estimates for this solution and all its
derivatives that are uniform on each compact subset E ⊂ D in terms of Lp (C ; ρ)− norm of
the boundary function g(z′) .

As a matter of fact a number of authors [4],[9],[10],[12],[14],[15] have introduced Hardy spaces
of harmonic functions u on Lipschitz domains, but they used de�nitions that di�ered substan-
tially from the one in our study. Instead of condition (1.1) mentioned above, a condition much
more di�cult to verify was adopted, namely that the nontangential maximal function u∗ belongs
to the class Lp . According to Burgholder, Gundy & Silverstein Theorem [1], the aforementioned
condition is equivalent to the requirement that inequality (1.2) holds, i.e., that both functions
u and v do belong to the class ep (B; ρ) . Thus, the problem of proving inequality (1.2) was
bypassed by virtue of the de�nition. We also note that Hardy�type classes or other similar
constructions were employed to study signi�cantly more general elliptic boundary value prob-
lems but only for domains with rather smooth (or piecewise smooth) boundary (see papers
[2],[7],[8],[16],[18],[19],[23], [24],[25],[26] and references therein).

We prove that the system Ξ := {ξn} de�ned by the formulas

ξ2n−1 := Re (z − z0)n−1, ξ2n := Im (z − z0)n, n = 1, 2, . . . (1.4)

is complete in the class ep(B; ρ) , and under the condition z0 ∈ B is minimal in this class.
A direct corolarry of this is the convergence of the projection method of solving problem (1.3)
based on system Ξ .

We also study some properties of conformal mappings of domains of the considered classes.
For a domain B with a piecewise smooth boundary and a power weight ρ , a criterion for
satisfying conditions (b)p of compatibility B with ρ is stated. Note that several of the results
presented in this paper were previously obtained in [27], [28].

Let us start with a reminder of the de�nition of concepts used in the sequel, such as the outer
function, the Muckenhoupt condition, the BMO and VMO spaces [3]. A function E (ζ) regular
in the circle U is called outer (and we write E ∈ Out ) if it can be represented as follows:

E (ζ) = eiκ exp

{
1

2π

∫ 2π

0

ei t + ζ

ei t − ζ
log η(t) dt

}
,

where κ ∈ R and a function η(θ) ≥ 0 is such that log η(θ) ∈ L1(0, 2π) .
Let I be an interval on the circle T := ∂U . We say that a non�negative function q ∈ L1(T)

satis�es the Muckenhoupt condition (Ap) , p ∈ (1, ∞) , if

sup
I⊂T

(
1

|I|

∫
I

q(t) dt

)(
1

|I|

∫
I

q(t)−1/(p−1) dt

)p−1

<∞.

Note that the class of these functions is enlarging with increasing p .
For f ∈ L1(T) let us denote

Mδ(f) := sup
|I|<δ

1

|I|

∫
I

|f(θ)− fI | dθ; fI :=
1

|I|

∫
I

f(t) dt.

If supδ>0 Mδ(f) < ∞ , then following [3], we say that f is of bounded mean oscillation and
write f ∈ BMO . Let f ∈ BMO and limδ→0 Mδ(f) = 0 . Then we say that f has a vanishing
mean oscillation and write f ∈ VMO (see [3]).
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2 Classes of domains and weight functions

De�nition 1. A �nite simply connected and locally one�sheeted domain B with recti�able

boundary C is said to belong to the class (a) if a conformal mapping ω : U conf−→ B is
continuous on the closure U of the circle U .

In particular, any Jordan domain with a recti�able boundary belongs to (a) . The following
statements directly follow from theorems of I.I. Privalov, N.N. Luzin and C. Caratheodory (see
[6], [17],[20], where the concept of prime ends was also given)):
Proposition 1. If a domain B belongs to the class (a) , then:

1) its boundary C consists of prime ends of the �rst kind only;

2) the map ω : U conf−→ B is conformal almost everywhere on T and the inverse mapping

χ : B
conf−→ U is conformal almost everywhere on C ;

3) the function z = ω(ζ) is absolutely continuous on T and the inverse function ζ = χ(z)
is absolutely continuous on C ;

4) ω′ ∈ H1 .
Note that a domain B ∈ (a) is not necessarily a Jordan one, as it may, for example, contain

cuts that end at the boundary. Although it has no internal branch points (i.e. ω′(ζ) 6= 0 for all
ζ ∈ U ), it can be non one sheeted, containing some branch points on its boundary.
De�nition 2. Let B ∈ (a) and p ∈ (1, ∞) . We say that the domain B belongs to the class
(a)p if: 1) ω′(ζ) is an outer function (ω′ ∈ Out ) and 2) |ω′(eiθ)| considered as a function of
the variable θ , satis�es the Muckenhoupt condition (Ap) .

Note that the class (a)p is enlarging with increasing p . An arbitrary domain B ∈ (a)p
satis�es the Smirnov condition (S) [6],[13],[20]. This condition means that the harmonic function
log |ω′(ζ)| is represented by the Poisson integral with summable density. Moreover, if B ∈ (a)p
then logω′ ∈ Hλ for all λ ∈ (0,∞) .
De�nition 3. Let a domain B ∈ (a) be bounded by a piecewise smooth contour C ; let its
smooth arcs join each other at points z′k, 1 ≤ k ≤ N, called corner ones, and the corresponding
internal angles παk be positive. We then say that the domain B belongs to the class (PS)α
if max(1,maxαk) = α .

Note that the angles παk may take any positive values, including those greater than 2π
since a domain B ∈ (a) may contain branch points on its boundary.
Lemma 1. Let B ∈ (PS)α and let ζ ′k be the inverse images of z′k under the mapping

ω : U conf→ B . Then the following representation

ω(ζ) = ω(ζ ′k) + (ζ − ζ ′k)αkωk(ζ), k = 1, N, (2.1)

for the function ω holds, where

∀λ > 0 : ωk ∈ Hλ, 1/ωk ∈ Hλ; log |ωk(eiθ)| ∈ VMO, (2.2)

and its derivative admits the following representation:

ω′(ζ) = τ(ζ)
∏N

k=1
(ζ − ζ ′k)αk−1, log |ω′(eiθ)| ∈ BMO, (2.3)

where
∀λ > 0 : τ ∈ Hλ, 1/τ ∈ Hλ, log |τ(eiθ)| ∈ VMO. (2.4)

A similar statement holds for the inverse mapping χ : B
conf−→ U as well. Representations

analogous to (2.1), (2.3) were obtained in [5],[29] for domains with piecewise Lyapunov boundary.
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In this case instead of (2.2), (2.4), we can state that the functions |ωk| and |τ | are bounded
above and below by positive constants.

Using Lemma 1, we obtain the following
Proposition 2. A domain B ∈ (PS)α belongs to the class (a)p if and only if p > α .

In order to illustrate this proposition, let us consider the following example where in the
context of De�nition 2 the condition ω′ ∈ Out is replaced by the following equivalent one

1

ω′
∈ H 1

p−1
. (2.5)

Example 1. Let the function z = ω(α, γ; ζ) of the variable ζ ∈ U with parameters α , γ be
de�ned by the formula

ω(α, γ; ζ) :=

(
ζ + 1

eγ+1

)α
lnγ
(

eγ+1

ζ + 1

)
, α ∈ (1, 2), γ ∈ (−∞, ∞) . (2.6)

This function is regular on the circle U and maps it onto a domain denoted by B(α, γ) , and
the point ζ = −1 of its boundary ∂U into the point denoted by z′1 , i.e.

B(α, γ) := ω(α, γ; U), z′1 := ω(α, γ; −1). (2.7)

The domain B(α, γ) is a Jordan one, with a piecewise smooth contour. This contour
contains the unique angular point z′1 , whose angle at this point is equal to πα . So the domain
B(α, γ) belongs to the class (PS)α .

According to Proposition 2, a domain B(α, γ) belongs to (a)p for all p > α . Let us show
that it does not belong to the (a)p class with p = α . Using the Pravitz lemma [6] and Fejer
� Riesz inequality [11], we can establish the following properties of the function 1/ω′(α, γ; ζ) ,
entering condition (2.5) of the de�nition of the class (a)p .

For α ∈ (1, 2) and γ ∈ (0, α− 1] , we have

1

ω′(α, γ)
/∈ H 1

α−1
, but ∀p ∈ (α, ∞) :

1

ω′(α, γ)
∈ H 1

p−1
. (2.8)

If α ∈ (1, 2) and γ ∈ (α− 1, ∞) , then

1

ω′(α, γ)
∈ H 1

α−1
, and ∀p ∈ (1, α)

1

ω′(α, γ)
6∈ H 1

p−1
. (2.9)

Relations (2.8) and (2.9) show that for the domain B(α, γ) the �rst condition 1/ω′(α, γ) ∈
H1/(α−1) its membership in the class (a)α in De�nition 2 can be satis�ed, or can be violated.
As for the second condition |ω′(α, γ; eiθ)| ∈ (Aα) in this de�nition, it can be shown that this
condition is not satis�ed for any γ ∈ (−∞,∞) . Thus, the domain B(α, γ) belongs to (a)p for
all p > α and does not belong to (a)α for any choice of γ . This conclusion fully aligns with
Proposition 2.
De�nition 4. Let a domain B ∈ (a) and a function ρ(z) be analytic in B . We say that the
pair (B; ρ) satis�es the compatibility conditions (b)p , p ∈ (1, ∞) , if

1) the function ρ ◦ ω is outer and belongs to Hδ for some δ > 0 ,
2) the function

λ(ζ) :=
[
ρ ◦ ω(ζ)

]
ω′(ζ) (2.10)

is outer,
3) |λ(eiθ)| , as a function of θ , satis�es the Muckenhoupt condition (Ap) .
The meaning of this de�nition for piecewise smooth domains is clari�ed by the following

theorem.
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Theorem 1. Let B ∈ (a) be a domain with piecewise smooth boundary C . Let παk be angles
at the corner points z′k ∈ C , k = 1, N . Let the function ρ(z) have the following form:

ρ(z) =
∏N

k=1
(z − z′k)βk−1.

Then the pair (B; ρ) satis�es condition (b)p if and only if

0 < αkβk < p

for all k .
Proposition 2 follows for ρ ≡ 1 . We note also that the inclusion B ∈ (S) follows from the

inclusion (B; ρ) ∈ (b)p .

3 Hardy spaces ep(B; ρ) of harmonic functions

First, let us consider the Hardy spaces without weight.
De�nition 5. Let B ∈ (a) and Cr be the image of the circle {|ζ| = r} , r ∈ (0, 1) , under a

mapping ω : U conf−→ B . Let us denote by ep(B) , p ∈ (1, ∞) , the class of all harmonic functions
u(z) in B satisfying the following condition

sup
0<r<1

∫
Cr

|u(z)|pds <∞. (3.1)

Note that whether u(z) belongs to ep(B) or not, it does not depend on the choice of a
mapping ω . Moreover, this class can be equivalently de�ned without using any mapping. This
was done in [13] for the Ep(B) class: a function u(z) harmonic in B belongs to the class
ep(B) if there exists a family of recti�able contours Cr ⊂ B approaching C as r → 1− , such
that condition (3.1) be satis�ed.

For a function u(z) de�ned on the domain B its trace u(z′) is understood as the set of all
non�tangential limits at the boundary C .
Theorem 2. If a function u(z) belongs to ep(B) with B ∈ (a)p , p ∈ (1,∞) then:

1) it does possess a trace u(z′) at the boundary C that belongs to Lp(C ; ρ) and the following
equalities

lim
r→1

∫
Cr

∣∣u (z)
∣∣p |dz| = ∫

C

∣∣u (z′)
∣∣p |dz′| , (3.2)

lim
r→1

∫
C

∣∣∣u (zr)− u(z′)
∣∣∣p |dz′| = 0,

hold with zr = ω (r χ(z′)) , χ = ω−1 ;
2) the function v(z) , harmonically conjugate to u , belongs to ep(B) as well, while under

the condition v(z0) = 0 with z0 being a point of the domain B , holds the inequality

‖v; ep (B)‖ ≤ C‖u; ep (B)‖

with the constant C independent of u .
The �rst assertion is a counterpart of the F. Riesz theorem [22] while the second one is a

counterpart of M. Riesz theorem [21].
Theorem 3. For an arbitrary boundary function g in Lp(C ) , p ∈ (1, ∞) , a solution to the
Dirichlet problem

∆u = 0 in B, u(z′) = g(z′), (3.3)
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exists and is unique in the class ep(B) ; here, the second equality in (3.3) holds almost everywhere
on C , and is necessarily satis�ed at the points of continuity of the function g(z′) .

By Theorems 2 and 3, the class ep(B) is a Banach space with the norm de�ned as
‖u; ep (B)‖ := limr→1 ‖u; Lp(Cr)‖ which according to (3.2) equals to ‖u; Lp(C )‖ . This brings
us to the following statement.
Proposition 3. An operator S which assigns to each function u ∈ ep (B) its trace u(z′), z′ ∈
C , is an isometric isomorphism ep (B)→ Lp(C ) with p ∈ (1, ∞) .
Remark 1. Proposition 3 can be reformulated as follows: let B ∈ (a) , for an operator S to
map isomorphically ep(B) onto Lp(C ) , is su�ces to assume that the domain B satis�es the
conditions in De�nition 2, namely: 1) 1/ω′ ∈ H1/(p−1) ; 2) |ω′(eiθ)| ∈ (Ap) . (Theorems 2 and 3
also allow similar reformulations.)

The question arises: is it possible to relax the conditions in Remark 1? To this end, we turn
to the following example.
Example 2. Consider again the domain B(α, γ) de�ned by equalities (2.6), (2.7). In Example
1, we have shown that this domain does not belong to the class (a)α for any γ ∈ (−∞, ∞) .
Now we show that for this domain there is no isomorphism between the spaces eα(B) and
Lα(C ) when γ ∈ (−∞, 0] .

Let the function u0(α, γ; z) , also denoted for brevity by u0(z) , be given by the formula

u0(z) := U0 ◦ χ(α, γ; z), U0(ζ) := Re
[
(1− ζ)/(1 + ζ)

]
,

where ζ = χ(α, γ; z) is the inverse mapping to z = ω(α, γ; ζ) de�ned by (2.6).
The function u0 is obviously harmonic in B(α, γ) . It is the real part of the mapping of

B(α, γ) onto the right half�plane {Rew > 0} , which maps the point z′1 into ζ = ∞ . The
function u0 is positive in B(α, γ) , continuous in B(α, γ) \ z′1 , and the relation u0(z) → ∞
holds if B 3 z → −1 . Its trace on C is equal to identical zero, thus ‖u0;Lα(C )‖ = 0 . At the
same time, one can verify that the limit as r → 1− of norms ‖u0;LαCr)‖ takes di�erent values
for di�erent values of γ :

lim
r→1
‖u0;Lα (Cr)‖ =


0, γ ∈ (−∞, 0),

const 6= 0, γ = 0,

∞, γ ∈ (0, ∞).

(3.4)

As follows from the �rst two lines of (3.4), the norms ‖u0;Lα(Cr)‖ as r ∈ (0, 1) are uniformly
bounded for γ ∈ (−∞, 0] . Hence, the function u0 belongs to the class eα(B) with B = B(α, γ)
for these γ . Nonetheless, u0 6≡ 0 has a null trace on C . The absence of isomorphism of
eα(B)→ Lα (C ) hence immediately follows.

Let us turn now to the weighted Hardy spaces.
De�nition 6. Let a pair (B; ρ) satisfy the conditions (b)p , p ∈ (1, ∞) , introduced in De�ni-
tion 4. Let us denote by ep(B; ρ) the class of all harmonic in B functions u(z) such that

sup
0<r<1

∫
Cr

|u(z)|p|ρ(z)|ds <∞,

where the contours Cr are the same as in De�nition 5.
Theorem 4. Let u ∈ ep(B; ρ) with (B; ρ) ∈ (b)p , p ∈ (1,∞) , then:

1) it does possess a trace u(z′) on the boundary C that belongs to Lp(C ; ρ) , and the following
equality holds

lim
r→1
‖u; Lp(Cr; ρ)‖ = ‖u; Lp(C ; ρ)‖; (3.5)
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2) the function v , harmonically conjugate to u , belongs to ep(B; ρ) as well, while under
the condition v(z0) = 0 with z0 being a point of the domain B , holds inequality (1.2) with a
constant C independent on u ;

3) the following equalities

lim
r→1

∫
C

∣∣∣u (z′r)− u(z′)
∣∣∣p |ρ(z′)| |dz′| = 0,

lim
r→1

∫
C

∣∣u (z′r)
∣∣p |ρ(z′)| |dz′| =

∫
C

∣∣u (z′)
∣∣p |ρ(z′)| |dz′| ,

hold with z′r = ω (r χ(z′)) , χ = ω−1 .
Assertions 1) and 3) are weighted counterparts of the F. Riesz theorem [22] while Assertions

2) is a weighted counterpart of the M. Riesz theorem [21].
Theorem 5. Dirichlet problem (1.3) for the Laplace equation with a boundary function g ∈
Lp(C ; ρ) , p ∈ (1,∞) , has a unique solution in the class ep(B; ρ) . Moreover, the second equality
in (1.3) is satis�ed almost everywhere on C and necessarily holds at the points of continuity of
the boundary function g(z′) .

It follows from Theorems 4 and 5 that ep(B; ρ) is a Banach space with the norm de�ned
as ‖u; ep (B; ρ)‖ := limr→1 ‖u; Lp(Cr; ρ)‖ which according to (3.5), is equal to ‖u; Lp(C ; ρ)‖ .
Moreover, the following statement holds.
Proposition 4. The operator S which assigns to each function u ∈ ep(B; ρ) its trace u(z′) ∈
Lp(C ; ρ) is an isometric isomorphism ep(B; ρ)→ Lp(C ; ρ) for p ∈ (1,∞) .

4 Some estimates for the solution to the Dirichlet problem

Let, as before, ζ = χ(z) be the inverse mapping to ω : U conf−→ B , and λ be de�ned by (2.10).
We introduce the notation D(l,n) := ∂ l+n/∂ lx ∂ ny , where z = x+ iy .
Theorem 6. Let p ∈ (1, ∞) , and the pair (B; ρ) satis�es condition (b)t for some t ∈ (1, p] .
Let u(z) be a solution to problem (1.3) with g(z′) ∈ Lp(C ; ρ) . Then for any compact E ⊂ B
and non�negative integers l, n , the following estimate holds:

max
z∈E

∣∣∣D( l, n) u(z)
∣∣∣ ≤ A l+n(δ)

δ l+n+ t/p
‖g; Lp(C ; ρ)‖, (4.1)

where δ is the distance of χ(E) to T . The factor Ak(δ) is a polynomial in δ of degree
(k − 1) whose coe�cients depend on k, t, p , as well as on the function λ and on the values of
max
z∈E
|χ(m)(z)| , m = 1, k . In particular,

A0(δ) =
1

πt/p

∥∥∥1

λ
; L1/(t−1)(T)

∥∥∥1/p

, A1(δ) = A0(δ) max
z∈E
|χ′(z)|. (4.2)

Note that Ak(δ) is bounded for domains with boundaries of the class Ck, µ , µ ∈ (0, 1) .
Corollary 1. Under the assumptions that the conditions of Theorem 4 are satis�ed, for the
solution u(z) to Dirichlet problem (1.3) and for its gradient, the following estimates hold:

max
z∈E
|u(z)| ≤ 1

(πδ)t/p
‖g;Lp(C ; ρ)‖

∥∥∥∥1

λ
; L1/(t−1)(T)

∥∥∥∥1/p

(4.3)

max
z∈E
|gradu(z)| ≤ 2 (2π)− t/p

δ1+t/p
max
z∈E

|χ′(z)| ‖g;Lp(C ; ρ)‖
∥∥∥∥1

λ
; L1/(t−1)(T)

∥∥∥∥1/p

. (4.4)

Note that λ should be replaced by ω′ in (4.2) � (4.4) in the non�weighted case ( ρ ≡ 1 ).
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5 Approximation properties of harmonic polynomials in ep(B; ρ) and
the method of solving the Dirichlet problem

We consider the approximation properties of the system Ξ given by formulas (1.4), and also the
projection method for solving Dirichlet problem (1.3). The functions ξn(z) := ξn(z0; z) , n ∈ N ,
z = x+iy , forming this system, are harmonic polynomials of x, y . To emphasize the parametric
dependence of this system on z0 , we denote it by Ξz0 . The approximation properties under
consideration are given in the following theorem.
Theorem 7. Let B be a Jordan domain and (B; ρ) ∈ (b)p , p ∈ (1, ∞) . Then the system Ξz0

is complete in ep(B; ρ) for any z0 ∈ C , whereas for its minimality in ep(B; ρ) it is necessary
and su�cient that z0 ∈ B .

Based on this theorem, we construct the solution to problem (1.3) using the following pro-
jection method:

u(z) = lim
K→∞

uK(z) , uK(z) :=
∑K

n=1
aKn ξn(z0; z). (5.1)

We determine the coe�cients aKn of the approximate solutions uK by means of the conditions
(uK − g, ξn) = 0, n = 1, K , where (a, b) is de�ned by the equality

(a, b) =

∫
C

a b |ρ| |dz|

for a ∈ Lp(C , ρ) , b ∈ L′p(C , ρ) with 1/p+ 1/p′ = 1 .
The speci�ed conditions lead to the following system of linear equations:∑K

n=1
cmn a

K
n = gm, m = 1, K, (5.2)

where cmn = (ξm, ξn) , gm = (g, ξm) . The convergence of the above�described method is
established by the following theorem.
Theorem 8. Let B be a Jordan domain and (B; ρ) ∈ (b)p with p ∈ (1, ∞) . Let u ∈ ep(B; ρ)
be a solution to problem (1.3), and approximate solutions uK(z) be determined by (5.1), where
the coe�cients aKn are de�ned by system (5.2). Then:

1)
lim
K→∞

‖uK − g; L2(C ; ρ)‖ = 0;

2) for any non�negative integers l, m , the sequence {D(l, m) uK}K converges uniformly to
D (l, m) u on any compact E ⊂ B as K →∞ ;

3) if z0 ∈ B , then the limit lim
K→∞

aKn =: an exists for all n , and the series

u(z) =
∑∞

n=1
an ξn(z0; z), (5.3)

converges inside the circle {z : |z − z0| < min
z′∈C
|z′ − z0|} , and this equality can be di�erentiated

term by term arbitrarily many times.
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