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Abstract. In this article, the boundary behaviour of the Schwarz-type operator on the half lens
Ω will be discussed and the existence of boundary values at corner points is proved. Finally, two
basic boundary value problems, namely, Dirichlet and Neumann problems for analytic functions
and more generally the Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in
Ω is investigated.
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1 Introduction

The solutions of boundary value problems on some special domains have been explicitly obtained.
Those special domains include the unit disc [4], [3], the half-plane [5], [9], the quarter plane [1]�
[2], the circular ring [12], [11], lenses and lunes [8] and so on. In particular, the Schwarz problem
for the half lens domain is considered in [10]. Let Ω = {z ∈ ∆|Imz > 0} , where ∆ is the lens
de�ned in [8],

∆ = D ∩Dm(r),

where D = {z : |z| < 1} , Dm(r) = {z : |z −m| < r} , 0 < r < 1 < m , and r2 + 1 = m2.

In [10], by the re�ection at the boundary of the half lens Ω and by using the modi�ed
Cauchy-Pompeiu formula on Ω , the following Schwarz-Poisson formula was obtained:

ω(z) = 1
2πi

∫ 1

m−r
Reω(t)

[
ut(z) + ut(

1
z
) + ut(

m−z
1−mz ) + ut(

1−mz
m−z )

]
dt

+ 1
2πi

∫
∂ΩD

Reω(ζ)
[
vζ(z)− vζ(z) + vζ

(
m−z
1−mz

)
− vζ

(
m−z
1−mz

) ]
dζ
ζ

+ 1
2πi

∫
∂ΩDm

Reω(ζ)
[
wζ(z)− wζ(z) + wζ

(
m−z
1−mz

)
− wζ

(
m−z
1−mz

) ]
dζ
ζ−m

+ 2
π

∫
∂ΩD

Imω(ζ)dζ
ζ

+ 2
π

∫
∂ΩDm

Imω(ζ) dζ
ζ−m

− 1
2π

∫
Ω

{
ωζ(ζ)

ζ

[
vζ(z) + vζ(

1
z
) + vζ(

m−z
1−mz ) + vζ(

1−mz
m−z )

]
−ωζ(ζ)

ζ

[
vζ(z) + vζ(

1
z
) + vζ(

m−z
1−mz ) + vζ(

1−mz
m−z )

]}
dξdη, (1.1)
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where ζ = ξ + iη, ∂ΩD = ∂Ω∩ ∂D and ∂ΩDm = ∂Ω∩ ∂Dm(r), ut(z) = 2
t−z , vζ(z) = 2ζ

ζ−z , wζ(z) =
2(ζ−m)
ζ−z .

Formula (1.1) provides a solution to the Schwarz boundary value problem for the inhomoge-
neous Cauchy-Riemann equation in Ω (see [10]):

Theorem 1.1. The Schwarz problem

ωz = f, in Ω, Reω = γ on ∂Ω, γ(m− r) = γ(1) = 0,

2
πi

∫
∂ΩD

Imω(ζ)dζ
ζ

+ 2
πi

∫
∂ΩDm

Imω(ζ) dζ
ζ−m = c, (1.2)

with given f ∈ Lp(Ω,C) , p > 2 , γ ∈ C(∂Ω,R) , c ∈ R is uniquely solvable by

ω(z) = 1
2πi

∫ 1

m−r
γ(t)

[
ut(z) + ut

(
1
z

)
+ ut

(
m−z
1−mz

)
+ ut

(
1−mz
m−z

) ]
dt

+ 1
2πi

∫
∂ΩD

γ(ζ)
[
vζ(z)− vζ(z) + vζ

(
m−z
1−mz

)
− vζ

(
m−z
1−mz

) ]
dζ
ζ

+ 1
2πi

∫
∂ΩDm

γ(ζ)
[
wζ(z)− wζ(z) + wζ

(
m−z
1−mz

)
− wζ

(
m−z
1−mz

) ]
dζ
ζ−m + ic

− 1
2π

∫
Ω

{
f(ζ)
ζ

[
vζ(z) + vζ

(
1
z

)
+ vζ

(
m−z
1−mz

)
+ vζ

(
1−mz
m−z

) ]
−f(ζ)

ζ

[
vζ(z) + vζ

(
1
z

)
+ vζ

(
m−z
1−mz

)
+ vζ

(
1−mz
m−z

) ]}
dξdη. (1.3)

Next we show that side condition (1.2) is satis�ed by the given solution of the Schwarz
problem . Let ω3(z) denote the area integral

ω3(z) = − 1
2π

∫
Ω

{
f(ζ)
ζ

[
vζ(z) + vζ

(
1
z

)
+ vζ

(
m−z
1−mz

)
+ vζ

(
1−mz
m−z

) ]
−f(ζ)

ζ

[
vζ(z) + vζ

(
1
z

)
+ vζ

(
m−z
1−mz

)
+ vζ

(
1−mz
m−z

) ]}
dξdη,

and

ω0(z) = 1
2πi

∫ 1

m−r
γ(t)

[
2
t−z + 2z

zt−1
+ 2(1−mz)

t(1−mz)−(m−z) + 2(m−z)
t(m−z)−(1−mz)

]
dt,

ω1(z) = 1
2πi

∫
∂ΩD

γ(ζ)
[

2ζ
ζ−z −

2ζ

ζ−z + 2ζ(1−mz)
ζ(1−mz)−(m−z) −

2ζ(1−mz)
ζ(1−mz)−(m−z)

]
dζ
ζ
,

ω2(z) = 1
2πi

∫
∂ΩDm

γ(ζ)
[

2(ζ−m)
ζ−z −

2(ζ−m)

ζ−z + 2(ζ−m)(1−mz)
ζ(1−mz)−(m−z) −

2(ζ−m)(1−mz)
ζ(1−mz)−(m−z)

]
dζ
ζ−m .
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In order to check side condition (1.2) the relations

2
πi

∫
∂ΩD

ω0(z)dz
z

= 2
πi

∫ 1

m−r
γ(t)

{
1
πi

∫
∂ΩD

[
1
t−z + (1−mz)

t(1−mz)−(m−z)

]
dz
z

− 1
πi

∫
∂ΩD

[
1
t−z + (1−mz)

t(1−mz)−(m−z)

]
dz
z

}
dt,

2
πi

∫
∂ΩDm

ω0(z) dz
z−m = 2

πi

∫ 1

m−r
γ(t)

{
1
πi

∫
∂ΩDm

[
1
t−z + (1−mz)

t(1−mz)−(m−z)

]
dz
z−m

− 1
πi

∫
∂ΩDm

[
1
t−z + (1−mz)

t(1−mz)−(m−z)

]
dz
z−m

}
dt,

2
πi

∫
∂ΩD

ω1(z)dz
z

= 2
πi

∫
∂ΩD

γ(ζ)

{
1
πi

∫
∂ΩD

[
ζ
ζ−z + ζ(1−mz)

ζ(1−mz)−(m−z)

]
dz
z

+ 1
πi

∫
∂ΩD

[
ζ

ζ−z + ζ(1−mz)
ζ(1−mz)−(m−z)

]
dz
z

}
dζ
ζ
,

2
πi

∫
∂ΩDm

ω1(z) dz
z−m = 2

πi

∫
∂ΩD

γ(ζ)

{
1
πi

∫
∂ΩDm

[
ζ
ζ−z + ζ(1−mz)

ζ(1−mz)−(m−z)

]
dz
z−m

+ 1
πi

∫
∂ΩDm

[
ζ

ζ−z + ζ(1−mz)
ζ(1−mz)−(m−z)

]
dz
z−m

}
dζ
ζ
,

2
πi

∫
∂ΩD

ω2(z)dz
z

= 2
πi

∫
∂ΩDm

γ(ζ)

{
1
πi

∫
∂ΩD

[
ζ−m
ζ−z + (ζ−m)(1−mz)

ζ(1−mz)−(m−z)

]
dz
z

+ 1
πi

∫
∂ΩD

[
ζ−m
ζ−z + (ζ−m)(1−mz)

ζ(1−mz)−(m−z)

]
dz
z

}
dζ
ζ−m ,

2
πi

∫
∂ΩDm

ω2(z) dz
z−m = 2

πi

∫
∂ΩDm

γ(ζ)

{
1
πi

∫
∂ΩDm

[
ζ−m
ζ−z + (ζ−m)(1−mz)

ζ(1−mz)−(m−z)

]
dz
z−m

+ 1
πi

∫
∂ΩDm

[
ζ−m
ζ−z + (ζ−m)(1−mz)

ζ(1−mz)−(m−z)

]
dz
z−m

}
dζ
ζ−m ,

2
πi

∫
∂ΩD

ω3(z)dz
z

= − 2
πi

∫
Ω

f(ζ)

ζ

{
1
π

∫
∂∆∩∂D

[ ζ
ζ−z + ζ(1−mz)

ζ(1−mz)−(m−z) ]
dz
z

}
dξdη

− 2
πi

∫
Ω

f(ζ)

ζ

{
1
π

∫
∂∆∩∂D

[ ζ

ζ−z + ζ(1−mz)
ζ(1−mz)−(m−z) ]

dz
z

}
dξdη,

2
πi

∫
∂ΩDm

ω3(z) dz
z−m = − 2

πi

∫
Ω

f(ζ)

ζ

{
1
π

∫
∂∆∩∂Dm

[ ζ
ζ−z + ζ(1−mz)

ζ(1−mz)−(m−z) ]
dz
z−m

}
dξdη

− 2
πi

∫
Ω

f(ζ)

ζ

{
1
π

∫
∂∆∩∂Dm

[ ζ

ζ−z + ζ(1−mz)
ζ(1−mz)−(m−z) ]

dz
z−m

}
dξdη,

2
πi

∫
∂ΩD

icdz
z

+ 2
πi

∫
∂ΩDm

ic dz
z−m = ci,
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are to be used. Hence,

2
πi

∫
∂ΩD

Imω(z)dz
z

+ 2
πi

∫
∂ΩDm

Imω(z) dz
z−m = c.

In Theorem 1.1, the given boundary data γ is required to satisfy the condition at the corner
points

γ(m− r) = γ(1) = 0. (1.4)

In this article, with the aid of the boundary behaviour of the Schwarz operator obtained in
[10] under condition (1.4), the boundary behaviour of the Schwarz operator on the half lens Ω
is investigated and the existence of boundary values at the corner points m − r, 1 have been
veri�ed and hereby Theorem 1.1 remains true if condition (1.4) at the corner points is not
satis�ed. Further the Dirichlet and Neumann boundary value problems are investigated.

2 Boundary behaviour of the Schwarz operator

Similarly to [13], we introduce the Schwarz integral on the half lens Ω as follows

S[γ](z) = 1
2πi

∫ 1

m−r
γ(t)[ut(z) + ut(

1
z
) + ut(

m−z
1−mz ) + ut(

1−mz
m−z )]dt

+ 1
2πi

∫
∂ΩD

γ(ζ)[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ
ζ

+ 1
2πi

∫
∂ΩDm

γ(ζ)[wζ(z)− wζ(z) + wζ(
m−z
1−mz )− wζ( m−z

1−mz )] dζ
ζ−m ,

where γ ∈ C(∂Ω;R) . By a direct computation,

∂S[γ](z)
∂z

= 0, z ∈ Ω,

so S[γ](z) is analytic in Ω and as in the proof of Theorem 2.2 in [10], we show that under
condition γ(1) = γ(m− r) = 0,

ReS[γ](ζ) = γ(ζ), ζ ∈ ∂Ω. (2.1)

Lemma 2.1. If γ(ζ) ≡ 1 for ζ ∈ ∂Ω, then S[γ](z) ≡ 1, z ∈ Ω.

Proof. A simple computation gives

S[1](z) = 1
2πi

∫ 1

m−r
[ut(z) + ut(

1
z
) + ut(

m−z
1−mz ) + ut(

1−mz
m−z )]dt

+ 1
2πi

∫
∂ΩD

[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ
ζ

+ 1
2πi

∫
∂ΩDm

[wζ(z)− wζ(z) + wζ(
m−z
1−mz )− wζ( m−z

1−mz )] dζ
ζ−m

= 1
2πi

∫ 1

m−r
[ut(z) + ut(

1
z
) + ut(

m−z
1−mz ) + ut(

1−mz
m−z )]dt

+ 1
2πi

∫
∂ΩD

[uζ(z) + uζ(
1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )]dζ

+ 1
2πi

∫
∂ΩDm

[uζ(z) + uζ(
1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )]dζ

− 2
πi

∫
∂ΩD

dζ
ζ
− 2

πi

∫
∂ΩDm

dζ
ζ−m .
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So by the Residue Theorem, S[1](z) = 1.

Lemma 2.2. If γ(ζ) ≡ ζ for ζ ∈ ∂Ω, then S[γ](z) ≡ 2z + 2
πi

(1 −m + r) −m + 2m
π
α, z ∈ Ω,

where α is the argument of 1
m

+ i r
m
.

Proof. Similarly to the proof of Lemma 2.1

S[ζ](z) = 1
2πi

∫ 1

m−r
[vt(z) + vt(

1
z
) + vt(

m−z
1−mz ) + vt(

1−mz
m−z )]dt

+ 1
2πi

∫
∂ΩD

[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ

+ 1
2πi

∫
∂ΩDm

[vζ(z)− wζ(z) ζ
ζ−m + vζ(

m−z
1−mz )− wζ( m−z

1−mz ) ζ
ζ−m ]dζ

= 1
2πi

∫ 1

m−r
[vt(z) + 2

zt−1
+ vt(

m−z
1−mz ) + 2(1−mz)

t(m−z)−(1−mz) ]dt

+ 1
2πi

∫
∂ΩD

[vζ(z) + 2
zζ−1

+ vζ(
m−z
1−mz ) + 2(1−mz)

ζ(m−z)−(1−mz) ]dζ

+ 1
2πi

∫
∂ΩDm

[vζ(z) + 2
zζ−1

+ vζ(
m−z
1−mz ) + 2(1−mz)

ζ(m−z)−(1−mz) ]dζ

+ 2
πi

∫ 1

m−r
dt− 2m

πi

∫
∂ΩDm

dζ
ζ−m = 2z + 2

πi
(1−m+ r) + 2m

π
α−m,

by the Residue Theorem.

Lemma 2.3. If γ(ζ) ≡ ζ for ζ ∈ ∂Ω, then S[γ](z) ≡ 2
πi

(1−m+ r) +m− 2m
π
α, z ∈ Ω.

Proof. First,

S[ζ](z) = 1
2πi

∫ 1

m−r
[vt(z) + vt(

1
z
) + vt(

m−z
1−mz ) + vt(

1−mz
m−z )]dt

+ 1
2πi

∫
∂ΩD

ζ[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ
ζ

+ 1
2πi

∫
∂ΩDm

ζ[wζ(z)− wζ(z) + wζ(
m−z
1−mz )− wζ( m−z

1−mz )] dζ
ζ−m . (2.2)

By a straightforward computation one has

1
2πi

∫
∂ΩD

ζ[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ
ζ

= − 1
2πi

∫
∂ΩD

ζ[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ

ζ

= − 1
2πi

∫
∂ΩD

ζ[vζ(z)− vζ(z) + vζ(
m−z
1−mz )− vζ( m−z

1−mz )]dζ
ζ
, (2.3)

and similarly

1
2πi

∫
∂ΩDm

ζ[wζ(z)− wζ(z) + wζ(
m−z
1−mz )− wζ( m−z

1−mz )] dζ
ζ−m

= − 1
2πi

∫
∂ΩDm

ζ[wζ(z)− wζ(z) + wζ(
m−z
1−mz )− wζ( m−z

1−mz )] dζ
ζ−m . (2.4)
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By substituting (2.3) and (2.4) in (2.2) one gets

S[ζ](z) = 1
2πi

∫ 1

m−r
[vt(z) + 2

zt−1
+ vt(

m−z
1−mz ) + 2(1−mz)

t(m−z)−(1−mz) ]dt

− 1
2πi

∫
∂ΩD

[vζ(z) + 2
zζ−1

+ vζ(
m−z
1−mz ) + 2(1−mz)

ζ(m−z)−(1−mz) ]dζ

− 1
2πi

∫
∂ΩDm

[vζ(z) + 2
zζ−1

+ vζ(
m−z
1−mz ) + 2(1−mz)

ζ(m−z)−(1−mz) ]dζ

+ 2
πi

∫ 1

m−r
dt+ 2m

πi

∫
∂ΩDm

dζ
ζ−m ,

so by the Residue Theorem,

S[ζ](z) = 2
πi

(1−m+ r) +m− 2m
π
α.

Now, we construct the following function:

Lγ(z) =
γ(1)
[

Re(z)−(m−r)
]
−γ(m−r)

[
Re(z)−1

]
1−(m−r)

= γ(1)−γ(m−r)
1−(m−r) Re(z) + γ(m−r)−(m−r)γ(1)

1−(m−r) . (2.5)

Obviously, Lγ(1) = γ(1), Lγ(m− r) = γ(m− r) .

Lemma 2.4. If γ ∈ C(∂Ω;C) , then

S[Lγ](z) = γ(1)−γ(m−r)
1−(m−r) z + γ(m−r)−(m−r)γ(1)

1−(m−r) − 2i
π

(γ(1)− γ(m− r)) . (2.6)

Proof. The lemma follows by Lemmas 2.1�2.3 and by the obvious equality

Re(z) = z+z
2
.

Now, in the next theorem we show that Theorem 1.1 remains true if condition (1.4) at the
corner points is not satis�ed.

Theorem 2.1. If γ ∈ C(∂Ω;R) then

Re{S[γ]}(ζ) = γ(ζ), ζ ∈ ∂Ω, (2.7)

in particular,
Re{S[γ]}(1) = γ(1), Re{S[γ]}(m− r) = γ(m− r).

Proof. Since γ is a real-valued function, by (2.5) and (2.6) we obtain that

Re{S[γ](z)} = Re{S[γ − Lγ](z) + S[Lγ](z)}
= Re{S[γ − Lγ](z)}+ Lγ(z), z ∈ Ω, (2.8)

and Lγ(1) = γ(1), Lγ(m − r) = γ(m − r) , so γ − Lγ satis�es the conditions on γ de�ned in
Theorem 2.2 in [10]. Hence by (2.1) we have

Re{S[γ − Lγ](ζ)} = γ(ζ)− Lγ(ζ), ζ ∈ ∂Ω. (2.9)

Thus, (2.8) and (2.9) lead to the desired conclusion (2.7).
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3 The Dirichlet boundary value problem for the Cauchy-Riemann
equation

In this section, we �rst consider the Dirichlet boundary value problem for the homogeneous
Cauchy-Riemann equation. To solve boundary value problems for analytic functions in Ω the
following representation formula is important.

Theorem 3.1. Any ω ∈ C1(Ω;C) ∩ C(Ω;C) can be represented as

ω(z) = 1
4πi

∫
∂Ω

ω(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ

− 1
2π

∫
Ω

ωζ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dξdη. (3.1)

Proof. By the Cauchy-Pompeiu representations for z ∈ Ω and 1
z
, m−z

1−mz ,
1−mz
m−z /∈ Ω one has,

ω(z) = 1
2πi

∫
∂Ω

ω(ζ)
ζ−z dζ − 1

π

∫
Ω

ωζ(ζ)dξdη
ζ−z ,

0 = 1
2πi

∫
∂Ω

ω(ζ)z
zζ−1

dζ − 1
π

∫
Ω

ωζ(ζ) zdξdη
zζ−1

,

0 = 1
2πi

∫
∂Ω

ω(ζ) 1−mz
ζ(1−mz)−(m−z)dζ −

1
π

∫
Ω

ωζ(ζ) 1−mz
ζ(1−mz)−(m−z)dξdη,

0 = 1
2πi

∫
∂Ω

ω(ζ) m−z
ζ(m−z)−(1−mz)dζ −

1
π

∫
Ω

ωζ(ζ) m−z
ζ(m−z)−(1−mz)dξdη.

Adding the resulting above four relations, leads to the claimed representation formula.

Formula (3.1) provides a solution to the Dirichlet boundary value problem for the homoge-
neous Cauchy-Riemann equation in Ω .

Theorem 3.2. The Dirichlet problem

ωz = 0, in Ω,

ω = γ, on ∂Ω, γ ∈ C(∂Ω;C), (3.2)

is solvable, if and only if,

1
4πi

∫
∂Ω

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ = 0, (3.3)

and the unique solution can be represented as

ω(z) = 1
4πi

∫
∂Ω

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ, z ∈ Ω. (3.4)

Proof. Let ω de�ned by (3.4) be a solution to the Dirichlet problem. This formula can be
decomposed into the sum of Cauchy type integrals, which implies that

ω = γ, on ∂Ω. (3.5)

We consider the following function

h(z) = 1
4πi

∫
∂Ω

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ. (3.6)
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Obviously,

ω(z)− h(z) = 1
4πi

∫ 1

m−r
γ(t)

[
ut(z)− ut(z) + ut(

1−mz
m−z )− ut(1

z
) + ut(

m−z
1−mz )

−ut( m−z
1−mz ) + ut(

1
z
)− ut(1−mz

m−z )
]
dt

+ 1
4πi

∫
∂ΩD

γ(ζ)
[
vζ(z) + vζ(z)− vζ(z)− vζ(z) + vζ(

m−z
1−mz )

+vζ(
m−z
1−mz )− vζ( m−z

1−mz )− vζ( m−z
1−mz )

]
dζ
ζ

+ 1
4πi

∫
∂ΩDm

γ(ζ)
[
wζ(z) + wζ(z)− wζ(z)− wζ(z) + wζ(

m−z
1−mz )

+wζ(
m−z
1−mz )− wζ( m−z

1−mz )− wζ( m−z
1−mz )

]
dζ
ζ−m

= 1
2πi

∫ 1

m−r
γ(t)[ z−z

|t−z|2 −
z−z
|zt−1|2 + r2(z−z)

|t(1−mz)−(m−z)|2

− r2(z−z)
|t(m−z)−(1−mz)|2 ]dt+ 1

2πi

∫
∂ΩD

γ(ζ)[1−|z|2
|ζ−z|2

−1−|z|2
|ζ−z|2 −

r2(1−|z|2)
|ζ(1−mz)−(m−z)|2

+ r2(1−|z|2)

|ζ(1−mz)−(m−z)|2 ]dζ
ζ

+ 1
2πi

∫
∂ΩDm

γ(ζ)[ r
2−|z−m|2
|ζ−z|2

− r2−|z−m|2
|ζ−z|2 − r2−|z−m|2

|1−zζ|2 + r2−|z−m|2
|1−zζ|2 ] dζ

ζ−m , (3.7)

so by Theorem 2.2 in [10]

lim
z→ζ

[
ω(z)− h(z)

]
= γ(ζ), ζ ∈ ∂Ω. (3.8)

By (3.5) and (3.8), one has limz→ζ,ζ∈∂Ω h(z) = 0 . Since h(z) is analytic for z ∈ Ω , by the
maximum principle for analytic functions, h(z) ≡ 0 for z ∈ Ω , which is just condition (3.3).
Now, we verify that condition (3.3) is su�cient. If condition (3.3) is satis�ed, then,

ω(z) = 1
4πi

∫
∂Ω

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

+uζ(z) + uζ(
1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ,

is equal to (3.4). Hence ωz = 0, z ∈ Ω and by Theorem 2.2 in [10], limz→ζ ω(z) = γ(ζ), ζ ∈ ∂Ω.

In the next step, the inhomogeneous Dirichlet problem for the inhomogeneous Cauchy-
Riemann equation is solved in Ω . By using the de�nition and properties of the Pompeiu
operator, the inhomogeneous problem is reduced to the homogeneous case.

Theorem 3.3. The Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in Ω,

ωz = f(z), z ∈ Ω, f ∈ Lp(Ω;C), p > 2,

ω = γ, on ∂Ω, γ ∈ C(∂Ω;C), (3.9)

is solvable, if and only if, for z ∈ Ω,

1
4πi

∫
∂Ω

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ

= 1
2π

∫
Ω

f(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dξdη, (3.10)
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and its solution can be uniquely expressed as

ω(z) = 1
4πi

∫
∂Ω

ω(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ

− 1
2π

∫
Ω

f(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dξdη, z ∈ Ω. (3.11)

Proof. By Theorem 3.1 if the Dirichlet problem (3.9) is solvable, then its solution can be repre-
sented as (3.11).

Introducing the new unknown function ϕ = ω−Tf, then we arrive at the following boundary
value problem

ϕz = 0, in Ω, ϕ = γ − Tf, on ∂Ω, (3.12)

equivalent to equation (3.9). By Theorem 3.2 the solvability condition for equation (3.12) is

1
4πi

∫
∂Ω

(γ(ζ)− T [f ](ζ))
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ = 0, (3.13)

and

1
2πi

∫
∂Ω

T [f ](ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ

= 1
π

∫
Ω

f(ζ̃) 1
2πi

∫
∂Ω

[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ

ζ−ζ̃dξ̃dη̃,

which is just condition (3.10) by direct computation.
Conversely, if condition of solvability (3.10) is satis�ed, (3.11) can be rewritten as,

ω(z) = 1
4πi

∫
∂Ω

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

uζ(z) + uζ(
1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ

− 1
2π

∫
Ω

f(ζ)
[
uζ(z)− uζ(z) + uζ(

1
z
)− uζ(1

z
) + uζ(

m−z
1−mz )

−uζ( m−z
1−mz ) + uζ(

1−mz
m−z )− uζ(1−mz

m−z )
]
dξdη. (3.14)

Since the area integral tends to 0 as z → ζ ∈ ∂Ω , by Theorem 2.2 in [10], (3.14) implies that
limz→ζ ω(z) = γ(ζ), ζ ∈ Ω and obviously ωz = f(z), z ∈ Ω. The uniqueness of the solution
follows from the fact that the corresponding homogeneous problem

ωz = 0, z ∈ Ω,

ω = 0, on ∂Ω,

has only the trivial solution.

4 The Neumann boundary value problem for the Cauchy-Riemann
equation

To formulate the Neumann boundary value problem, we need to de�ne the outward normal
derivative at the boundary of Ω. The normal derivative on the boundary of Ω is given by the
formulas

∂νz =


−i(∂z − ∂z), z ∈ (m− r, 1),
z∂z + z∂z, z ∈ ∂ΩD \ {1, 1

m
+ i r

m
},

( z−m
r

)∂z + ( z−m
r

)∂z, z ∈ ∂ΩDm \ {m− r, 1
m

+ i r
m
},
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Theorem 4.1. The Neumann problem

ωz = 0, z ∈ Ω,

∂νzω = γ on ∂Ω \ {m− r, 1, 1
m

+ i r
m
}, γ ∈ C(∂Ω;C), ω(1) = 0, (4.1)

where

∂νz =


−iωz z ∈ (m− r, 1),
zωz z ∈ ∂ΩD \ {1, 1

m
+ i r

m
},

( z−m
r

)ωz z ∈ ∂ΩDm \ {m− r, 1
m

+ i r
m
},

is solvable, if and only if, for z ∈ Ω ,

1
4π

∫ 1

m−r
γ(t)

[
ut(z) + ut(

1
z
) + ut(

m−z
1−mz ) + ut(

1−mz
m−z )

]
dt

+ 1
4πi

∫
∂ΩD

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ
ζ

+ r
4πi

∫
∂ΩDm

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ
ζ−m = 0,

and its solution is

ω(z) = 1
2π

∫ 1

m−r
γ(t)

[
(z − 1) + (z−1)t

t−m + m(z−1)t
mt−1

− t log( t−z
t−1

)

+1
t

log( zt−1
t−1

)− r2t
(1−mt)2 log

(
(mt−1)z−(t−m)
(mt−1)−(t−m)

)
+ r2t

(t−m)2

× log
(
z(t−m)−(mt−1)
(t−m)−(mt−1)

)]
dt
t

+ 1
2πi

∫
∂ΩD

γ(ζ)
[

(z−1)
ζ

+ (z−1)
ζ−m

−m(z−1)
1−mζ − log( ζ−z

ζ−1
) + 1

ζ2 log( zζ−1
ζ−1

)

− r2

(1−mζ)2 log
(
z(1−mζ)−(m−ζ)
(1−mζ)−(m−ζ)

)
− r2

(ζ−m)2 log
(
z(ζ−m)−(mζ−1)
(ζ−m)−(mζ−1)

)]
dζ
ζ

+ r
2πi

∫
∂ΩDm

γ(ζ)
[

(z−1)
ζ

+ (z−1)
ζ−m −

m(z−1)
1−mζ

− log( ζ−z
ζ−1

) + 1
ζ2 log( zζ−1

ζ−1
)− r2

(1−mζ)2 log
(
z(1−mζ)−(m−ζ)
(1−mζ)−(m−ζ)

)
− r2

(ζ−m)2 log
(
z(ζ−m)−(mζ−1)
(ζ−m)−(mζ−1)

)]
dζ
ζ−m . (4.2)

Proof. If ω is a solution to the Neumann problem, then ϕ = ωz is a solution to the Dirichlet
problem

ϕz = 0, in Ω, ϕ = ωz on ∂Ω, (4.3)

where ωz on ∂Ω is represented by,

ωz(z) =


iγ z ∈ (m− r, 1),
zγ z ∈ ∂ΩD \ {1, 1

m
+ i r

m
},

( z−m
r

)γ z ∈ ∂ΩDm \ {m− r, 1
m

+ i r
m
}.
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The solution of the Dirichlet problem is

ωz(z) = 1
4π

∫ 1

m−r
γ(t)

[
ut(z) + ut(

1
z
) + ut(

m−z
1−mz ) + ut(

1−mz
m−z )

]
dt

+ 1
4πi

∫
∂ΩD

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ
ζ

+ r
4πi

∫
∂ΩDm

γ(ζ)
[
uζ(z) + uζ(

1
z
) + uζ(

m−z
1−mz ) + uζ(

1−mz
m−z )

]
dζ
ζ−m . (4.4)

The primitive of the function in (4.4) is

ω(z) = 1
2π

∫ 1

m−r
γ(t)

[
z + zt

t−m + mzt
mt−1

− t log(t− z) + 1
t

log(zt− 1)

− r2t
(1−mt)2 log

(
(mt− 1)z − (t−m)

)
+ r2t

(t−m)2

× log
(
z(t−m)− (mt− 1)

)]
dt
t

+ 1
2πi

∫
∂ΩD

γ(ζ)
[
z
ζ

+ z
ζ−m −

mz
1−mζ

− log(ζ − z) + 1
ζ2 log(zζ − 1)− r2

(1−mζ)2 log
(
z(1−mζ)− (m− ζ)

)
− r2

(ζ−m)2 log
(
z(ζ −m)− (mζ − 1)

)]
dζ
ζ

+ r
2πi

∫
∂ΩDm

γ(ζ)
[
z
ζ

+ z
ζ−m

− mz
1−mζ − log(ζ − z) + 1

ζ2 log(zζ − 1)− r2

(1−mζ)2

× log
(
z(1−mζ)− (m− ζ)

)
− r2

(ζ−m)2 log
(
z(ζ −m)− (mζ − 1)

)]
dζ
ζ−m

+c0,

where c0 ∈ C . The solution to Neumann problem (4.1) has form (4.2), if one de�nes c0 by,

c0 = − 1
2π

∫ 1

m−r
γ(t)

[
1 + t

t−m + mt
mt−1

− t log(t− 1) + 1
t

log(t− 1)

− r2t
(1−mt)2 log

(
(mt− 1)− (t−m)

)
+ r2t

(t−m)2

× log
(

(t−m)− (mt− 1)
)]

dt
t
− 1

2πi

∫
∂ΩD

γ(ζ)
[

1
ζ

+ 1
ζ−m −

m
1−mζ

− log(ζ − 1) + 1
ζ2 log(1ζ − 1)− r2

(1−mζ)2 log
(

(1−mζ)− (m− ζ)
)

− r2

(ζ−m)2 log
(

1(ζ −m)− (mζ − 1)
)]

dζ
ζ
− r

2πi

∫
∂ΩDm

γ(ζ)
[

1
ζ

+ 1
ζ−m

− m
1−mζ − log(ζ − 1) + 1

ζ2 log(ζ − 1)− r2

(1−mζ)2

× log
(

(1−mζ)− (m− ζ)
)
− r2

(ζ−m)2 log
(

(ζ −m)− (mζ − 1)
)]

dζ
ζ−m .
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