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1 Introduction and preliminaries

The �rst congress on fractional calculus was held at the University of New Haven, in 1974 [34].
From then on, considerable interest in fractional calculus and fractional di�erential equations has
been stimulated due to their numerous applications in engineering, physics, chemistry, biology
and other sciences. Fairly complete information about fractional calculus and non-degenerate
fractional differential equations can be obtained by consulting the references [4, 22, 23, 24, 25,
35, 36].

Various types of abstract degenerate fractional di�erential equations and their qualitative
properties have been recently considered in [16, 17] (cf. [7, 12, 13, 14, 29, 32, 33, 38, 40] for
the basic source of information on the abstract degenerate di�erential equations). In a joint
paper with A. Debbouche [16], the �rst named author has analyzed the unique solvability of the
Cauchy and Showalter problems for a class of degenerate fractional evolution systems by using the
notion of strongly (B, p)-sectorial operators, while in the papers [17, 18], written in cooperation
with D.M. Gordievskikh and M.V. Plekhanova necessary and su�cient conditions for relative p-
boundedness of a pair of operators have been obtained in terms of families of resolving operators
for a corresponding degenerate fractional di�erential equation. In this paper, we continue our
previous research by considering the existence and uniqueness of regularized solutions for a class
of abstract degenerate multi-term fractional di�erential equations with Caputo derivatives.

The organization of paper is brie�y described as follows. In Theorem 2.1, we consider a
Ljubich type uniqueness theorem for the initial value problem (2.5), (2.6) stated below. Although
not visible at a �rst glance, our main structural results on the existence and uniqueness of
regularized solutions of problem (2.5), (2.6), cf. Theorem 2.2, Theorem 2.3 and Theorem 3.1,
are in a close connection with the corresponding results on regularization of ultradistribution
semigroups and sines from our previous paper [21]; in other words, it has turned out that some
ideas from the afore-mentioned paper can be applied in the analysis of an essentially larger class
of abstract (degenerate) di�erential equations, considered in the general setting of sequentially
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complete locally convex spaces. A great number of various thoughts and insights about Theorem
2.2 is collected in Remark 1, which seems to us as a very compact and non-desultory but a
little bit oversized. We also reconsider the old ideas of R. Beals [5, 6] for abstract degenerate
relaxation equations and prove, as a by-product, some new results on the generation of fracti-
onally regularized resolvent families (Remark 2, Remark 3). In Subsection 2.1, we provide the
basic information about the possibility of extension of Theorem 2.2 and Theorem 2.3 to the
non-Gevrey case, while in Section 3 we present various applications of our abstract theoretical
results from Section 2.

Unless specifed otherwise, we assume that E is a Hausdor� sequentially complete locally
convex space over the �eld of complex numbers, SCLCS for short. If X is also an SCLCS,
then we denote by L(E,X) the space consisting of all continuous linear mappings from E in
X; L(E) ≡ L(E,E). By ~ we denote the fundamental system of seminorms which de�nes the
topology of E. Let B be the family consisting of all bounded subsets of E, and let pB(T ) :=
supx∈B p(Tx), p ∈ ~, B ∈ B, T ∈ L(E). Then pB(·) is a seminorm on L(E) and the system
(pB)(p,B)∈~×B induces the Hausdor� locally convex topology on L(E). Let us recall that the space
L(E) is sequentially complete provided that E is barreled [31]. If E is a Banach space, then we
denote by ‖x‖ the norm of an element x ∈ E.

If A is a linear operator acting on E, then the domain and range of A will be denoted by D(A)
and R(A), respectively. Since no confusion seems likely, we will identify A with its graph. By I
we denote the identity operator on E. If C ∈ L(E) is injective, then we de�ne the C-resolvent
set of A, ρC(A) for short, by ρC(A) := {λ ∈ C | λ − A is injective and (λ − A)−1C ∈ L(E)};
ρ(A) ≡ ρI(A).

In the remaining part of this paragraph, it will be assumed that the operator A is closed.
We refer the reader to [9, De�nition 3.4] for the notion of an (analytic) C-regularized semigroup
of growth order r > 0; the fractional power (−A − ω)b, appearing in Remark 3 (i), will be
understood in the sense of [25, De�nition 2.9.24]. For further information concerning fractional
powers of almost C-sectorial operators, the reader may consult [25, Section 2.9].

Let A and B be closed linear operators acting on E. The notion of a (local) (a, k)-regularized
C-resolvent family (R(t))t∈[0,τ) with a subgenerator A will be understood in the sense of [24,
De�nition 2.1]; (R(t))t∈[0,τ) is said to be locally equicontinuous if and only if, for every t ∈ (0, τ),
the family {R(s) : s ∈ [0, t]} ⊆ L(E) is equicontinuous. In the case τ = ∞, (R(t))t≥0 is said to
be exponentially equicontinuous (equicontinuous) if and only if there exists ω ∈ R (ω = 0) such
that the family {e−ωtR(t) : t ≥ 0} ⊆ L(E) is equicontinuous. If a(t) is a kernel on [0, τ), then
we de�ne the integral generator Â of (R(t))t∈[0,τ) by setting

Â :=

{
(x, y) ∈ E × E : R(t)x− k(t)Cx =

∫ t

0

a(t− s)R(s)y ds, t ∈ [0, τ)

}
.

For further information concerning abstract Volterra integro-di�erential equations in Banach
and locally convex spaces, the reader may consult [25] and [35].

If V is a general topological vector space, then a function f : Ω → V, where Ω is an open
subset of C, is said to be analytic if it is locally expressible in a neighborhood of any point
z ∈ Ω by a uniformly convergent power series with coe�cients in V. We refer the reader to [25,
Section 1.1] and references cited there for the basic information about vector-valued analytic
functions. In our approach the space E is sequentially complete, so that the analyticity of a
mapping f : Ω→ E (∅ 6= Ω ⊆ C) is equivalent with its weak analyticity.

Given θ ∈ (0, π] and d ∈ (0, 1], de�ne Σθ := {λ ∈ C : λ 6= 0, | arg(λ)| < θ}, Bd :=
{λ ∈ C : |λ| ≤ d} and Ωθ,d := Σθ ∪ Bd. By Γθ,d we denote the upwards oriented boundary
of Ωθ,d. Further on, bβc := sup{k ∈ Z : k ≤ β}, dβe := inf{k ∈ Z : β ≤ k} (β ∈ R),
Nn := {1, . . . , n} and N0

n := Nn ∪ {0} (n ∈ N). By C[z] we denote the set consisting of all
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complex polynomials of one variable. A scalar-valued function k ∈ L1
loc[0, τ) is said to be a

kernel on [0, τ) if and only if for any scalar-valued continuous function t 7→ u(t), t ∈ [0, τ), the
preassumption

∫ t
0
k(t− s)u(s) ds = 0, t ∈ [0, τ) implies u(t) = 0, t ∈ [0, τ). The Gamma function

is denoted by Γ(·) and the principal branch is always used to take the powers; the convolution
like mapping ∗ is given by f ∗ g(t) :=

∫ t
0
f(t− s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ), 0ζ := 0 (ζ > 0,

t > 0), and g0(t) := the Dirac δ-distribution. For a number ζ > 0 given in advance, the Caputo
fractional derivative Dζ

su [4, 25] is de�ned for those functions u ∈ Cdζe−1([0,∞) : E) for which

gdζe−ζ ∗ (u−
∑dζe−1

j=0 u(j)(0)gj+1) ∈ Cdζe([0,∞) : E), by

Dζ
su(s) :=

ddζe

dsdζe

[
gdζe−ζ ∗

(
u−

dζe−1∑
j=0

u(j)(0)gj+1

)]
.

The Mittag-Le�er function Eβ,γ(z) (β > 0, γ ∈ R) is de�ned by

Eβ,γ(z) :=
∞∑
k=0

zk

Γ(βk + γ)
, z ∈ C.

In this place, we assume that 1/Γ(βk+ γ) = 0 if βk+ γ ∈ −N0. Set, for short, Eβ(z) := Eβ,1(z),
z ∈ C. The asymptotic behaviour of the entire function Eβ,γ(z) is given in the following auxiliary
lemma (see e. g. [25, Section 1.3]).

Lemma 1.1. Let 0 < σ < π/2. Then, for every z ∈ C \ {0} and l ∈ N \ {1},

Eβ,γ(z) =
1

β

∑
s

Z1−γ
s eZs −

l−1∑
j=1

z−j

Γ(γ − βj)
+O

(
|z|−l

)
, |z| → ∞,

where Zs is de�ned by Zs := z1/βe2πis/β and the �rst summation is taken over all integers s
satisfying | arg(z) + 2πs| < β(σ + π/2).

For further information about the Mittag-Le�er functions, cf. [4, 25] and references cited
there.

We introduce the abstract Beurling space of (Mp) class associated to A, E(Mp)(A) for short,
as in the Banach space case (cf. [10, 23] for more details). Put D∞(A) :=

⋂
n∈ND(An),

E(Mp)(A) := projlimh→+∞E
(Mp)
h (A),

where for each h > 0,

E
(Mp)
h (A) :=

{
x ∈ D∞(A) : ‖x‖(Mp)

h,q = sup
p∈N0

hpq
(
Apx

)
Mp

<∞ for all q ∈ ~

}
.

In this place, it is worth noting that for each h > 0 the calibration (‖ · ‖(Mp)
h,q )q∈~ induces a

Hausdor� locally convex space topology on E
(Mp)
h (A), as well as that E

(Mp)
h′ (A) ⊆ E

(Mp)
h (A)

provided 0 < h < h′ < ∞, and that the spaces E
(Mp)
h (A) and E(Mp)(A) are continuously

embedded in E; cf. [23]. Following the ideas of R. Beals [6], we de�ne the space E〈Mp〉(A) as the

inductive limit of spaces E
(Mp)
h (A) as h→ 0+; that is

E〈Mp〉(A) := indlimh→0+E
(Mp)
h (A).
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Henceforth we shall always assume that (Mp) is a sequence of positive real numbers such
that M0 = 1 and the following condition is satis�ed:

M2
p ≤Mp+1Mp−1, p ∈ N. (M.1)

By (M.1), the sequence (mp ≡Mp/Mp−1)p∈N is increasing. Any usage of the conditions:

Mp ≤ rhp sup
0≤i≤p

MiMp−i, p ∈ N, for some numbers r, h > 1, (M.2)

∞∑
p=1

Mp−1

Mp

<∞, (M.3′)

and the condition

sup
p∈N

∞∑
q=p+1

Mq−1Mp+1

pMpMq

<∞, (M.3)

which is slightly stronger than (M.3′), will be explicitly emphasized. Let us recall that for
each number s > 1 the Gevrey sequence (p!s) satis�es all the above conditions. The associated
function of the sequence (Mp) is de�ned on [0,∞) by

M(ρ) := sup
p∈N0

ln
ρp

Mp

, ρ > 0 and M(0) := 0;

if λ ∈ C, then we de�ne M(λ) := M(|λ|). It is well known that the function t 7→M(t), t ≥ 0 is
non-negative, increasing as well as that limλ→∞M(λ) =∞ and that the function M(·) vanishes
in some open neighborhood of zero. Furthermore, the mapping t 7→ M(t), t ≥ 0 is absolutely
continuous and the mapping t 7→ M(t), t ∈ [0,∞) \ {mp : p ∈ N} is continuously di�erentiable

with M ′(t) = m(t)
t
, t ∈ [0,∞) \ {mp : p ∈ N}. The (Mp)-ultralogarithmic region of type l

Λα,β,l :=
{
λ ∈ C : <λ ≥ αM(l|=λ|) + β

}
,

where α > 0, β ∈ R and l ≥ 1, was de�ned for the �rst time by J. Chazarain in 1971 [8].
We assume that the boundary of the ultra-logarithmic region Λα,β,l, denoted by Γl, is upwards
oriented. If (Np) and (Rp) are two sequences of positive real numbers, then we write Np ≺ Rp if
and only if for each number σ > 0 we have

sup
p∈N0

Npσ
p

Rp

<∞.

2 Regularized solutions for a class of abstract degenerate multi-term
fractional di�erential equations

Our �rst task will be to extend the assertions of [21, Theorem 2.1, Corollary 2.1] to abstract de-
generate multi-term fractional di�erential equations (the Gevrey case). Throughout the section,
the numbers ζ ∈ (0, 1], α > 0, β > 0, l ≥ 1, ξ ≥ 0 and b ∈ (0, 1) will be �xed. Denote by Mv(·)
the associated function of the sequence (p

p
v ) (v ∈ (0, 1)). Then we know that Mv(t) ∼ (ve)−1tv

as t→ +∞. Suppose that
p
p
b ≺Mp. (2.1)

Then, for every µ > 0, there exist positive real constants cµ > 0 and Cµ > 0 such that limµ→0 cµ =
0 and

M(lλ) ≤Mb(µlλ) + Cµ ≤ cµ|λ|b + Cµ, λ ≥ 0. (2.2)
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Set
Λζ
α,β,l :=

{
λζ : λ ∈ Λα,β,l

}
and Ω := C \ Λζ

α,β,l.

By A we denote the class consisting of all continuous functions f : Ω → C that are analytic in
Ω and satisfy the following condition: there exist numbers a1 > 0 and a2 > ξ such that

|f(λ)| ≤ a1e
−a2|λ|b/ζ , λ ∈ Ω. (2.3)

Suppose that f ∈ A, f 6= 0. Then we de�ne F (·) by

F (λ) := f
(
−λ

π−(ζπ/2)
π/2

)
, λ ∈ Σπ/2.

The function F (·) can be analytically extended to an open neighborhood of the region Σπ/2 and
satis�es the condition:

|F (λ)| ≤ a1e
−a2|λ|

π−(ζπ/2)
π/2

b
ζ

, λ ∈ Σπ/2.

Now we can apply the Phragm�en�Lindel�of type theorems (see e. g. [30, p. 40]) in order to see

that the inequality π−(ζπ/2)
π/2

b
ζ
≥ 1 implies f = 0 identically. Hence, one has to assume that

π−(ζπ/2)
π/2

b
ζ
< 1, i. e., that

1

2− ζ
>
b

ζ
(2.4)

in order to ensure the non-triviality of the class A (observe that 1/(2−ζ) ∈ (1/2, 1] for ζ ∈ (0, 1],
so that (2.4) automatically implies b < ζ). Suppose now that (2.4) holds. Then the class A is
non-trivial. Indeed, this can be proved in the following way. Put θ := arctan(cos( b

ζ
(π− πζ/2))).

Then the function
f(λ) = ft(λ) := e−t(−λ+ω)b/ζ , λ ∈ Ω

belongs to A provided t = t1 + it2 ∈ Σθ, ω > βζ and t1 tan θ− |t2| > ξ, because arg(−λζ +ω)→
π − πζ/2 as |λ| → ∞, λ ∈ Γl and there exists R > 0 such that, for every t = t1 + it2 ∈ Σθ,∣∣∣e−t(−λ+ω)b/ζ

∣∣∣ = e−t1|−λ+ω|b/ζ cos( b
ζ

arg(−λ+ω))+t2|−λ+ω|b/ζ sin( b
ζ

arg(−λ+ω))

≤ e−(t1 cos( b
ζ

arg(−λ+ω))−|t2|)|−λ+ω|b/ζ ≤ e−(t1 tan θ−|t2|)|−λ+ω|b/ζ , λ ∈ Ω, |λ| ≥ R.

It is clear that f · g, f + g, P · f ∈ A, provided f, g ∈ A and P ∈ C[z].
Further on, let n ∈ N, Nn = {1, 2, . . . , n}, N0

n = {0, 1, . . . , n}, let p0, p1, ···, pn and q0, q1, ···, qn
be given non-negative integers satisfying p0 = q0 = 0 and 0 < p1 + q1 ≤ p2 + q2 ≤ · · · ≤ pn + qn.
Let A0, A1, · · ·, An−1, An be closed linear operators acting on E. Set A0 := A, An := B, Tiu(s) :=
(Dζ

s)
piAi(D

ζ
s)
qiu(s), s ≥ 0, i ∈ N0

n, Sl := {i ∈ Nn : qi ≥ 1}, Sr := {i ∈ Nn : pi ≥ 1},

Pλ := λ(pn+qn)ζB +
n−1∑
i=0

λ(pi+qi)ζAi, λ ∈ C \ {0},

and conventionally, max(∅) := ∅, N0
∅ := ∅.

Under consideration is the following abstract degenerate multi-term Cauchy problem:

n∑
i=0

Tiu(s) = 0, s ≥ 0, (2.5)

with the following initial conditions:
((

Dζ
s

)j
u(s)

)
s=0

= uj, j ∈ N0
max{qi−1:i∈Sl},((

Dζ
s

)j
Ai
(
Dζ
s

)qiu(s)
)
s=0

= ui,j
(
i ∈ Sr, j ∈ N0

pi−1

)
.

(2.6)
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Before going any further, we would like to point out that the choice of initial values (2.6), which
will be considered as an only possible option in the sequel, may be non-optimal because there
exist some very natural situations where we cannot expect the existence of solutions of problem
(2.5), (2.6), in general. On the other hand, accompanying the fractional di�erential equation
(2.5) by the initial conditions of form (2.6) will enable us to integrate equation (2.5) ((pn+qn)ζ)-
times and obtain the corresponding integral equation associated to problem (2.5), (2.6), which
will be of crucial importance in the proof of Theorem 2.1 below. Observe also that, in our
concrete situation 0 < ζ ≤ 1, the following fractional Sobolev problems:

(DFP)R :

{
Dζ
sBu(s) + Au(s) = 0, s ≥ 0,

Bu(0) = Bx,

and

(DFP)L :

{
BDζ

su(s) + Au(s) = 0, s ≥ 0,
u(0) = x,

are special cases of problem (2.5), (2.6), with n = 1, q1 = 0, p1 = 1 and u1,0 = Bx, in the case
of problem (DFP)R, and n = 1, q1 = 1, p1 = 0, u1 = x, in the case of problem (DFP)L.

The notion of a strong solution of problem (2.5), (2.6) is introduced in the following de�nition.

De�nition 1. A function u ∈ C([0,∞) : E) is said to be a strong solution to problem (2.5),
(2.6) if and only if the term Tiu(s) is well de�ned and continuous for any s ≥ 0, i ∈ N0

n, and
(2.5), (2.6) holds identically on [0,∞).

In the following theorem, we state a Ljubich type uniqueness theorem for the problem (2.5),
(2.6).

Theorem 2.1. Suppose that an operator C ∈ L(E) is injective, CAi ⊆ AiC, i ∈ N0
n and there

exists a number ω > 0 such that the operator P−1
λ is injective and D(P−1

λ C) = E for λ > ω. Let
the following condition hold:

(H) For every p ∈ ~ and i ∈ N0
n, there exist numbers λp,i, σp,i > 0, a seminorm qp,i ∈ ~ and

a function hp,i : (λp,i,∞)→ (0,∞) such that:

p
(
P−1
λ CAix

)
≤
[
qp,i(x) + qp,i

(
Aix
)]
hp,i(λ), λ > λp,i, x ∈ D

(
Ai
)
,

and

lim
λ→+∞

e−λσp,ihp,i(λ) = 0.

Then there exists at most one strong solution of problem (2.5), (2.6).

Proof. Clearly, it su�ces to show the uniqueness of a strong solution to problem (2.5), (2.6)
with all initial values chosen to be zeroes. Let a function u ∈ C([0,∞) : E) be a strong solution
to this problem. Then we can integrate equation (2.5) ((pn + qn)ζ)-times; taking into account
the equality [4, (1.21)] and an elementary argumentation, we get that

Bu(s) +
n−1∑
i=0

Ai
(
g((pn+qn)−(pi+qi))ζ ∗ u

)
(s) = 0, s ≥ 0. (2.7)

Convoluting the function u(·) with gδ(·), for a su�ciently large number δ > 0, we may assume
without loss of generality that, for every i ∈ N0

n, the mapping s 7→ Aiu(s), s ≥ 0 is well-de�ned
and continuous. Set, for every s ≥ 0 and δ > 0, vs,δ(λ) := (gδ∗eλ·)(s)−λ−δesλ, λ > 0; vs,0(λ) := 0
(s ≥ 0, λ > 0). Then the mapping s 7→ vs,δ(λ) is continuous in s ≥ 0, for the numbers δ ≥ 0
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and λ > 0 �xed in advance; furthermore, [39, Lemma 1.5.5, p. 23] implies that, for every s > 0
and δ > 0, we have∣∣vs,δ(λ)

∣∣ = O
((

1 + s
)δ−1

λ−1
(
1 + λ1−δ)+ sδ−1λ−1

)
, λ > 0. (2.8)

Set, for every index i ∈ N0
n, βi := (pi + qi)ζ. Keeping in mind (2.7) and the assumption

CAi ⊆ AiC, i ∈ N0
n, we have that, for every s ≥ 0, λ > 0 and i ∈ N0

n,

λβi−βn
s∫

0

eλ(s−r)AiCu(r) dr +

s∫
0

vs−r,βn−βi(λ)AiCu(r) dr

= C

s∫
0

eλ(s−r)(gβn−βi ∗ Aiu)(r) dr = (−C)
∑

v∈N0
n\{i}

s∫
0

eλ(s−r)(gβn−βv ∗ Avu)(r) dr
= −

∑
v∈N0

n\{i}

[
λβv−βn

s∫
0

eλ(s−r)AvCu(r) dr +

s∫
0

vs−r,βn−βv(λ)AvCu(r) dr

]
,

which clearly implies that, for every λ > ω, σ > 0, s ≥ 0 and i ∈ N0
n, the following equality

holds:

e−λσ
s∫

0

eλ(s−r)Cu(r) dr = −λβne−λσP−1
λ CAi

s∫
0

vs−r,βn−βi(λ)u(r) dr

− λβne−λσ
∑

v∈N0
n\{i}

P−1
λ CAv

s∫
0

vs−r,βn−βv(λ)u(r) dr. (2.9)

Making use of condition (H) and (2.8), (2.9), we obtain that, for every p ∈ ~, there ex-
ists a su�ciently large number σp > 0 such that limλ→+∞ e

−λσpp((eλ· ∗ Cu)(s)) = 0, s ≥ 0.
By the Dominated Convergence Theorem, it readily follows that for each p ∈ ~ we have:
limλ→+∞ p(

∫ s−σ
0

eλ(s−r−σ)Cu(r) dr) = 0, s ≥ σ > σp. Therefore,

lim
λ→+∞

s∫
0

eλ(s−r)Cu(r) dr = 0, s ≥ 0.

Since C is injective, we can apply [25, Lemma 2.1.33(iii)] to conclude that u(s) = 0, s ≥ 0.

Now we are ready to formulate the following extension of [21, Theorem 2.1].

Theorem 2.2. Suppose that (Mp) satis�es (M.1), b ∈ (0, 1), ζ ∈ (0, 1] and (2.1) holds. Let
ν > −1, ξ ≥ 0, α > 0, β > 0, l ≥ 1, and let (2.4) hold. Suppose, further, that the operator Pλ is
injective for all λ ∈ Λα,β,l, as well as that P

−1
λ C ∈ L(E), λ ∈ Λα,β,l, the mapping λ 7→ P−1

λ Cx,
λ ∈ Λα,β,l is continuous for every �xed element x ∈ E, and the operator family{

(1 + |λ|)−νe−ξ|λ|bP−1
λ C : λ ∈ Λα,β,l

}
⊆ L(E)

is equicontinuous. Set, for every function f ∈ A,

Sf (s)x :=
ζ

2πi

∫
Γl

f
(
λζ
)
λζ−1Eζ

(
sζλζ

)
P−1
λ Cxdλ, s ≥ 0, x ∈ E. (2.10)
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Then (Sf (s))s≥0 ⊆ L(E) is strongly continuous, the mapping s 7→ Sf (s) ∈ L(E), s ≥ 0
(s 7→ Sf (s) ∈ L(E), s > 0) is in�nitely di�erentiable provided ζ = 1, f ∈ A (ζ ∈ (0, 1), f ∈ A)
and, for every p ∈ N0 and f ∈ A, the mapping s 7→ (Dζ

s)
pSf (s) ∈ L(E), s ≥ 0 is well-de�ned,

with (
Dζ
s

)p
Sf (s)x :=

ζ

2πi

∫
Γl

f
(
λζ
)
λζ−1λpζEζ

(
sζλζ

)
P−1
λ Cxdλ, s ≥ 0, x ∈ E. (2.11)

Furthermore, the following statements hold.
(i) Suppose that there exists i ∈ N0

n such that the mappings λ 7→ AjP
−1
λ Cx, λ ∈ Λα,β,l

are continuous for some x ∈ E (j ∈ N0
n \ {i}) and for each seminorm p ∈ ~ the set

{
(1 +

|λ|)−νe−ξ|λ|bp(AjP−1
λ Cx) : λ ∈ Λα,β,l, j ∈ N0

n \ {i}
}
is bounded.

Then we have(
Dζ
s

)p
Ai
(
Dζ
s

)q
Sf (s)x =

ζ

2πi

∫
Γl

f
(
λζ
)
λζ−1λ(p+q)ζEζ

(
sζλζ

)
AiP

−1
λ Cxdλ, (2.12)

for any x ∈ E, s ≥ 0, i ∈ N0
n and p, q ∈ N0. Moreover, the mapping s 7→ u(s) := Sf (s)x,

s ≥ 0 is a strong solution of problem (2.5), (2.6), with the initial value uj obtained by plugging
p = j and s = 0 in the right-hand side of (2.11), for j ∈ N0

max{qi−1:i∈Sl}, and the initial value ui,j
obtained by plugging p = j, q = qi and s = 0 in the right-hand side of (2.12), for i ∈ Sr and
j ∈ N0

pi−1 (f ∈ A). If CAi ⊆ AiC for all i ∈ N0
n, then there exists at most one strong solution

of problem (2.5), (2.6).
(ii) Suppose that f ∈ A, q ∈ ~, B is a bounded subset of E and K is a compact subset of

[0,∞).
Then there exists h0 > 0 such that

sup
p∈N0,s∈K,x∈B

(h0)pq
(
(Dζ

s)
pSf (s)x

)
ppζ/b

<∞. (2.13)

Proof. We will basically follow the proof of [21, Theorem 2.1]. Let f ∈ A be such that (2.3)
holds with some numbers a1 > 0 and a2 > ξ. In order to prove that Sf (s) ∈ L(E) for all s ≥ 0,
observe that Lemma 1.1 in combination with (2.2) and the equicontinuity of the operator family
{(1 + |λ|)−νe−ξ|λ|bP−1

λ C : λ ∈ Λα,β,l} (cf. also the asymptotic expansion formulae [4, (1.26)�
(1.28)]) implies that for each p ∈ ~ there exist cp > 0 and q ∈ ~ such that, for any su�ciently
small number µ > 0, the following holds with an appropriate constant Mµ > 0 :∣∣∣f(λζ)λζ−1Eζ

(
sζλζ

)
p
(
P−1
λ Cx

)∣∣∣
≤ a1Mµcpe

−(a2−ξ)|λ|bes(β+cµ|λ|b)(1 + |λ|)ν+ζq(x), λ ∈ Γl, |λ| ≥ R, x ∈ E. (2.14)

Keeping in mind that limµ→0 cµ = 0, we obtain from (2.14) that Sf (s) ∈ L(E) for all s ≥ 0, and
that the operator family (Sf (s))s≥0 ⊆ L(E) is strongly continuous. The in�nite di�erentiability
of mapping s 7→ Sf (s) ∈ L(E), s ≥ 0 for ζ = 1 and f ∈ A can be easily proved.

In order to prove that the mapping s 7→ Sf (s) ∈ L(E), s > 0 is in�nitely di�erentiable for
ζ < 1 and f ∈ A, we need to recall the well known fact that, for every l ∈ N, there exist real
numbers (cj,ζ)1≤j≤l and (cj,l,ζ)1≤j≤l such that

dl

dsl
Eζ(zs

ζ) =
l∑

j=1

cj,ζs
jζ−lE

(j)
ζ (zsζ), s > 0, z ∈ C



On a class of abstract degenerate multi-term fractional di�erential equations . . . 41

and
dl

dzl
Eζ(z) =

l∑
j=1

cj,l,ζEζ,ζl−(l−j)(z), z ∈ C

(cf. [25, Section 1.3]). This implies that, for every l ∈ N, and for every su�ciently small h > 0,
we have:

E
(l)
ζ

(
(s+ h)ζλζ

)
− E(l)

ζ

(
sζλζ

)
h

− dl+1

dsl+1
Eζ
(
sζλζ

)
=

1

h

l+2∑
j=1

j∑
i=1

∫ s+h

s

∫ r

s

cj,ζci,j,ζτ
jζ−(l+2)Eζ,ζj−(i−j)

(
τ ζλζ

)
dτ dr, s > 0, λ ∈ Γl. (2.15)

An application of Lemma 1.1 yields that, for every l ∈ N, there exists a constant δ > 0 satisfying
that, for every j ∈ N with j ≤ l + 2, and for every i ∈ N with i ≤ j, we have∣∣∣Eζ,ζj−(i−j)

(
τ ζλζ

)∣∣∣ ≤ δ
[
1 +

(
τλ
)(1+(i−j)−ζj)/ζ

eτ<λ
]
, τ > 0, λ ∈ Γl.

Combining this estimate with (2.15), it readily follows that the mapping s 7→ Sf (s) ∈ L(E),
s > 0 is l-times continuously di�erentiable, with

dl

dsl
Sf (s)x =

ζ

2πi

∫
Γl

f
(
λζ
)
λζ−1 d

l

dsl
[
Eζ
(
sζλζ

)]
P−1
λ Cxdλ, s > 0, x ∈ E. (2.16)

Using the identity λζ(gdζe ∗ Eζ(·ζλζ))(s) = (gdζe−ζ ∗ [Eζ(·ζλζ) − 1])(s), s ≥ 0, λ ∈ Γl (see e. g.
[4, (1.25)] and the proof of [25, Lemma 3.3.1]) and a straightforward integral computation, it is
checked at once that for each x ∈ E and s ≥ 0 we have:[

gdζe−ζ ∗
(
Sf (·)x− Sf (0)x

)]
(s) =

[
gdζe ∗

ζ

2πi

∫
Γl

f
(
λζ
)
λζ−1λζEζ

(
·ζλζ

)
P−1
λ Cxdλ

]
(s).

This implies the validity of (2.11) with p = 1. Inductively, we obtain that (2.11) holds for any
integer p ∈ N by repeating literally the above arguments.

Suppose now that the requirements of (i) hold for some element x ∈ E. Using the resolvent
equation, we obtain that the mappings λ 7→ AiP

−1
λ Cx, λ ∈ Λα,β,l are continuous for all i ∈ N0

n

and that there exists a number ν ′ > 0 such that for each seminorm p ∈ ~ the set

{(1 + |λ|)−ν′e−ξ|λ|bp(AiP−1
λ Cx) : λ ∈ Λα,β,l, i ∈ N0

n}

is bounded, which clearly implies that the mapping s 7→ AiSf (s)x, s ≥ 0 is well de�ned for any
x ∈ E and i ∈ N0

n. Hence (2.12) holds for any x ∈ E, s ≥ 0, i ∈ N0
n and p, q ∈ N0. Using the

substitution z = λζ , Lemma 1.1 and the Cauchy formula, we get that∫
Γl

f
(
λζ
)
λζ−1Eζ

(
sζλζ

)
dλ = 0, s ≥ 0. (2.17)

By (2.12), (2.17), it readily follows that the mapping s 7→ u(s) = Sf (s)x, s ≥ 0 is a strong
solution to problem (2.5), (2.6) with the prescribed set of initial values.

If CAi ⊆ AiC for all i ∈ N0
n, then the uniqueness of a strong solution to associated integral

equation (2.7) is an immediate corollary of Theorem 2.1, �nishing in a routine manner the proof
of (i). The existence of a number h0 > 0 in (ii) and the proof of inequality (2.13) follows from
(2.2), (2.11) and a simple computation.
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Remark 1. (i) In the case ζ < 1, Theorem 2.2 seems to be new and not considered elsewhere
(even in the case B = I). If ζ = 1, then there exist two possibilities: n = 1 and n > 1. If
n = 1 and ζ = 1, then the assertion of Theorem 2.2 seems to be new in the case in which E
is not a Banach space and B 6= I, or B 6= I and C 6= I (cf. [24, Theorem 3.16, Example 4.5]
for some results in locally convex spaces, with B = I). If n = 1, ζ = 1 and E is a Banach
space, then it is worth noting that A. Favini [13] was the �rst who considered R. Beals's type
regularization process [5, 6] for seeking solutions to degenerate equations of the �rst order,
provided in addition that C = I (cf. also [14, Section 5.4] for the case B 6= I, as well as [23,
Section 1.4], [25, Section 2.9], [39, Section 4.4], [20, 21, 37] for more details concerning the case
B = I). If n > 1 and ζ = 1, then the assertion of Theorem 2.2 seems to be considered only in the
case in which C = I, ξ = 0, pi = 0 for all i ∈ N0

n, and E is a Banach space (cf. [13, Application 2,
Assumption H.10] and compare with our assumptions made in (i) of Theorem 2.2). Finally, it is
needless to say that the usual converting of higher-order (degenerate) di�erential equations to
�rst order matrix (degenerate) di�erential equations, used in numerous papers on higher-order
abstract di�erential equations and, in particular, in the above-mentioned Application 2 of [13],
cannot o�er signi�cant help in the analysis of problem (2.5), (2.6), in general.

(ii) Let v ∈ Z, let f ∈ A, and let an element x ∈ E satisfy the requirements of (i). De�ne

Sf,v(s)x :=
ζ

2πi

∫
Γl

f
(
λζ
)
λζ−1λvζEζ

(
sζλζ

)
P−1
λ Cxdλ, s ≥ 0, x ∈ E.

Then the mapping s 7→ Sf,v(s)x, s ≥ 0 is a strong solution to problem (2.5), with initial values
(2.6) endowed similarly as in the formulation of (i).

(iii) In the formulation of [21, Theorem 2.1], it has been additionally assumed that the
sequence (Mp) satis�es condition (M.2). The proof of Theorem 2.2 shows that we can completely
neglect this condition from our analysis.

(iv) It is worth noting that the termD2ζ
s u(s) need not be de�ned for some functions s 7→ u(s),

s ≥ 0 for which the term (Dζ
s)

2u(s) is de�ned (for example, in the case ζ = 1/2, r > 0 and
u(s) = E1/2(r1/2s1/2), s ≥ 0). Even in the case in which both terms exist, they can be completely
di�erent so that we have to make a strict distinction between the operator (Dζ

s)
p and the operator

Dζp
s . As explained in [26, Remark 2(iii)], the method proposed in Theorem 2.2 cannot be used

for proving the existence of a strong solution to (non-degenerate) problem

BDαn
s u(s) +

n−1∑
i=0

AiD
αi
s u(s) = 0, s ≥ 0, (2.18)

provided that n > 1 and there exists an index i ∈ N0
n such that the order αi of the Caputo

fractional derivative Dαi
s u(s) does not belong to N0. Here, 0 = α0 < α1 < · · · < αn.

(v) It can be easily veri�ed that∫ s

0

gζ(s− r)(−A)Sf (r)x dr = BSf (s)x−BSf (0)x,

provided that n = 1, s ≥ 0, f ∈ A and x ∈ E satis�es the requirements of Theorem 2.2 (i).
(vi) It is well known that the notion of an abstract Beurling space plays an important role

in the theory of ultradistribution semigroups in Banach spaces (cf. Theorem 2.2 (i) with n = 1
and B = I). Unfortunately, it is very di�cult to introduce a similar concept for degenerate
di�erential equations of the �rst order, especially in the case in which the operator B is not
injective. For the purpose of illustration of Theorem 2.2 (i), we shall present two examples in
which we use the abstract Beurling spaces:
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(vi.1) Suppose that n = 1, x ∈ D∞(B), the element Bpx satis�es the requirements of Theorem
2.2 (i) for all p ∈ N0, and

B(zB + A)−1CBpx = (zB + A)−1CBp+1x, p ∈ N0, z ∈ Λζ
α,β,l.

Then

ApSf (s)x =
(−1)pζ

2πi

∫
Γl

f(λζ)λζ−1λpζEζ(s
ζλζ)P−1

λ CBpx dλ, s ≥ 0, p ∈ N, f ∈ A.

This, in turn, implies ⋃
s≥0,f∈A

{Sf (s)x} ⊆ E〈p
pζ/b〉(A),

provided that the orbit {Bpx : p ∈ N0} is bounded, and⋃
s≥0,f∈A

{Sf (s)x} ⊆ E〈p
2pζ/b〉(A),

provided that Bx ∈ E〈ppζ/b〉(A).
(vi.2) (cf. also Remark 2) Suppose that n = 1, B is injective and an element x ∈ E satis�es

the requirements of Theorem 2.2 (i). Then B−1 is closed and we can inductively prove that

(B−1A)pSf (s)x = (−1)p(Dζ
s)
pSf (s)x, s ≥ 0, p ∈ N, f ∈ A.

Taking into account (2.13), the above implies that⋃
s≥0,f∈A

{Sf (s)x} ⊆ E〈p
pζ/b〉(B−1A).

(vii) Let f ∈ A, let ε > 0, and let g : C \Λζ
α,β,l+ε → C be continuous in D(g) and analytic in

int(D(g)). Suppose, further, that there exist constants a′1 > 0 and a′2 > ξ such that (2.3) holds
with f = g, a1 = a′1, a2 = a′2, λ ∈ D(g), as well as that n = 1 and the family

{(1 + |λ|)−νe−ξ|λ|bBP−1
λ Cx : λ ∈ Λα,β,l} ⊆ L(E)

is both equicontinuous and strongly continuous. Let

CB
(
zB + A

)−1
C = B

(
zB + A

)−1
C2, z ∈ Λζ

α,β,l, (2.19)

and let Γζl (Γζl,ε) denote the upwards oriented boundary of Λζ
α,β,l (Λ

ζ
α,β,l+ε). Then, for every

z, z′ ∈ Λζ
α,β,l and x ∈ E, the resolvent equation(

zB + A
)−1

C2x−
(
z′B + A

)−1
C2x = (z′ − z)

(
zB + A

)−1
CB
(
z′B + A

)−1
Cx, (2.20)

holds, which implies that the mapping z 7→ B(zB+A)−1C2x, z ∈ int(Λζ
α,β,l) is analytic (x ∈ E).

Using (2.19) and the arguments from [11, Remark 2.7], the above implies that the mapping
z 7→ B(zB + A)−1Cx, z ∈ int(Λζ

α,β,l) is analytic, as well (x ∈ E). Applying the substitution

z = λζ and the Cauchy formula, we then get that

BSg(0)x = (2πi)−1

∫
Γζl,ε

g(z)B(zB + A)−1Cxdz, x ∈ E.
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Proceeding as in the proof of [6, Lemma 4.2], it readily follows that

Sf (0)BSg(0)x = Sfg(0)Cx, x ∈ E.

If ξ = 0, f(λ) = ft(λ) and g(λ) = fs(λ), with t, s ∈ Σθ, the above means that

T (t)BT (s) = T (t+ s)C.

(viii) If B = I, n = 1, P−1
λ C exists and is polynomially bounded on the region Λα,β,l (with

the clear meaning), then it might be surprising that we must impose condition (2.4) in order to
ensure the existence of a strong solution to problem (DFP)R with the initial value x 6= 0. If we
replace condition (2.4) with the condition 1

2−ζ ≤
b
ζ
(which clearly implies ζ < 1 and the triviality

of the class A), and accept all the remaining assumptions from the formulation of this theorem,
with B = I, n = 1 and ξ = 0, then it is not clear whether there exist a Hilbert space (Banach
space, sequentially complete locally convex space) E and a closed linear operator A acting on
E such that the problem (DFP)R has no local strong solutions unless x = 0 (cf. [5, Theorem 2,
Theorem 2'] for more details concerning the case ζ = 1). This is a very interesting open problem
which we would like to address to our readers.

(ix) If the assumptions of Theorem 2.2 hold with the region Λα,β,l replaced by the right half-
plane RHPω̄ ≡ {z ∈ C : <z > ω̄} (and with the set Ω replaced by the set C\(RHPω̄)ζ), then for
each p ∈ N0 and f ∈ A the operator family {e−ω̄s(Dζ

s)
pSf (s) : s ≥ 0} is equicontinuous (ω̄ > 0);

cf. [3] for corresponding examples. It is also worth noting that we can consider, instead of the
region Λα,β,l considered above, a region of the form Ω(ω) = {λ ∈ C : <λ ≥ max(x0, ω(|=λ|))},
where x0 > 0, ω : [0,∞)→ [0,∞) is a continuous, concave, increasing function satisfying

lim
t→∞

ω(t) =∞, lim
t→∞

ω(t)

t
= 0 and

∫ ∞
1

ω(t)

t2
dt <∞

(cf. [5, 6, 21, 23], and [24, Example 4.5]), or the exponential region

E(a, b) = {λ ∈ C : <λ ≥ b, |=λ| ≤ ea<λ} (a, b > 0),

introduced for the �rst time by W. Arendt, O. El-Mennaoui and V. Keyantuo in [2] (cf. also C.
Foias [19] for a very similar notion of the logarithmic region Λ(α, β, ω) which can also be used
here). It would take too long to go into further details concerning these questions here.

(x) Suppose x ∈
⋂n
v=0D(Av), i ∈ N0

n, j ∈ N0, (fε(λ))ε>0 is a net of functions in A and
CAv ⊆ AvC, v ∈ N0

n. Denote u
j
i,ε := ((Dζ

s)
jSfε(s)Aix)s=0 (ε > 0). Then the following equality

holds:
P−1
λ CAix = λ−(pi+qi)ζ [Cx−

∑
v∈N0

n\{i}

λ(pv+qv)ζP−1
λ CAvx], λ ∈ Λα,β,l,

which implies that

uji,ε =
1

2πi

∫
Γζl

fε(λ)λj−(pi+qi)

[
Cx−

∑
v∈N0

n\{i}

λ(pv+qv)P−1
λ1/ζCAvx

]
dλ.

If we impose some additional conditions on the net (fε(λ))ε>0 (for example, the condition that

fε(0) 6= 0, ε > 0, as well as f
(pi+qi−j−1)
ε (0) → zi,j0 as ε → 0, provided pi + qi − j − 1 ≥ 0, and

the limit equality fε(λ)→ 1 as ε→ 0 (λ ∈ Γζl ), uniformly on compacts of Γζl , at least) and if we
suppose that the operator family {(1 + |λ|)−ν′P−1

λ C : λ ∈ Λα,β,l} ⊆ L(E) is both equicontinuous
and strongly continuous for a su�ciently large negative number ν ′ < 0 (cf. also [39, Theorem 4.2,
p. 168], where it has been assumed that C = I), then we may apply the Dominated Convergence
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Theorem and the Residue Theorem in order to see that limε→0 u
j
i,ε equals 0, if j ≥ pi + qi, and

[(pi + qi − j − 1)!]−1zi,j0 Cx, otherwise. If we use the net of functions of the form

fε(λ) = e−ε(−λ+ω)b/ζ (ε > 0),

then we have that zi,j0 = 1 if pi + qi − j − 1 = 0, and zi,j0 = 0 if pi + qi − j − 1 > 0 [37, 39].
Suppose now that xw ∈

⋂n
v=0D(Av) for all w ∈ N0

qn−1, the elements Bxw satisfy the assumption
(i) of Theorem 2.2 for all w ∈ N0

qn−1, i = n, ν ′ < −ζqn−1, the function fε(λ) is chosen as above,
and pv = 0, v ∈ N0

n (with the exception of problem (DFP)R, the analysis becomes very di�cult
in the case in which there exists v0 ∈ N0

n such that pv0 > 0). By the foregoing arguments, we
have that the function

s 7→
qn−1∑
w=0

1

2πi

∫
Γζl

fε(λ)λ−w−1+(pn+qn)Eζ
(
sζλ
)
P−1
λ1/ζCBxw dλ, s ≥ 0

is a strong solution to problem (2.5) with the initial values (uε0, · · ·, uεqn−1), converging to (Cx0, · ·
·, Cxqn−1) as ε → 0 + . Hence, the set W consisting of all initial values (y0, · · ·, yqn−1) ∈ Eqn

subjected to some strong solution s 7→ u(s), s ≥ 0 of problem (2.5) is dense in (C(
⋂n
v=0D(Av)))

qn

(cf. Example 2 below for an interesting application of this result, with C not being the identity
operator). Generally, it is very di�cult to say anything else about the set W in the case n > 1.

(xi) Following the method employed in the proof of Theorem 2.2, one can ex-
tend the assertions of [22, Theorem 2.1, Theorem 2.2] to abstract degenerate (multi-
term) fractional di�erential equations, thus proving some results on the C-wellposedness of
problem (2.5), (2.6) in the case ζ > 2 ([22, Theorem 2.1]) and 2 ≥ ζ > 1 ([22, Theorem 2.2]).
Consider, for example, the case 2 ≥ ζ > 1. Let ϑ ∈ (π(2− ζ)/2, π/2), let b ∈ (1/ζ, π/(2(π− ϑ)))
and let z ∈ Σϑ′ , where ϑ

′ := arctan(cos(b(π−ϑ))). If there exist d ∈ (0, 1] and ν > −1 such that
the operator family

{(1 + |λ|)−νP−1
λ C : λ ∈ Σϑ/ζ ∪Bd} ⊆ L(E)

is both equicontinuous and strongly continuous (for the sake of simplicity, we shall only consider
the case ξ = 0), then for each number s ≥ 0 we can de�ne the bounded linear operator S(s) by

S(s)x :=
1

2πi

∫
Γζ,d

e−z(−λ)bEζ
(
sζλ
)
P−1
λ1/ζCxdλ, x ∈ E, s ≥ 0,

where c ∈ (0, ϑ) is chosen so that b ∈ (1/ζ, π/(2(π−c))) and the inequality ϑ < arctan(cos(b(π−
c))) is valid (cf. (2.10) and apply the substitution λ 7→ λζ). Suppose, further, that there exists
i ∈ N0

n such that the mappings λ 7→ AjP
−1
λ Cx, λ ∈ Σϑ/ζ ∪ Bd are continuous for some x ∈ E

(j ∈ N0
n \ {i}) and for each seminorm p ∈ ~ the set

{(1 + |λ|)−νp(AjP−1
λ Cx) : λ ∈ Σϑ/ζ ∪Bd, j ∈ N0

n \ {i}}

is bounded. Then the �nal conclusions stated in Theorem 2.2 continue to hold after some obvious
modi�cations. In the situation of [22, Theorem 2.1] (the case ζ > 2), which is very speci�c, we
can assume that the operators P−1

λ C exist on a certain region of the complex plane which does
not contain any acute angle. The interested reader may try to carry out details concerning the
transmitting our previous results and comments from the items (i)�(x) of this remark to the case
in which ζ > 1. The method proposed in [22], [39, Section 4.4, pp. 167�175] as well as in the
parts (x), (xi) of this remark can serve to prove some results on the existence of entire solutions
of degenerate multi-term di�erential equations with integer order derivatives. For more details,
see [15].
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The proof of following extension of [21, Corollary 2.1] is omitted because of similarity to the
previous proof.

Theorem 2.3. Suppose that 0 < c < b < ζ ≤ 1, σ > 0, ν > −1, ξ ≥ 0, ς > 0 and (2.4) holds.
Denote

Πc,σ,ς :=
{
λ ∈ C : <λ ≥ σ|=λ|c + ς

}
, Πζ

c,σ,ς :=
{
λζ : λ ∈ Πc,σ,ς

}
, Ω′ := C \ Πζ

c,σ,ς .

Let f : Ω′ → C be a continuous function that is analytic in Ω′ and satisfy the following condition:
there exist numbers a1 > 0 and a2 > ξ such that

|f(λ)| ≤ a1e
−a2|λ|b/ζ , λ ∈ Ω′.

Suppose, further, that the operator Pλ is injective for all λ ∈ Πc,σ,ς , as well as that P
−1
λ C ∈ L(E),

λ ∈ Πc,σ,ς , the mapping λ 7→ P−1
λ Cx, λ ∈ Πc,σ,ς is continuous for every �xed element x ∈ E, and

the operator family {
(1 + |λ|)−νe−ξ|λ|bP−1

λ C : λ ∈ Πc,σ,ς

}
⊆ L(E)

is equicontinuous. Set

Tf (s)x :=
ζ

2πi

∫
Γc

f
(
λζ
)
λζ−1Eζ

(
sζλζ

)
P−1
λ Cxdλ, s ≥ 0, x ∈ E, (2.21)

where Γc denotes the upwards oriented boundary of Πc,σ,ς .
Then (Tf (s))s≥0 ⊆ L(E) is strongly continuous, the mapping s 7→ Tf (s) ∈ L(E), s ≥ 0

(s 7→ Tf (s) ∈ L(E), s > 0) is in�nitely di�erentiable provided ζ = 1 (ζ ∈ (0, 1)) and, for every
p ∈ N0, the mapping s 7→ (Dζ

s)
pTf (s) ∈ L(E), s ≥ 0 is well-de�ned. Furthermore, (2.11) holds

with (Sf (s))s≥0 and Γl replaced respectively by (Tf (s))s≥0 and Γc, and the following statements
hold.

(i) Suppose that there exists i ∈ N0
n such that the mappings λ 7→ AjP

−1
λ Cx, λ ∈ Πc,σ,ς are

continuous for some x ∈ E (j ∈ N0
n \ {i}) and for each seminorm p ∈ ~ the set

{(1 + |λ|)−νe−ξ|λ|bp(AjP−1
λ Cx) : λ ∈ Πc,σ,ς , j ∈ N0

n \ {i}}

is bounded.
Then (2.12) holds with (Sf (s))s≥0 and Γl replaced respectively by (Tf (s))s≥0 and Γc, the map-

ping s 7→ u(s) := Tf (s)x, s ≥ 0 is a strong solution to problem (2.5), (2.6), with the initial value
uj obtained by plugging p = j and s = 0 into the right-hand side of (2.11), for j ∈ N0

max{qi−1:i∈Sl},
and the initial value ui,j obtained by plugging p = j, q = qi and s = 0 into the right-hand side of
(2.12), for i ∈ Sr and j ∈ N0

pi−1 (with the obvious replacements described above). If CAi ⊆ AiC
for all i ∈ N0

n, then there exists at most one strong solution of problem (2.5), (2.6).
(ii) Suppose that q ∈ ~, B is a bounded subset of E and K is a compact subset of [0,∞).
Then there exists h0 > 0 such that (2.13) holds.

In the following remark, we shall clarify a few important facts closely linked with the asser-
tions of [6, Lemma 1, Lemma 4] and Remark 1 (ii), (vi.1).

Remark 2. Consider the situation of Theorem 2.3 with ξ = 0 and n = 1 (the �nal conclusions
continue to hold in the case of consideration of Theorem 2.2; after the replacement of the region
Πζ
c,σ,ς by Λζ

α,β,l, one just has to make some obvious terminological changes). Suppose, additionally,

that b/ζ < 1/(2− ζ), ω > ςζ , CA ⊆ AC, CB ⊆ BC, B is injective,

B−1A
(
zB + A

)−1
Cx =

(
zB + A

)−1
CB−1Ax, x ∈ D∞

(
B−1A

)
, z ∈ Πζ

c,σ,ς , (2.22)
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the family
{(1 + |z|)−νB(zB + A)−1C : z ∈ Πζ

c,σ,ς} ⊆ L(E)

is both equicontinuous and strongly continuous, y ∈ D(B) satis�es that Cy ∈ D(A), BACy =
ACBy and there exists h0 > 0 such that the set {hp0p(−pζ)/b(B−1A)pBy : p ∈ N0} is bounded.
Then it is checked at once that C(zB+A)−1C = (zB+A)−1C2, z ∈ Πζ

c,σ,ς and that the mapping
z 7→ (zB + A)−1Cx, z ∈ int(Πζ

c,σ,ς) is analytic (x ∈ E); cf. Remark 1 (vii). Using the Cauchy
formula and the foregoing arguments, we have that

Sft(0)x =
1

2πi

∫
Γζc−ω

e−t(−λ)b/ζ((λ+ ω)B + A)−1Cxdλ (x ∈ E, t > 0),

where Γζc denotes the upwards oriented boundary of Πζ
c,σ,ς . Let the curve Γ′ be su�ciently close

to Γζc , on the right of Γζc , and let the curve Γ′ω := Γ′ − ω be upwards oriented. Modifying
slightly the second part of the proof of [6, Lemma 4] (the proof of this lemma contains some
typographical mistakes but the essence and �nal conclusions are true; we can apply Stirling's
formula here), and keeping in mind the boundedness of the set {hp0p(−pζ)/b(B−1A)pBy : p ∈ N0},
we get that there exists a number δ > 0 such that for each integer p ∈ N there exists an integer
n(p) ∈ N ∩

(
bp
ζ

+ ν + 2, bp
ζ

+ ν + 3
]
such that the series

∑∞
p=0 xp and

∑∞
p=0Bxp are convergent,

where

xp :=
δp

2πip!

∫
Γ′ω

(−λ)bp/ζ(λ+ ω)−n(p)
(
(λ+ ω)B + A

)−1
C
(
B−1A

)n(p)
By dλ.

Let x =
∑∞

p=0 xp and Bx =
∑∞

p=0Bxp; arguing as in Remark 1 (vii), we obtain with the help of
equation (2.22), the Cauchy formula and the resolvent equation that

Sft(0)Bx =
1

2πi

∫
Γ′ω

e−(t−δ)(−λ)b/ζ
(
(λ+ ω)B + A

)−1
C2By dλ, t > δ. (2.23)

Let λ0 ∈ C be on the right of Γζc , and simultaneously, on the left of Γ′. Making use of the
identity [24, (3.16)], with the operator A replaced by −B−1A therein (we only need the linearity
of operator B−1A, not its closedness), we get that

CBy =

dνe+2∑
j=0

(−1)j

((λ+ ω)− λ0)j+1

(
(λ+ ω) +B−1A

)
CBy

+ (−1)dνe+1C
(
λ0I +B−1A

)dνe+3
By

((λ+ ω)− λ0)dνe+3
, λ ∈ Γ′ω. (2.24)

Since Cy ∈ D(A), BACy = ACBy and CB ⊆ BC, we have that ((λ + ω) + B−1A)CBy =
((λ+ω)B+A)Cy, λ ∈ Γ′ω. Applying the operator ((λ+ω)B+A)−1C to the both sides of (2.24),
the above implies

(
(λ+ ω)B + A

)−1
C2By =

dνe+2∑
j=0

(−1)j

((λ+ ω)− λ0)j+1
C2y

+ (−1)dνe+1

(
(λ+ ω)B + A

)−1
C

((λ+ ω)− λ0)dνe+3

(
λ0I +B−1A

)dνe+3
CBy, λ ∈ Γ′ω.

Inserting this expression in (2.23), and using after that the limit equality [37, Lemma 2.7; p.
543], as well as the Residue Theorem and the Dominated Convergence Theorem, we obtain that
Sfδ(0)Bx = limt→δ+ Sft(0)Bx = C2y. Keeping in mind Remark 1 (vi.2), the above implies

C2
(
E(A;B)

)
⊆
⋃
t>0

R(Sft(0)B) ⊆
⋃
t>0

R(Sft(0)) ⊆ E〈p
pζ/b〉(B−1A), (2.25)
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where
E(A;B) :=

{
y ∈ B−1

(
E〈p

pζ/b〉(B−1A)
)

: Cy ∈ D(A), BACy = ACBy
}
.

We do not know, in the present situation, whether equation (2.25) continues to hold if we replace
the term C2(E(A;B)) with C(E(A;B)). It is also worth noting that the inclusions stated in
(2.25) are completely new provided that C 6= I or ζ < 1.

Remark 3. Consider the case B = I, n = 1 and ζ ∈ (0, 1). As before, we assume that (Mp)
is a sequence of positive real numbers satisfying M0 = 1 and (M.1), as well as that there exist
numbers l ≥ 1, α > 0, β > 0, ν > −1 and ξ ≥ 0 such that Λζ

α,β,l ⊆ ρC(−A). Suppose that

the operator family {(1 + |λ|)−νe−M(ξ|λ|)(λζ + A)−1C : λ ∈ Λζ
α,β,l} is both equicontinuous and

strongly continuous. We note that the question

(P) In which cases does there exist an injective operator C ′ ∈ L(E) such that the operator −A
generates a global locally equicontinuous (gζ , C

′)-regularized resolvent (S(t))t≥0 on E?

is very di�cult to answer in general. Here we shall shortly explain how one can solve problem
(P) in the a�rmative provided that (2.1) holds with some b ∈ (0, 1), as well as that ξ = 0
and 1/(2− ζ) > b/ζ (cf. Theorem 2.2, Theorem 2.3 and Remark 1 (v)). Then (Sft(0))t∈Σθ is an
analytic C-regularized semigroup of growth order (ν + 1)ζ/b, consisting of injective operators,
with the closed linear operator −(−A−ω)b/ζ being its integral generator (ω > 0 is a su�ciently
large real number; cf. [9, Theorem 3.5, Theorem 3.7]), and the following holds.

(a) (Sft(s))s≥0 is a locally equicontinuous (gζ , Sft(0))-regularized resolvent family generated
by −A (t ∈ Σθ). If q ∈ ~, B is a bounded subset of E and K is a compact subset of [0,∞), then
there exists h0 > 0 such that (2.13) holds with f = ft (t ∈ Σθ).

(b) Suppose that 0 < c < b, σ > 0, ν > −1, ς > 0, Πζ
c,σ,ς ⊆ ρC(−A), and the operator family

{(1 + |λ|)−ν(λζ + A)−1C : λ ∈ Πc,σ,ς} ⊆ L(E)

is both equicontinuous and strongly continuous. Then the conclusions stated in (a) continue to
hold.

Therefore, a great number of multiplication and (pseudo-)di�erential operators in Lp-spaces
can serve as examples of the integral generators of fractional C-regularized resolvent families.
Although the applications of theoretical results in statements (a)�(b) and Remark 2 can be also
made to (pseudo-)di�erential operators with empty resolvent set, and to the operators considered
in certain classes of Fr�echet function spaces, we shall present only one illustrative example of
application of the results in (b) and Remark 2 to abstract non-degenerate fractional di�erential
equations (cf. Example 1 below).

3 The Non-Gevrey case

As before, in this subsection we assume that α > 0, β > 0, l ≥ 1, 0 < ζ ≤ 1, as well as that (Mp)
is a sequence of positive real numbers such that M0 = 1 and the condition (M.1) is satis�ed for
(Mp). Recall that Ω = C \Λζ

α,β,l. If g : [0,∞)→ [0,∞) is a monotonically increasing, continuous
function satisfying

lim
t→+∞

(1 + t)veσM(st)−g(t) = 0, v ∈ N, s ≥ 0, σ > 0, (3.1)

then we denote by Ag the class consisting of all continuous functions f : Ω→ C that are analytic
in Ω and satisfy the inequality:

|f(z)| ≤ const · e−g(|z|1/ζ), z ∈ Ω.
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Having this notion in mind, we can formulate the following non-Gevrey analogue of Theorem
2.2 and Theorem 2.3; the proof is very similar to that of Theorem 2.2 and therefore omitted.

Theorem 3.1. Suppose that (Mp) satis�es (M.1), as well as that there exists a monotonically
increasing, continuous function g : [0,∞) → [0,∞) satisfying (3.1) and that the class Ag is
non-trivial. Let 0 < ζ ≤ 1, ν > −1, ξ ≥ 0, α > 0, β > 0 and l ≥ 1. Suppose, further, that the
operator Pλ is injective for all λ ∈ Λα,β,l, as well as that P

−1
λ C ∈ L(E), λ ∈ Λα,β,l, the mapping

λ 7→ P−1
λ Cx, λ ∈ Λα,β,l is continuous for every �xed element x ∈ E, and the operator family{

(1 + |λ|)−νe−M(ξλ)P−1
λ C : λ ∈ Λα,β,l

}
⊆ L(E)

is equicontinuous. De�ne, for every function f ∈ Ag, the bounded linear operator Sf (s) (s ≥ 0)
by (2.10).

Then (Sf (s))s≥0 ⊆ L(E) is strongly continuous, the mapping s 7→ Sf (s) ∈ L(E), s ≥ 0
(s 7→ Sf (s) ∈ L(E), s > 0) is in�nitely di�erentiable provided that ζ = 1, f ∈ Ag (ζ ∈ (0, 1),
f ∈ Ag) and, for every p ∈ N0 and f ∈ Ag, the mapping s 7→ (Dζ

s)
pSf (s) ∈ L(E), s ≥ 0 is

well-de�ned. Furthermore, (2.11) and the following statements hold.
(i) Suppose that there exists i ∈ N0

n such that the mappings λ 7→ AjP
−1
λ Cx, λ ∈ Λα,β,l are

continuous for some x ∈ E (j ∈ N0
n \ {i}) and for each seminorm p ∈ ~ the set

{(1 + |λ|)−νe−M(ξλ)p(AjP
−1
λ Cx) : λ ∈ Λα,β,l, j ∈ N0

n \ {i}}

is bounded.
Then (2.12) holds for any x ∈ E, s ≥ 0, i ∈ N0

n and p, q ∈ N0. Moreover, the mapping
s 7→ u(s) := Sf (s)x, s ≥ 0 is a strong solution to problem (2.5), (2.6), with the initial value uj
obtained by plugging p = j and s = 0 into the right-hand side of (2.11), for j ∈ N0

max{qi−1:i∈Sl},
and the initial value ui,j obtained by plugging p = j, q = qi and s = 0 into the right-hand side of
(2.12), for i ∈ Sr and j ∈ N0

pi−1 (f ∈ A). If CAi ⊆ AiC for all i ∈ N0
n, then there exists at most

one strong solution to problem (2.5), (2.6).
(ii) Let (Np)p∈N0 be a sequence of positive real numbers satisfying N0 = 1, (M.1) and the

following property: for each v ∈ N, s ≥ 0 and σ > 0 there exists h > 0 such that

lim
t→+∞

(1 + t)veσM(st)+N(htζ)−g(t) = 0.

Suppose that f ∈ A, q ∈ ~, B is a bounded subset of E and K is a compact subset of [0,∞).
Then there exists h0 > 0 such that (2.13) holds with the sequence (ppζ/b) replaced by (Np).

Remark 4. Theorem 3.1 is closely linked with the assertion of [21, Theorem 3.3], where we have
considered the regularization of ultradistribution semigroups in Banach spaces (B = I, n = 1,
ζ = 1, ξ ≥ 0, −A generates an ultradistribution semigroup of (Mp)-class; cf. [23] for the notion,
as well as [10, 21, 27, 28, 32], for more details concerning ultradistribution semigroups). If the
corresponding sequence (Mp) satis�es conditions (M.1), (M.2) and (M.3), then we have proved
in the afore-mentioned theorem that there exist two functions, g(·) and f ∈ Ag, such that the
operator −A generates a global locally equicontinuous C-regularized semigroup (Sf (s))s≥0, with
C = Sf (0) being injective, satisfying additionally that the mapping s 7→ Sf (s) ∈ L(E), s ≥ 0
is in�nitely di�erentiable and E(Mp)(A) ⊆ C(D∞(A)). The proof of this fact is based on the
existence of a sequence (Np) of positive real numbers satisfying N0 = 1, (M.1), (M.2), (M.3)
and Np ≺ Mp (cf. [21, Lemma 3.2]), and by putting f(·) = 1/ωl′,(Np)(−·) (l′ ∈ N su�ciently
large), where

ωl′,(Np)(λ) =
∞∏
p=1

(
1 +

l′λNp−1

Np

)
, λ ∈ C (l′ > 0).
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It is worth noting that we have considered a slightly di�erent growth rate of P−1
λ C in Theorem

2.2 (Theorem 2.3), and that one has to assume that for each v ∈ N, s ≥ 0 and σ > 0 there exists
h > 0 such that

lim
t→+∞

(1 + t)veσM(st)+ξ|λ|b+N(htζ)−g(t) = 0
(

lim
t→+∞

(1 + t)vest
c+ξ|λ|b+N(htζ)−g(t) = 0

)
in order to deduce Theorem 2.2 (Theorem 2.3) from Theorem 3.1. Observe also that the com-
ments in Remark 1 can be reformulated in the case in which the assumptions of Theorem 2.3 or
Theorem 3.1 hold.

4 Examples and applications

Example 1. Assume that 0 < c < b < 1, 1/(2 − ζ) > b/ζ, σ > 0, ς > 0, p ∈ [1,∞), m > 0,
ρ ∈ [0, 1], r > 0, a ∈ Smρ,0 satis�es (Hr), the inequality

n
∣∣∣1
2
− 1

p

∣∣∣m− r − ρ+ 1

r
< 1 (4.1)

holds, E = Lp(Rn) or E = C0(Rn) (in the last case, we assume that (4.1) holds with p = ∞),
and A := −OpE(a) (cf. [1, Chapter 8] for the notion and terminology). If dist(a(Rn),Πζ

c,σ,ς) > 0,
then there exists a number ν > −1 such that the operator family

{(1 + |λ|)−ν(λζ + A)−1 : λ ∈ Πc,σ,ς} ⊆ L(E)

is both equicontinuous and strongly continuous (C = I), so that (Sft(s))s≥0 is a global
(gζ , Sft(0))-regularized resolvent family generated by−A (t ∈ Σθ); furthermore, ifK is a compact
subset of [0,∞) and t ∈ Σθ, then there exists h0 > 0 such that

sup
p∈N0,s∈K

(h0)p
∥∥(Dζ

s)
pSft(s)

∥∥
ppζ/b

<∞.

The proof of (2.25) implies that
⋃
t>0 Sft(0)(D(A)) = E〈p

pζ/b〉(A), so that the problem

(DFP)R, with B = I, has a unique strong solution for all x ∈ E〈p
pζ/b〉(A), given by u(s) :=

Sft(s)Sft(0)−1x, s ≥ 0, where t > 0 satis�es x ∈ Sft(0)(D(A)). A concrete example can be sim-
ply constructed. Suppose that ζ = 1− c > c(1 + c). This, in turn, implies 1/(2− ζ) > b/ζ > c/ζ
for some c < b < 1. Since

(x+ ix1/c)ζ = (x2 + x2/c)ζ/2[cos(ζ arctanx(1/c)−1) + i sin(ζ arctanx(1/c)−1)], x > 0,

an elementary calculus shows that

<
(
(x+ ix1/c)ζ

)
/=
(
(x+ ix1/c)ζ

)
∼ 1/ tan(ζπ/2) as x→ +∞,

and

<
(
(x+ ix1/c)ζ

)
− (tan(ζπ/2))−1=

(
(x+ ix1/c)ζ

)
∼ ζ(sin(ζπ/2))−1x((ζ−1)/c)+1 = ζ(sin(ζπ/2))−1 as x→ +∞

(similar formulae hold if we consider the term (x− ix1/c)ζ in place of (x+ ix1/c)ζ). Using these
asymptotic formulae, it readily follows that for each number d ∈ (0, ζ/ sin(ζπ/2)) there exists
a su�ciently large number rd > 0 such that the inequality dist

(
a(Rn),Πζ

c,σd,ςd

)
> 0 is true for



On a class of abstract degenerate multi-term fractional di�erential equations . . . 51

suitably chosen numbers σd > 0 and ςd > 0, provided that a(x) = d+ (rd + P (x))e±iπζ/2, where
P (x) is a positive real elliptic polynomial in n variables, of order m (then (4.1) holds with m = r
and ρ = 1).

In our recent papers (cf. [22, 23, 24, 25]), we have considered the polynomials of the operator
A := −d/ds, D(A) := {f ∈ E ; f ′ ∈ E, f(0) = 0}, acting on the Banach space

E :=

{
f ∈ C∞[0, 1] ; ‖f‖ := sup

p≥0

‖f (p)‖∞
p!s

<∞

}
(s > 1).

For instance, we have proved that there exist numbers b > 0, c > 0 and η > 0 such that the
following estimates hold:∥∥∥(λP2(A)− P1(A)

)−1
∥∥∥ = O

(
eb|λ|

1/(N1−N2)s+c|λ|1/(N1−N2)
)
, λ ∈ C,

and ∥∥∥(λP2(A)− P1(A)
)−1

P2(A)f
∥∥∥ ≤ η‖f‖eb|λ|1/(N1−N2)s+c|λ|1/(N1−N2)

,

for any λ ∈ C, f ∈ D(P2(A)), with P1(z) and P2(z) being two complex non-zero polynomials
satisfying N1 = dg(P1) > 1 + dg(P2) = 1 + N2. The interested reader may try to prove some
upper bounds of the growth rate of the term∥∥∥∥∥

(
λ(pn+qn)ζPn(A) +

n−1∑
i=0

λ(pi+qi)ζPi(A)

)−1∥∥∥∥∥,
where Pi(z) is a complex non-zero polynomial (1 ≤ i ≤ n), thus providing certain applications
of Theorem 2.2 and Theorem 2.3.

Observe also that the method proposed by R. Beals in [5, Section 5] and A. Guzman in [20,
Section 3] can be used for successful applications of Theorem 2.3 to some systems of linear PDEs
that are degenerate in the time-variable. In the remaining part of paper, we will illustrate the
obtained theoretical results with some other instructive examples.

Example 2. Suppose that E is a general SCLCS, b ∈ (0, 1), (Mp) satis�es (M.1) and (2.1),
ζ = 1, pi = 0 for all i ∈ N0

n, qn > qn−1, α > 0, β > 0, l ≥ 1, ∅ 6= Ω ⊆ C, N ∈ N, A is a densely
de�ned closed linear operator in E satisfying that Ω ⊆ ρ(A) and the operator family

{(1 + |λ|)−N(λ− A)−1 : λ ∈ Ω} ⊆ L(E)

is equicontinuous. Suppose, further, that Pi(z) is a complex polynomial (i ∈ N0
n), Pn(z) 6≡ 0,

λ0 ∈ ρ(A) \ {z ∈ C : Pn(z) = 0}, dist(λ0,Ω) > 0, as well as that for each λ ∈ Λα,β,l all roots
of the polynomial z 7→ λqnPn(z) +

∑n−1
i=0 λ

qiPi(z), z ∈ C belong to Ω. Set B := Pn(A) and
Ai := Pi(A) (i ∈ N0

n−1). Then there exist M ∈ N, λ-polynomials F0(λ), . . . , FM(λ) and not
necessarily distinct numbers f1(λ) ∈ Ω, . . . , fM(λ) ∈ Ω such that

λqnPn(z) +
n−1∑
i=0

λqiPi(z) = FM(λ)zM + · · ·+ F1(λ)z + F0(λ) =

= (−1)MFM(λ)(fM(λ)− z) · · · (f1(λ)− z)

for all λ ∈ Λα,β,l \ P and z ∈ C, where P ≡ {λ ∈ C : FM(λ) = 0}; furthermore, for each
λ ∈ Λα,β,l \ P the following equality holds:(

λqnPn(A) +
n−1∑
i=0

λqiPi(A)

)−1

= (−1)M
(
FM(λ)

)−1(
fM(λ)− A

)−1 · · ·
(
f1(λ)− A

)−1
.
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Using the generalized resolvent equation [25, (6)], it readily follows that for any integer Q ≥ N+2
the operator family

{(fi(λ)− λ0)(fi(λ)− A)−1(λ0 − A)−Q : λ ∈ Λα,β,l \ P} ⊆ L(E)

is equicontinuous (1 ≤ i ≤ M). This implies that there exists a su�ciently large integer
Q′ ≥ N + 2 such that for each seminorm p ∈ ~ there exist cp > 0 and q ∈ ~ such that, for every
j ∈ N0

n−1, λ ∈ Λα,β,l \ P and x ∈ E,

p

((
λqnPn(A) +

∑n−1
i=0 λ

qiPi(A)

)−1(
λ0 − A

)−Q′
x

)

+p

(
Pj(A)

(
λqnPn(A) +

∑n−1
i=0 λ

qiPi(A)

)−1(
λ0 − A

)−Q′
x

)

= p

((
FM(λ)

)−1(
fM(λ)− A

)−1 · · ·
(
f1(λ)− A

)−1(
λ0 − A

)−Q′
x

)

+p

(
Pj(A)

(
FM(λ)

)−1(
fM(λ)− A

)−1 · · ·
(
f1(λ)− A

)−1(
λ0 − A

)−Q′
x

)
≤ cp

∣∣FM(λ)
∣∣−1
∣∣∣(fM(λ)− λ0

)
· · ·
(
f1(λ)− λ0

)∣∣∣−1

q(x)

= cp
∣∣FM(λ)

∣∣−1∣∣FM(λ)
∣∣∣∣∣FM(λ)λm0 + · · ·+ F1(λ)λ0 + F0(λ)

∣∣∣−1

q(x)

= cp

∣∣∣∣∣λqnPn(λ0

)
+
∑n−1

i=0 λ
qiPi
(
λ0

)∣∣∣∣∣
−1

q(x) ∼ cp
∣∣Pn(λ0

)∣∣−1∣∣λ∣∣−qnq(x) as |λ| → ∞.

Therefore, there exists a su�ciently large number β′ > β such that the operator families{
(1 + |λ|)qn(λqnPn(A) +

n−1∑
i=0

λqiPi(A))−1(λ0 − A)−Q
′
: λ ∈ Λα,β′,l

}
⊆ L(E)

and {
(1 + |λ|)qnPj(A)(λqnPn(A) +

n−1∑
i=0

λqiPi(A))−1(λ0 − A)−Q
′
: λ ∈ Λα,β′,l

}
⊆ L(E)

are equicontinuous (j ∈ N0
n−1). Since qn > qn−1 and P (A) is dense in E for any complex

polynomial P (z) ∈ C[z], the analysis contained in Remark 1 (x), with C ≡ (λ0 − A)−Q
′
, shows

that for each (x0, · · ·, xqn−1) ∈ Eqn there exists a net (uε(t))ε>0 of strong solutions of problem
(2.5) with the subjected initial values (uε0, · · ·, uεqn−1), converging to (x0, · · ·, xqn−1) as ε → 0+
(in the topology of Eqn).

Example 3. By F and F−1 we denote the Fourier transform on Rn and its inverse transform,
respectively. Assume that n ∈ N and iAj, 1 ≤ j ≤ n are commuting generators of bounded C0-
groups on a Banach space E. Set A := (A1, . . . , An), Aη := Aη1

1 ···Aηnn for any η = (η1, ···, ηn) ∈ N0
n,

and denote by S(Rn) the Schwartz space of rapidly decreasing functions on Rn. Let k = 1+bn/2c.
For every ξ = (ξ1, · · ·, ξn) ∈ Rn and u ∈ FL1(Rn) = {Ff : f ∈ L1(Rn)}, we set |ξ| :=
(
∑n

j=1 ξ
2
j )

1/2, (ξ,A) :=
∑n

j=1 ξjAj and

u(A)x :=

∫
Rn
F−1u(ξ)e−i(ξ,A)x dξ, x ∈ E.
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Then u(A) ∈ L(E), u ∈ FL1(Rn) and there exists a �nite constant M ≥ 1 such that

‖u(A)‖ ≤M
∥∥F−1u

∥∥
L1(Rn)

, u ∈ FL1
(
Rn
)
.

Let N ∈ N, and let P (x) =
∑
|η|≤N aηx

η, x ∈ Rn be a complex polynomial. Then we de�ne

P (A) :=
∑
|η|≤N

aηAη and E0 :=
{
φ(A)x : φ ∈ S(Rn), x ∈ E

}
.

We know that the operator P (A) is closable and that the following properties hold:

(.) E0 = E, E0 ⊆
⋂
η∈Nn0

D(Aη), P (A)|E0 = P (A) and

φ(A)P (A) ⊆ P (A)φ(A) = (φP )(A), φ ∈ S(Rn).

Assuming that E is a function space on which translations are uniformly bounded and
strongly continuous, the obvious choice for iAj is −i∂/∂xj (notice also that E can consist of
functions de�ned on some bounded domain). If P (x) =

∑
|η|≤N aηx

η, x ∈ Rn and E is such a

space (for example, Lp(Rn) with p ∈ [1,∞), C0(Rn) or BUC(Rn)), then it is not di�cult to
prove that P (A) is nothing else but the operator

∑
|η|≤N

aη(−i)|η|
∂|η|

∂xη1

1 · · · ∂x
ηn
n
≡
∑
|η|≤N

aηD
η,

acting with its maximal distributional domain. Recall that P (x) is called r-coercive (0 < r ≤ N)
if there exist M, L > 0 such that |P (x)| ≥ M |x|r, |x| ≥ L; by a corollary of the Seidenberg�
Tarski theorem, the equality lim|x|→∞ |P (x)| = ∞ implies in particular that P (x) is r-coercive
for some r ∈ (0, N ] (cf. [1, Remark 8.2.7]). For further information concerning the functional
calculus for commuting generators of C0-groups, see [25].

Assume, further, that 0 < δ < 2, P1(x) and P2(x) are non-zero complex polynomials, N1 =
dg(P1(x)), N2 = dg(P2(x)), P2(x) 6= 0, x ∈ Rn, 0 < c < b < 1, 0 < ζ ≤ 1, 1/(2 − ζ) > c/ζ,
σ > 0, ς > 0, A := −P1(A), B := P2(A) and

dist
({
−P1(x)P2(x)−1 : x ∈ Rn

}
,Πζ

c,σ,ς

)
> 0. (4.2)

Then there exist su�ciently large numbers β′ ≥ 0 and ν ≥ 0 (the proof of [25, Theorem 2.5.2]
can give more detailed and accurate information about β′ and ν; we leave the reader to make
this precise) such that(

1

λζP2(x) + P1(x)

(
1 + |x|2

)−β′/2)
(A) =

(
λζB + A

)−1
C, λ ∈ Πc,σ,ς ,

(
P2(x)

λζP2(x) + P1(x)

(
1 + |x|2

)−β′/2)
(A) = B

(
λζB + A

)−1
C, λ ∈ Πc,σ,ς ,

and the operator families

{(1 + |λ|)−ν(λζB + A)−1C : λ ∈ Πc,σ,ς} ⊆ L(E)

and
{(1 + |λ|)−νB(λζB + A)−1C : λ ∈ Πc,σ,ς} ⊆ L(E)
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are both equicontinuous and strongly continuous (C := ((1 + |x|2)−β
′/2)(A)), so that Theorem

2.3 can be applied. Although equation (2.25) of Remark 2 holds in our concrete situation, we
should say that Theorem 2.3, Remark 2 certainly have some disadvantages in degenerate case
because it is very di�cult to say whether an element x ∈ E belongs to the space E〈p

pζ/b〉(B−1A)
or not, with the exception of some very special cases.

Suppose now that the operators Ak and Bk are de�ned by

Ak := −P1,k(A), Bk := P2,k(A),

and that estimate (4.2) holds with the polynomials P1(x) and P2(x) replaced respectively by the
polynomials P1,k(x) and P2,k(x). Then Theorem 2.3 can be applied to a large class of multi-term
(non-)degenerate di�erential equations of form (2.5), where

Pλ =
(
λζB1 + A1

)(
λζB2 + A2

)
· · ·
(
λζBk + Ak

)
.

The choice of regularizing operator C is essentially the same as above but we must eventually
increase the value of β′. Observe, �nally, that a similar analysis can be carried out in El-type
spaces [39].
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