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Abstract. In this paper, we derive some general Aitken type methods. These methods involve
arbitrary methods of orders p and q which enable us to construct the method of any desired
order. Further, it is shown that these methods can be combined with generalized secant method
and as result, in the limiting case, the e�ciency can be increased to 2. We also discuss the
stability of the iterative method with the help of basins of attraction in the complex plane.
Some numerical examples are provided in support of the theoretical results.
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1 Introduction

Non-linear equations are encountered in all branches of science and engineering. There hardly
exist analytical methods for solving such equations and therefore it is desirable to obtain ap-
proximate solutions by methods which are based on iterative procedures. For a given non-linear
equation

f(x) = 0,

a very well known method widely used is the Newton method

xn+1 = xn −
f(xn)

f ′(xn)
.

The derivative free Ste�ensen method is given by

xn+1 = xn −
f 2(xn)

f(xn + f(xn))− f(xn)
. (1.1)

Both Newton method as well as Ste�ensen method are quadratically convergent. Moreover, the
e�ciency index of both the methods is 21/2 ≈ 1.414. There have been several ways by which
the order of convergence can be increased [10]. Solemani et. al. in [11], presented a two point
fourth order method based on Ste�ensen method given by

wn = xn + βf(xn), β ∈ R\ {0}

yn = xn −
f(xn)

f [xn, wn]
,

xn+1 = xn −
f(xn)2

f [xn, wn](f(xn)− f(yn)− (f(yn)2)/f(wn)
,


(1.2)
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where, f [xn, wn] =
f(xn)− f(wn)

xn − wn
is the �rst divided di�erence. Further, recently, in [9],

P�av�aloiu and C�atina�s obtained and studied the following Aitken type method:

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(yn)
,

xn+1 = zn −
f(zn)

f [yn, zn]
.


(1.3)

Along with other considerations, it was proved in [9] that method (1.3) is of order 6 with
e�ciency index 1.4309 which is higher than for the Newton method or the standard Aitken
method (having e�ciency index 1.414 ).

It can be noted that method (1.3) involves the derivative of the function f . Sometimes, it is
not possible to proceed if at some iterative step f ′(xn) = 0 . So, in this paper, to begin with, we
propose the following method in which the Newton iterates in (1.3) are replaced by Ste�ensen
type method based on forward and backward di�erences which do not involve derivative of the
function f :

wn = xn + βf(xn),

yn = xn −
f(xn)

f [xn, wn]
,

w∗n = yn − βf(yn),

zn = yn −
f(yn)

f [yn, w∗n]
,

xn+1 = zn −
f(zn)

f [yn, zn]
,


(1.4)

where, β ∈ R\ {0} .
We prove that the order of convergence of method (1.4) is 6 and e�ciency index is 1.4309

which is same as for method (1.3). This is done in Section 2.
Further, we propose a method more general than (1.3) or (1.4). We replace, in (1.3), the

Newton iterates by the iterates of arbitrary methods. Let φ(x) and ψ(x) be iterative functions
such that the methods

xn+1 = φ(xn)

and
xn+1 = ψ(xn)

are of order p and q, respectively. We propose the following generalized Aitken-type method:

yn = φ(xn),

zn = ψ(yn),

xn+1 = zn −
f(zn)

f [yn, zn]
.

 (1.5)

We prove, in Section 2, that method (1.5) is of order pq + p. This strategy would enable to
produce an iterative method of any desired order by choosing appropriately the functions φ(x)
and ψ(x) .

Next, note that the last iterate in method (1.3) is, in fact, the secant iterate which uses the
previously calculated nodes yn and zn . In [6] and [7], the authors generalized the secant method
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which involves arbitrary number of previously calculated nodes. We exploit this generalized
secant method in Section 3. In fact, we replace in (1.3), the secant iterate by generalized secant
iterate. We show that as the number of iterate increases, not only the order but also the e�ciency
of the corresponding method increases. Moreover, in the limiting case as the number of iterates
increases to in�nity, the e�ciency tends to 2. In Section 4, some numerical examples are provided
based on the methods developed in this paper. Finally, in Section 5, we discuss the dynamics
of the new method (1.4) and determine the basins of attraction of the method for the quadratic
and cubic polynomials in the complex plane.

2 General Aitken type methods and their convergence

We �rst establish the order of convergence of method (1.4).

Theorem 2.1. Let f be a real or complex-valued su�ciently di�erentiable function de�ned on
some interval I and β ∈ R \ {0} . Let α be a simple root of the nonlinear equation f(x) = 0.
Then method (1.4) is of the sixth order of convergence and satis�es the error equation given by

en+1 = C5
2(1− βf ′(α))(1 + βf ′(α))3e6

n +O(e7
n),

where Cn =
f (n)(α)

n! f ′(α)
and en = xn − α is the error in xn .

Proof. Here, Taylor's series expansion of f(xn) around α is given by:

f(xn) = f ′(α)
(
en + C2e

2
n + C3e

3
n + C4e

4
n + C5e

5
n + C6e

6
n +O(e7

n)
)

and as wn = xn + βf(xn) , Taylor's series expansion of f(wn) around α is given by:

f(wn) = f ′(α)
[
(1 + βf ′(α))en + C2

(
1 + 3βf ′(α) + β2f ′(α)2

)
e2
n

+
(
2C2

2βf
′(α)(1 + βf ′(α)) + C3

(
1 + 4βf ′(α) + 3β2f ′(α)2 + β3f ′(α)3

))
e3
n

+
(
C4

(
1 + 5βf ′(α) + 6β2f ′(α)2 + 4β3f ′(α)3 + β4f ′(α)4

)
+ C2βf

′(α)
(
C2

2βf
′(α) + C3(5 + 8βf ′(α) + 3β2f ′(α)2)

))
e4
n +O(e5

n)
]
.

If yn − α = dn , then from the second equation of (1.4), we get

dn = C2(1 + βf ′(α))e2
n +

(
−C2

2(2 + 2βf ′(α) + β2f ′(α)2) + C3(2 + 3βf ′(α) + β2f ′(α)2)
)
e3
n

+
(
C3

2

(
4 + 5βf ′(α) + 3β2f ′(α)2 + β3f ′(α)3

)
+ C4

(
3 + 6βf ′(α) + 4β2f ′(α)2 + β3f ′(α)3

)
− C2C3

(
7 + 10βf ′(α) + 7β2f ′(α)2 + 2β3f ′(α)3

))
e4
n +O(e5

n).

Therefore, we obtain

f(yn) = f(dn + α)

= f ′(α)
(
dn + C2d

2
n + C3d

3
n + C4d

4
n + · · ·

)
= f ′(α)

(
A1e

2
n + A2e

3
n + A3e

4
n +O(e5

n)
)
,

where

A1 = C2(1 + βf ′(α)),

A2 = −C2
2(2 + 2βf ′(α) + β2f ′(α)2) + C3(2 + 3βf ′(α) + β2f ′(α)2),

A3 = C3
2

(
5 + 7βf ′(α) + 4β2f ′(α)2 + β3f ′(α)3

)
+ C4

(
3 + 6βf ′(α) + 4β2f ′(α)2 + β3f ′(α)3

)
− C2C3

(
7 + 10βf ′(α) + 7β2f ′(α)2 + 2β3f ′(α)3

)
.
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Since, w∗n = yn − βf(yn) , after some tedious calculations and using Taylor's expansion, we can
�nd the value of f(w∗n) as

f(w∗n) = f ′(α)
(
B1e

2
n +B2e

3
n +B3e

4
n +O(e5

n)
)
,

where

B1 = C2(1− β2f ′(α)2,

B2 = (−1 + βf ′(α))
(
C2

2(2 + 2βf ′(α) + β2f ′(α)2) + C3(2 + 3βf ′(α) + β2f ′(α)2)
)
,

B3 = C3
2

(
5− 6β2f ′(α)2 − 3β3f ′(α)3

)
+ C4

(
3 + 3βf ′(α)− 2β2f ′(α)2 − 3β3f ′(α)3 − β4f ′(α)4

)
+ C2C3

(
−7− 3βf ′(α) + 3β2f ′(α)2 + 5β3f ′(α)3 + 2β4f ′(α)4

)
.

Now, if θn is the error in zn, then using the above considerations in the fourth equation of
(1.4), we obtain

θn = C3
2(1− βf ′(α))(1 + βf ′(α))2e4

n

+ 2C2
2(−1 + β2f ′(α)2)

(
C2

2(2 + 2βf ′(α) + β2f ′(α)2)− C3(2 + 3βf ′(α) + β2f ′(α)2)
)
e5
n

+O(e6
n),

so that

f(zn) = f(θn + α),

= f ′(α)
(
θn + C2θ

2
n + · · ·

)
= f ′(α)

(
D1e

4
n +D2e

5
n +O(e6

n)
)
,

where

D1 = C3
2(1− βf ′(α))(1 + βf ′(α))2,

D2 = 2C2
2(−1 + β2f ′(α)2)

(
C2

2

(
2 + 2βf ′(α) + β2f ′(α)2

)
− C3

(
2 + 3βf ′(α) + β2f ′(α)2

))
.

Now, the last equation of (1.4) gives

en+1 = θn −
f(zn)(dn − θn)

f(yn)− f(zn)

= C5
2(1− βf ′(α))(1 + βf ′(α))3e6

n +O(e7
n),

which is the required error equation and the assertion is proved.

Remark 1. It follows from Theorem 2.1 that if β = ± 1

f ′(α)
, then the order of method (1.4) is

at least 7 .

Next, we study the convergence of general Aitken method (1.5).

Theorem 2.2. Let f be a su�ciently di�erentiable function in a neighbourhood of α which is
a simple root of f(x) = 0. If φ(x) and ψ(x) are iterative functions such that the methods

yn = φ(xn) (2.1)

and
zn = ψ(xn) (2.2)

have order of convergence p and q, respectively, then method (1.5) has order of convergence
pq + p.
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Proof. Let en , dn , θn denote the errors involved in the iterates xn , yn , zn, respectively. Since
methods (2.1) and (2.2) are of order p and q, respectively, the error equations for the iterates
yn and zn in (1.5) are given, respectively, by

dn = Aepn +O(ep+1
n ), (2.3)

θn = Bdqn +O(dq+1
n ), (2.4)

where A and B are certain constants. Now, using Taylor's expansion, we have

f(zn) = f(θn + α),

= f ′(α)
[
θn + C2θ

2
n + C3θ

3
n +O(θ4

n)
]
,

and therefore

f [yn, zn] =
f(yn)− f(zn)

yn − zn
,

=
f ′(α)(dn − θn) [1 + C2(dn + θn) + C3(d2

n + θ2
n + dnθn) +O(θ4

n)]

(dn − θn)
,

= f ′(α)
[
1 + C2(dn + θn) + C3(d2

n + θ2
n + dnθn) +O(θ4

n)
]
.

Consequently, we get

f(zn)

f [yn, zn]
=

f ′(α) [θn + C2θ
2
n + C3θ

3
n +O(θ4

n)]

f ′(α) [1 + C2(dn + θn) + C3(d2
n + θ2

n + dnθn) +O(θ4
n)]

=
(
θn + C2θ

2
n + C3θ

3
n

) (
1− C2(dn + θn)− C3(d2

n + θ2
n + dnθn)

)
= θn − C2dnθn − (C2

2 + C3)θ2
ndn − C3d

2
nθn − C2

2θ
3
n,

using which the error equation of the iterate xn+1 in (1.5) is obtained as

en+1 = C2dnθn + (C2
2 + C3)θ2

ndn + C3d
2
nθn + C2

2θ
3
n

≈ C2dnθn,

which by using (2.3) and (2.4) gives

en+1 = C2(Aen
p)(Bdn

q)

= C2(Aen
p)(B(Aen

p)q)

= C2A
q+1Bepq+pn . (2.5)

and the assertion follows.

Remark 2. In view of Theorem 2.2, it follows that if, in (1.5), the iterates yn and zn are
interchanged, then the order of the method becomes pq + q. So, in order to have a higher order
of convergence one should start with the iterate having a higher order of convergence.

3 Increasing the e�ciency

We know that the standard secant method is given by

xn+1 = xn −
f(xn)(xn − xn−1)

f(xn)− f(xn−1)
,
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which, in terms of divided di�erence, can be written as

xn+1 = xn −
f(xn)

f [xn−1, xn]
. (3.1)

Secant method is a one point method with memory having order of convergence 1.618. Only
one function evaluation per iteration is required in this method and as a result its e�ciency is
1.618. In (1.3) or (1.5), the strategy was to use method (3.1) once the two nodes are calculated
from other methods.

Recently, in [7], Kogan et. al. used Newton's divided di�erence formula

f(x) = f(xn) + f [xn−1, xn](x− xn) + · · ·+ f [x0, xn]
n∏
j=1

(x− xj) +Rn,

where

Rn = f(x, xn, ...., x0)
n∏
j=0

(x− xj)

and generalized the secant method (3.1) as follows:

xn+1 = xn −
f(xn)

f [xn−1, xn] +
∑k

i=2 f [xn−i, xn]
∏i−1

j=1(xn − xn−j)
, n = k, k + 1, · · · (3.2)

where k ≥ 1 is an arbitrary �xed integer and the initial k approximations x0, x1, · · · , xk are
known. Obviously for k = 1, (3.2) becomes (3.1).

Remark 3. For the later use, let us mention that (see [7]), based on k+1 initial approximations
x0, x1, · · · , xk, the error equation corresponding to the method (3.2) is given by

en+1 = Ck

k∏
j=0

en−j +O(
k+1∏
j=0

en−j). (3.3)

In the light of above discussion, we propose a multipoint general Aitken method of the type
(1.3) as follows:

x(0)
n = φ(xn),

x(1)
n = ψ(x(0)

n ),

x(2)
n = x(1)

n −
f(x

(1)
n )

f [x
(0)
n , x

(1)
n ]

,

.

.

.

xn+1 = x(k)
n −

f(x
(k)
n )

f [x
(k−1)
n , x

(k)
n ] +

∑k
i=2 f [x

(k−i)
n , x

(k)
n ]
∏i−1

j=1(x
(k)
n − x(k−j)

n )
, k = 1, 2, 3, · · · (3.4)

with the initial approximation x0. Clearly, for k = 1, method (3.4) becomes method (1.5). We
shall prove that as k increases, not only the order of convergence but also the e�ciency of (3.4)
increases. Precisely, we prove the following:



64 P. Jain, P.B. Chand, K. Sethi

Theorem 3.1. Let f be a su�ciently di�erentiable function in a neighbourhood of α which is
a simple zero of f. If φ and ψ are iterative functions such that the methods

xn+1 = φ(xn)

and
xn+1 = ψ(xn)

have order of convergences p and q, with number of function evaluations per iterations as n1

and n2 , respectively. Let O(k) and EI(k) denote, respectively, the order of convergence and
e�ciency index of (3.4) for k = 1, 2, 3, · · · . Then

(a) O(k)= (pq + p)× 2k−1 ,

(b) EI(k)= [(pq + p)× 2k−1]
1

n1+n2+k ,

(c) EI(k) is strictly increasing,

(d) EI(k)→ 2 as k →∞ .

Proof. We only prove (a) and (b). It is straightforward to verify (c) and (d).

(a) Let en, en+1 and dn denote the errors in the iterates xn, xn+1 and x
(0)
n . For the

intermediate steps, let en,k denote the errors in x
(k)
n , k = 0, 1, 2, 3, · · · . Since x(0)

n and x
(1)
n are

of order p and q , respectively, the corresponding errors are given by

dn = en,0 ≈ A1e
p
n (3.5)

en,1 ≈ dqn ≈ A2e
q
n,0 ≈ Aq1A2e

pq
n , (3.6)

where A1 and A2 are appropriate constants. For the intermediate steps, for k = 2, 3, 4, 5, · · · ,
the corresponding error equations, in view of (3.3), are given by

en,k+1 ≈ Ck+1

k∏
j=1

en,k+1−j (3.7)

and once k = 1, 2, 3, · · · is �xed, we shall write

en+1 = en,k+1.

We shall prove by induction that the order of convergence of the method (3.4) is (pq+ p)× 2k−1

for k = 1, 2, 3, · · ·
For k = 1, (3.7) becomes

en,2 ≈ C3en,1.en,0

which by using (3.5) and (3.6) gives

en,2 ≈ C3A
q+1
1 A2e

(pq+p)
n ,

i.e.,
en+1 ≈ C3A

q+1
1 A2e

(pq+p)
n .

Therefore, the assertion holds for k = 1. Assume that it holds for k , i.e.,

en+1 = en,k+1 ≈ Dke
(pq+p)×2k−1

n , (3.8)
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where Dk is some constant. Note that by (3.7)

en,k+1 ≈ Ck+1.en,k.en,k−1.en,k−2.....en,0. (3.9)

For k replaced by k + 1 , (3.7) gives

en,k+2 ≈ Ck+2

k+1∏
j=1

en,k+2−j

which by using (3.8) and (3.9) gives

en,k+2 ≈ Ck+2.en,k+1.en,k.en,k−1.en,k−2....en,0

≈ Ck+2

Ck+1

e2
n,k+1

≈ Ck+2

Ck+1

D2
ke

(pq+p)×2k−1×2
n

=
Ck+2

Ck + 1
D2
ke

(pq+p)×2k−2

n

and the assertion follows.
(b) In method (3.4), the �rst two steps are the iterates that require per iteration n1 and n2

functions evaluation respectively. Thus for these two steps, a total of n1+n2 function evaluations
per iteration are required. After third step onward, the method requires only one function
evaluation per iteration since it uses the previously calculated values. Thus for k = 1, 2, 3, · · · ,
a total of n1 + n2 + k functions need to be evaluated per iteration. Combining this information
with the order of convergence of the method, the result follows.

Example 1. If we consider

wn = xn + βf(xn),

φ(xn) = xn −
f(xn)

f [xn, wn]
,

and

w∗n = xn − βf(xn),

ψ(xn) = xn −
f(xn)

f [xn, w∗n]
,
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then method (3.4) becomes the following:

wn = xn + βf(xn),

x(0)
n = xn −

f(xn)

f [xn, wn]
,

w∗n = x(0)
n − βf(x(0)

n ),

x(1)
n = x(0)

n −
f(x

(0)
n )

f [x
(0)
n , w∗n]

,

x(2)
n = x(1)

n −
f(x

(1)
n )

f [x
(0)
n , x

(1)
n ]

,

.

.

.

xn+1 = x(k)
n −

f(x
(k)
n )

f [x
(k−1)
n , x

(k)
n ] +

∑k
i=2 f [x

(k−i)
n , x

(k)
n ]
∏i−1

j=1(x
(k)
n − x(k−j)

n )
, k = 1, 2, 3, · · · (3.10)

In the view of Theorem 3.1, we can prove the following theorem.

Theorem 3.2. Let f be a su�ciently di�erentiable function in a neighbourhood of α which is
a simple zero of f(x) = 0 . Let O(k) and EI(k) denote, respectively, the order of convergence
and e�ciency index of (3.10) for k = 1, 2, 3, · · · . Then

(a) O(k)= 6× 2k−1 ,

(b) EI(k)=( 6× 2k−1)
1
k+4 ,

(c) EI(k) is strictly increasing,

(d) EI(k)→ 2 as k →∞ .

4 Examples

Example 2. We consider the equation

f(x) = x3 − e−x

and implement three derivative free methods (1.1), (1.2) and (1.4) which have order of conver-
gence 2, 4 and 6 respectively, and compare the results. The initial approximation is taken as
x0 = 1.5 and β = 1. The corresponding iterates are shown in Table 1.
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5 Dynamics of the method

Let p(z) be a polynomial having simple roots and de�ned on the Riemann sphere Ĉ . We
apply the sixth order method (1.4) presented in this paper on the complex polynomial p(z) and
correspondingly de�ne the operator:

y(z) = z − βp2(z)

p(z + βp(z))− p(z)
,

w(z) = y(z)− βp2(y(z))

p(y(z))− p(y(z)− βp(y(z)))
,

M(z) = w(z)− p(w(z))(w(z)− y(z))

p(w(z))− p(y(z))
.


(5.1)

The �xed points of the method are obtained from the equation M(z) = z and critical points
of the method are obtained from the equation M ′(z) = 0 . For the second degree polynomials
p(z) = z2 − 1 and p(z) = z2 + 1 with β = 1, the �xed and critical points of the method M(z)
are presented in the Table 2.

As the degree of a polynomial increases, the number of the �xed and critical points of the
method increases very rapidly. It has been worked out that for the third degree polynomial
p(z) = z3 − 1 , the number of �xed points of method (5.1) is 104 and the number of critical
points is 181 . The roots of the polynomials are always the �xed points as well as the critical
points. Fixed points and critical points, which are not the roots of the polynomial involved, are
called extraneous �xed points and extraneous critical points respectively.

The existence of extraneous �xed points of any operator may complicate the root �nding
procedure. The �xed points may be (super)attractive, repulsive or neutral (see [1], [2], [5] etc).
As attractive �xed points, they may trap an iteration sequence, giving erroneous results for a
root α of the polynomial p(z) . Even as the repulsive or neutral �xed points, however, they may
alter the structure of the basin of attraction for the roots [13]. Generally, increasing the order
of convergence of any multipoint method, increases the number of extraneous �xed points. This
may adversely a�ect the basin of attraction of the method, i.e. , increasing number of extraneous
�xed points reduces the attraction basins [8]. Therefore, large number of extraneous �xed and
critical points for the higher degree polynomial make the method less stable.
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5.1 Basins of attraction

It is known that the Ste�ensen type methods do not satisfy "scaling theorem" (see [3], [4] and
references there) and as a result, the dynamics of such methods can not be studied on the basis
of a class of polynomials. In fact di�erent polynomials of the same degree may have di�erent
dynamics. So the basins of attraction of the methods may vary within polynomials of the same
degree.

To understand the dynamical behavior of the methods visually, we show the basins of at-
traction of the method M(z) for second and third degree polynomials and for di�erent values
of β in the �gures that follow.

In our work, we use Mathematica 9.0 for the calculations as well as to determine the basins
of attraction of the method. We divide the complex plane into 250 × 250 initial points in the
domain [−2, 2] × [−2, 2] to determine the basins of attraction of the roots of the polynomials.
Di�erent colors are used for basins of attraction of each root [12]. Light color speci�es the region
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where initial points require less iterations to converge to the particular root. As the color gets
darker and darker, it means that the number of iteration increases to approximate the root.
We use black color for the initial points which do not converge to any of the roots within the
maximum limit of 40 iterations. However, if the whole region is black, it does not mean that
the initial points in that region never converge to any of the roots with method (5.1). It only
shows that within our predetermined criteria, those points do not converge to the roots. If we
change our criteria, e.g., the number of initial points, domain or maximum of limit of iterations,
then the basin of attraction may alter.

From Figures 1, and 2, it is clear that the basins of attraction of the new method changes
with the change of value of β and polynomials also. For quadratic polynomials, the attraction
basins is smooth as β decreases. As shown in Figure 1, it is quite smooth and wider when
β = 0.001 for both the quadratic polynomials. But, for cubic polynomials, as shown in Figure
2, basins of attraction are more smooth when β = 0.01 .
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[i] [ii]

[iii] [iv]

[v] [vi]

Figure 1: Basin of attraction of New method M for the quadratic polynomial p1(z) = z2 − 1
and p2(z) = z2 + 1 in the region [−2, 2]× [−2, 2] in xy -plane is divided into 250× 250 points.
[i] p1(z) with β = 1 , [ii] p1(z) with β = 0.01 , [iii] p1(z) with β = 0.001 , [iv] p2(z) with
β = 1 , [v] p2(z) with β = 0.01 , [vi] p2(z) with β = 0.001 .



E�cient numerical methods of Aitken type and their dynamics 71

[i] [ii]

[iii] [iv]

[v] [vi]

Figure 2: Basin of attraction of New method M for the cubic polynomial p3(z) = z3 − 1 and
p4(z) = z3 + 1 in the region [−2, 2] × [−2, 2] in xy -plane is divided into 250 × 250 points.
[i] p3(z) with β = 1 , [ii] p3(z) with β = 0.01 , [iii] p3(z) with β = 0.001 , [iv] p4(z) with
β = 1 , [v] p4(z) with β = 0.01 , [vi] p4(z) with β = 0.001 .
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