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1 Introduction

In this paper, in the domain Ω = [0, T ]× [0, ω] we consider the following nonlocal problem with
integral conditions for a hybrid system of partial di�erential equations

∂2u

∂t2
= A1(t, x)

∂u

∂t
+B1(t, x)

∂v

∂x
+ C1(t, x)u+D1(t, x)v + f1(t, x)

∂2v

∂t∂x
= A2(t, x)

∂v

∂x
+B2(t, x)

∂u

∂t
+ C2(t, x)v +D2(t, x)u+ f2(t, x)

, (1.1)

u(0, x) = ϕ0(x), x ∈ [0, ω], (1.2)

P1(x)
∂u(t, x)

∂t
|t=0 + S1(x)

∂u(t, x)

∂t
|t=a +

∫ a

0

K1(τ, x)
∂u(τ, x)

∂τ
dτ = ϕ1(x), x ∈ [0, ω], (1.3)

v(t, 0) = ψ(t), t ∈ [0, T ], (1.4)

P2(x)v(0, x) + S2(x)v(b, x) +

∫ b

0

K2(τ, x)v(τ, x)dτ = ϕ2(x), x ∈ [0, ω], (1.5)

where u(t, x) and v(t, x) are the unknown functions, the functions A1(t, x), A2(t, x), B1(t, x),
B2(t, x), C1(t, x), C2(t, x), D1(t, x), D2(t, x), f1(t, x), f2(t, x) are continuous on Ω, the functions
P1(x), S1(x), ϕ1(x) are continuous on [0, ω], the functions P2(x), S2(x), ϕ0(x), ϕ2(x) are con-
tinuously di�erentiable on [0, ω], the function K1(t, x) is continuous on Ω, the function K2(t, x)
is continuous and continuously di�erentiable in x on Ω, and the function ψ(t) is continuously
di�erentiable on [0, T ], 0 < a, b ≤ T . Moreover, it is assumed that the following compatibility
condition is satis�ed:

P2(0)ψ(0) + S2(0)ψ(b) +

∫ b

0

K2(τ, 0)ψ(τ)dτ = ϕ2(0).
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In recent years nonlocal problems for di�erent classes of hybrid systems are of great interest
to specialists [11, 14, 15, 18, 19, 22-24, 26]. Mathematical modelling of various processes in
physics, chemistry and biology leads to nonlocal problems with integral conditions for hybrid
system of partial di�erential equations of di�erent orders. Su�cient conditions for the existence
and uniqueness of solutions to problems for some classes of hybrid systems have been obtained
by various methods [11, 14, 15, 18, 19, 22-24, 26].

In [9], a linear boundary value problem with an integral condition for a system of hyper-
bolic equations was investigated. With the new approach, proposed in [1-8] for boundary value
problems with the data on characteristics without integral terms, we established necessary and
su�cient conditions for the well-posedness of a linear boundary value problem with an integral
condition for a system of hyperbolic equations with mixed derivatives.

In this paper, we study the existence problems of classical solutions to a nonlocal problem with
integral conditions for hybrid system (1.1)�(1.5) and methods of constructing their approximate
solutions. The results and methods of [9] are extended to a new class of problems - nonlocal
problem with integral conditions for the one class of hybrid systems. We establish su�cient
conditions for the unique solvability of a nonlocal problem with integral conditions (1.1)�(1.5) in
terms of the right-hand side of the system, the boundary functions and the kernels of the integral
terms. An algorithm for �nding the solution of the considered problem is constructed and the
convergence of successive approximations is shown. The results can be used in the numerical
solving of applied problems.

A family of problems with integral conditions for a system of ordinary di�erential equations
was investigated in [9] for a = T and b = T . Su�cient conditions for the unique solvability were
obtained and the ways of �nding solutions to considered problems were proposed. In this paper,
the results of the paper [9] are extended to the case 0 < a, b < T .

In this paper we apply the parametrization method [10] to the family of problems with an
integral conditions for ordinary di�erential equations (3.1)�(3.3) without partitioning domain Ω.

2 Reduction of problem (1.1)�(1.5) to an equivalent problem

Let C(Ω, R) (C([0, ω], R)) be a space of continuous functions u : Ω→ R ( ϕ : [0, ω]→ R) on
Ω ( [0, ω] )with norm

||u||0 = max
(t,x)∈Ω

|u(t, x)| ( ||ϕ||0 = max
x∈[0,ω]

|ϕ(x)|).

The system of functions (u(t, x), v(t, x)), where u(t, x) ∈ C(Ω, R), v(t, x) ∈ C(Ω, R), have

partial derivatives
∂u(t, x)

∂t
∈ C(Ω, R),

∂2u(t, x)

∂t2
∈ C(Ω, R),

∂v(t, x)

∂x
∈ C(Ω, R),

∂v(t, x)

∂t
∈

C(Ω, R),
∂2v(t, x)

∂t∂x
∈ C(Ω, R) is called a classical solution to problem (1.1)�(1.5) if it satis�es

hybrid system (1.1) for all (t, x) ∈ Ω and meets boundary conditions (1.2), (1.3), (1.4) and (1.5).
In this section, we introduce new unknown functions and reduce problem (1.1)�(1.5) to an

equivalent problem consisting of the family of problems with integral conditions for a system of
partial di�erential equations and integral relations. The algorithm is suggested for �nding ap-
proximate solutions to the considered problem, their convergence is proved. Conditions, ensuring
the classical solvability of problem (1.1)�(1.5), are established.

We introduce the new unknown functions z1(t, x) =
∂u(t, x)

∂t
, and z2(t, x) =

∂v(t, x)

∂x
, and

reduce problem (1.1)�(1.5) to the equivalent problem
∂z1

∂t
= A1(t, x)z1 +B1(t, x)z2 + C1(t, x)u+D1(t, x)v + f1(t, x)

∂z2

∂t
= A2(t, x)z2 +B2(t, x)z1 + C2(t, x)v +D2(t, x)u+ f2(t, x)

, (2.1)
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P1(x)z1(0, x) + S1(x)z1(a, x) +

∫ a

0

K1(τ, x)z1(τ, x)dτ = ϕ1(x), x ∈ [0, ω], (2.2)

P2(x)z2(0, x) + S2(x)z2(b, x) +

∫ b

0

K2(τ, x)z2(τ, x)dτ = ϕ′2(x)−

−P ′2(x)v(0, x)− S ′2(x)v(b, x)−
∫ b

0

∂K2(τ, x)

∂x
v(τ, x)dτ, x ∈ [0, ω], (2.3)

u(t, x) = ϕ0(x) +

∫ t

0

z1(τ, x)dτ, v(t, x) = ψ(t) +

∫ x

0

z2(t, ξ)dξ, (t, x) ∈ Ω. (2.4)

In problem (2.1)�(2.4) conditions (1.2) and (1.4) are taken into account in relations (2.4).
A quadruple {z1(t, x), z2(t, x), u(t, x), v(t, x)} of functions continuous on Ω is called a solution

to problem (2.1)�(2.4) if the functions z1(t, x) and z2(t, x)) belong to C(Ω, R), have continuous
derivatives with respect to t on Ω and satisfy system of ordinary di�erential equations (2.1) and
integral conditions (2.2), (2.3), where the functions u(t, x), and v(t, x) are expressed via z1(t, x)
and z2(t, x) by functional relations (2.4).

The problems (1.1)�(1.5) and (2.1)�(2.4) are equivalent in the following sense. Let a
pair (u∗(t, x), v∗(t, x)) be a classical solution to problem (1.1)�(1.5). Then the quadruple

{z)∗1(t, x), z∗2(t, x), u∗(t, x), v∗(t, x), where z∗1(t, x) =
∂u∗(t, x)

∂t
, z∗2(t, x) =

∂v∗(t, x)

∂x
, is a solu-

tion to problem (2.1)�(2.4). Conversely, if a quadruple {z̃1(t, x), z̃2(t, x), ũ(t, x), ṽ(t, x)} is a
solution to problem (2.1)�(2.4), then the pair (ũ(t, x), ṽ(t, x)) is a classical solution to problem
(1.1)�(1.5).

Under the �xed u(t, x), v(t, x) we may consider system of equations (2.1) with conditions
(2.2), (2.3) as a one-parametered family of problems with integral conditions for system of
ordinary di�erential equations. Integral conditions (2.4) allow us to determine the functions
u(t, x), v(t, x) via the solution to the family of problems with integral conditions for a system of
ordinary di�erential equations.

Thus, the solution to a problem with integral conditions for a hybrid system (1.1)�(1.5)
depends on the solutions to a family of problems with integral conditions for a system of ordinary
di�erential equations.

3 Family of problems with integral conditions for system of ordinary
di�erential equations

Consider the following one-parametered family of problems with integral conditions for a system
of ordinary di�erential equations

∂z1

∂t
= A1(t, x)z1 +B1(t, x)z2 + F1(t, x)

∂z2

∂t
= A2(t, x)z2 +B2(t, x)z1 + F2(t, x)

, (3.1)

P1(x)z1(0, x) + S1(x)z1(a, x) +

∫ a

0

K1(τ, x)z1(τ, x)dτ = Φ1(x), x ∈ [0, ω], (3.2)

P2(x)z2(0, x) + S2(x)z2(b, x) +

∫ b

0

K2(τ, x)z2(τ, x)dτ = Φ2(x), x ∈ [0, ω], (3.3)

where Fi(t, x) ∈ C(Ω, R), and Φi(x) ∈ C([0, ω], R), i = 1, 2.
A pair of functions (z1(t, x), z2(t, x)), where z1 : Ω → R, z2 : Ω → R, continuous on Ω and

continuously di�erentiable with respect to t on Ω, is called a solution to the one-parametered
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family of problems with integral conditions (3.2), (3.3), if given any (t, x) ∈ Ω it satis�es the
system (3.1) and given any x ∈ [0, ω] it satis�es the conditions (3.2), (3.3).

For a �xed x ∈ [0, ω] problem (3.1)�(3.3) is a linear problem with integral condition for a
system of ordinary di�erential equations. The di�erent types of problems with integral condition
for di�erential equations have been investigated by various methods [12, 13, 16, 17, 20, 25].
Suppose a variable x is changed on [0, ω]; then we obtain a family of problems with an integral
conditions for ordinary di�erential equations.

The scheme of parametrization method. Let a pair of functions (z1(t, x), z2(t, x)) be a solution
to problem (3.1)�(3.3). By λ1(x) and λ2(x) denote the values of z1(t, x) and z2(t, x) under t = 0,
respectively. We replace z1(t, x) by z̃1(t, x) +λ1(x) and z2(t, x) by z̃2(t, x) +λ2(x) in the domain
Ω.

Problem (3.1)�(3.3) is equivalent to a problem with unknown functions λ1(x), λ2(x):
∂z̃1

∂t
= A1(t, x)z̃1 + A1(t, x)λ1(x) +B1(t, x)z̃2 +B1(t, x)λ2(x) + F1(t, x)

∂z̃2

∂t
= A2(t, x)z̃2 + A2(t, x)λ2(x) +B2(t, x)z̃1 +B2(t, x)λ1(x) + F2(t, x)

, (3.4)

z̃1(0, x) = 0, z̃2(0, x) = 0, x ∈ [0, ω], (3.5)[
P1(x) + S1(x) +

∫ a

0

K1(τ, x)dτ

]
λ1(x) + S1(x)z̃1(a, x)+

+

∫ a

0

K1(τ, x)z̃1(τ, x)dτ = Φ1(x), x ∈ [0, ω], (3.6)[
P2(x) + S2(x) +

∫ b

0

K2(τ, x)dτ

]
λ2(x) + S2(x)z̃2(b, x)+

+

∫ b

0

K2(τ, x)z̃2(τ, x)dτ = Φ2(x), x ∈ [0, ω], (3.7)

The quadruple (λ∗1(x), λ∗2(x), z̃∗1(t, x), z̃∗2(t, x)), where λ∗1(x) ∈ C([0, ω], R), λ∗2(x) ∈ C([0, ω], R),
and z̃∗1(t, x) ∈ C(Ω, R), z̃∗2(t, x) ∈ C(Ω, R), is a solution to problem (3.4)�(3.7) if the functions
z̃∗1(t, x), z̃∗2(t, x) are continuously di�erentiable on Ω, satis�es the Cauchy problem (3.4), (3.5)
with λ1(x) = λ∗1(x), λ2(x) = λ∗2(x) for all (t, x) ∈ Ω and conditions (3.6), (3.7) for all x ∈ [0, ω].

Problems (3.1)�(3.3) and (3.4)�(3.7) are equivalent in the following sense. If a pair
of functions (z1(t, x), z2(t, x)) is a solution to problem (3.1)�(3.3), then the quadruple
(λ1(x), λ2(x), z̃1(t, x), z̃2(t, x)) with components λ1(x) = z1(0, x), λ2(x) = z2(0, x), and z̃1(t, x) =
z1(t, x) − z1(0, x), z̃2(t, x) = z2(t, x) − z2(0, x), and (t, x) ∈ Ω, is a solution to problem (3.4)�
(3.7). Conversely, if a quadruple (λ∗1(x), λ∗2(x), z̃∗1(t, x), z̃∗2(t, x)) is a solution to problem (3.4)�
(3.7), then the pair of functions (z∗1(t, x), z∗2(t, x)) de�ned by the equalities z∗1(t, x) =
λ∗1(x) + z̃∗1(t, x), z∗2(t, x) = λ∗2(x) + z̃∗2(t, x) for all (t, x) ∈ Ω is a solution to problem
(3.1)�(3.3).

In problem (3.4)�(3.7), we have the initial conditions z̃1(0, x) = 0, z̃2(0, x) = 0. Cauchy
problem (3.4), (3.5) is equivalent to the following family of systems of integral equations on [0, T ]
with λ1(x) and λ2(x)

z̃1(t, x) =

∫ t

0

A1(τ, x)z̃1(τ, x)dτ +

∫ t

0

B1(τ, x)z̃2(τ, x)dτ+

+

∫ t

0

A1(τ, x)dτλ1(x) +

∫ t

0

B1(τ, x)dτλ2(x) +

∫ t

0

F1(τ, x)dτ, t ∈ [0, T ], (3.8)
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z̃2(t, x) =

∫ t

0

A2(τ, x)z̃2(τ, x)dτ +

∫ t

0

B2(τ, x)z̃1(τ, x)dτ+

+

∫ t

0

A2(τ, x)dτλ2(x) +

∫ t

0

B2(τ, x)dτλ1(x) +

∫ t

0

F2(τ, x)dτ, t ∈ [0, T ]. (3.9)

From (3.8) we �nd z̃1(a, x), z̃1(τ, x) for all x ∈ [0, ω], and from (3.9) we �nd z̃2(b, x), z̃2(τ, x)
for all x ∈ [0, ω]. Then, substituting them in (3.6) and (3.7), we obtain the following system of
equations with respect to functional parameters λ1(x) and λ2(x):

Q(x)λ(x) = −G(x, z̃)−H(x), x ∈ [0, ω], (3.10)

where

λ(x) =

(
λ1(x)
λ2(x)

)
, Q(x) =

[
Q11(x) Q12(x)
Q21(x) Q22(x)

]
, z̃(t, x) =

(
z̃1(t, x)
z̃2(t, x)

)
,

G(x, z̃) =

(
G1(x, z̃)
G2(x, z̃)

)
, H(x) =

(
H1(x)
H2(x)

)
,

Q11(x) = P1(x) + S1(x)

(
1 +

∫ a

0

A1(τ, x)dτ

)
+

∫ a

0

K1(τ, x)

(
1 +

∫ τ

0

A1(τ1, x)dτ1

)
dτ ,

Q12(x) = S1(x)

∫ a

0

B1(τ, x)dτ +

∫ a

0

K1(τ, x)

∫ τ

0

B1(τ1, x)dτ1dτ ,

Q21(x) = S2(x)

∫ b

0

B2(τ, x)dτ +

∫ b

0

K2(τ, x)

∫ τ

0

B2(τ1, x)dτ1dτ ,

Q22(x) = P2(x) + S2(x)

(
1 +

∫ b

0

A2(τ, x)dτ

)
+

∫ b

0

K2(τ, x)

(
1 +

∫ τ

0

A2(τ1, x)dτ1

)
dτ ,

G1(x, z̃) = S1(x)

∫ a

0

[
A1(τ, x)z̃1(τ, x) +B1(τ, x)z̃2(τ, x)

]
dτ+

+

∫ a

0

K1(τ, x)

∫ τ

0

[
A1(τ1, x)z̃1(τ1, x) +B1(τ1, x)z̃2(τ1, x)

]
dτ1dτ,

G2(x, z̃) = S2(x)

∫ b

0

[
B2(τ, x)z̃1(τ, x) + A2(τ, x)z̃2(τ, x)

]
dτ+

+

∫ b

0

K2(τ, x)

∫ τ

0

[
B2(τ1, x)z̃1(τ1, x) + A2(τ1, x)z̃2(τ1, x)

]
dτ1dτ,

H1(x) = S1(x)

∫ a

0

F1(τ, x)dτ +

∫ a

0

K1(τ, x)

∫ τ

0

F1(τ1, x)dτ1dτ − Φ1(x),

H2(x) = S2(x)

∫ b

0

F2(τ, x)dτ +

∫ b

0

K2(τ, x)

∫ τ

0

F2(τ1, x)dτ1dτ − Φ2(x).

If we know z̃1(t, x) ∈ C(Ω, R) and z̃2(t, x) ∈ C(Ω, R), then from (3.10) we �nd λ(x) =
(λ1(x), λ2(x))′ ∈ C([0, ω], R2). Conversely, if we know λ(x) ∈ C([0, ω], R2), then from (3.8)
and (3.9) we can �nd z̃1(t, x) ∈ C(Ω, R) and z̃2(t, x) ∈ C(Ω, R). Since the z̃1(t, x), z̃2(t, x)
and λ1(x), λ2(x) are unknown, to �nd a solution to problem (3.4)�(3.7) we use the iterative
method. A quadruple (λ∗1(x), λ∗2(x), z̃∗1(t, x), z̃∗2(t, x)) we determine as the limit of the sequence

(λ
(m)
1 (x), λ

(m)
2 (x), z̃

(m)
1 (t, x), z̃

(m)
2 (t, x)), m = 0, 1, 2, ..., constructed by the following algorithm:

Step 0. We assume that the (2 × 2) matrix Q(x) is invertible for all x ∈ [0, ω]. The zero
approximations with respect to the functional parameter λ(0)(x) ∈ C([0, ω], R2) we de�ne from
system of linear equations (3.10) with z̃1(t, x) = 0, z̃2(t, x) = 0 for all (t, x) ∈ Ω. Further,

solving family of Cauchy problems (3.4), (3.5) for λ1(x) = λ
(0)
1 (x), λ2(x) = λ

(0)
2 (x) on Ω, we �nd

z̃
(0)
1 (t, x) ∈ C(Ω, R) and z̃

(0)
2 (t, x) ∈ C(Ω, R).
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Step 1. Replacing the functions z̃1(t, x) and z̃2(t, x) by z̃
(0)
1 (t, x) and z̃

(0)
2 (t, x) in system

(3.10), we determine λ(1)(x) ∈ C([0, ω], R2). From family of Cauchy problems (3.4), (3.5) for

λ1(x) = λ
(1)
1 (x) and λ2(x) = λ

(1)
2 (x) on Ω we �nd z̃

(1)
1 (t, x) ∈ C(Ω, R) and z̃

(1)
2 (t, x) ∈ C(Ω, R).

And so on.
Step m. Substituting z̃

(m−1)
1 (t, x) and z̃

(m−1)
2 (t, x) for z̃1(t, x) and z̃2(t, x) in system (3.10), we

determine λ(m)(x) ∈ C([0, ω], R2). From family of Cauchy problems (3.4), (3.5) for λ1(x) =

λ
(m)
1 (x) and λ2(x) = λ

(m)
2 (x) on Ω we �nd z̃

(m)
1 (t, x) ∈ C(Ω, R) and z̃

(m)
2 (t, x) ∈ C(Ω, R),

m = 1, 2, ... .
The method of parametrization divide the process of �nding unknown functions into two

parts: 1) from system of functional equations (3.10) we �nd the introducing parameters λ1(x)
and λ2(x). 2) from family of Cauchy problems for ordinary di�erential equations (3.4), (3.5) we
�nd the unknown functions z̃1(t, x) and z̃2(t, x) .

Let α(x) = max
(

max
t∈[0,T ]

|A1(t, x)|+ max
t∈[0,T ]

|B1(t, x)|, max
t∈[0,T ]

|A2(t, x)|+ max
t∈[0,T ]

|B2(t, x)|
)
.

Now we state the main theorem on the realization and convergence of the proposed algorithm.
This assertion also provides su�cient conditions for the unique solvability of problem (3.1)�(3.3).
Theorem 3.1. Suppose that the (2 × 2) matrix Q(x) is invertible for all x ∈ [0, ω] and the
following inequalities hold:

(a) ||Q−1(x)|| ≤ γ(x);

(b) q(x) = γ(x) max

(
{|S1(x)|+ a max

t∈[0,a]
|K1(t, x)|}

[
eα(x)a − 1− α(x)a

]
,

{|S2(x)|+ b max
t∈[0,b]

|K2(t, x)|}
[
eα(x)b − 1− α(x)b

])
≤ χ < 1,

where γ(x) is a positive continuous function in x ∈ [0, ω], and χ− const.
Then problem (3.1)�(3.3) has a unique solution (z∗1(t, x), z∗2(t, x)) ∈ C(Ω, R)×C(Ω, R), and

the following estimates hold

max
t∈[0,T ]

||z∗(t, x)|| = max
t∈[0,T ]

max
(
|z∗1(t, x)|, |z∗2(t, x)|

)
≤

≤ [k1(x) + k2(x)] max
(

max
t∈[0,T ]

|F1(t, x)|, max
t∈[0,T ]

|F2(t, x)|, |Φ1(x)|, |Φ2(x)|
)
, (3.11)

where
k1(x) = γ(x)

1−q(x)
max

([
|S1(x)|+ a max

t∈[0,a]
|K1(t, x)|

]
a,
[
|S2(x)|+ b max

t∈[0,b]
|K2(t, x)|

]
b
)
α(x) · k0(x)

+γ(x) max
(
a
{

1 + |S1(x)|+ max
t∈[0,a]

|K1(t, x)|a
}
, b
{

1 + |S2(x)|+ max
t∈[0,b]

|K2(t, x)|b
})
,

k2(x) = max
({

[eα(x)a − 1] γ(x)
1−q(x)

[
|S1(x)|+ max

t∈[0,a]
|K1(t, x)|a

]
α(x)a+ 1

}
,{

[eα(x)b − 1] γ(x)
1−q(x)

[
|S2(x)|+ max

t∈[0,b]
|K2(t, x)|b

]
α(x)b+ 1

})
k0(x),

k0(x) = max
(
eα(x)a − 1, eα2(x)b − 1

)
γ(x)

[
1+

+ max
(
|S1(x)|+ max

t∈[0,a]
|K1(t, x)|a, |S2(x)|+ max

t∈[0,a]
|K2(t, x)|b

)]
+ max

(
aeα(x)a, beα(x)b

)
.

This theorem is proved similarly to the proof of Theorem 2 in [9].

4 Unique solvability of problem (2.1)�(2.4). Main result

Consider problem (2.1)�(2.4) which is equivalent to (1.1)�(1.5).
Assume that the (2× 2) matrix Q(x) is invertible for all x ∈ [0, ω].
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If we know that z1(t, x) and z2(t, x) are a classical solution to problem (2.1)�(2.3), then from
integral relations (2.4) we �nd u(t, x) and v(t, x). Conversely, if we know u(t, x) and v(t, x),
then from nonlocal problem (2.1)�(2.3) we can �nd z1(t, x) and z2(t, x). Since the z1(t, x),
z2(t, x) and u(t, x), v(t, x) are unknown, to �nd a solution to problem (2.1)�(2.4) we use the
iterative method. A quadruple {z∗1(t, x), z∗2(t, x), u∗(t, x), v∗(t, x)}, we determine as the limit of
the sequence {z(k)

1 (t, x), z
(k)
2 (t, x), u(k)(t, x), v(k)(t, x)}, k = 0, 1, 2, ... constructed by the following

algorithm:
Step 0. 1) From boundary value problem with integral condition (2.1)�(2.3) for u(t, x) =

ϕ0(x), v(t, x) = ψ(t) on Ω we �nd z
(0)
1 (t, x) ∈ C(Ω, R) and z

(0)
2 (t, x) ∈ C(Ω, R). 2) From

integral relations (2.4) for z1(t, x) = z
(0)
1 (t, x), z2(t, x) = z

(0)
2 (t, x) we �nd u(0)(t, x) ∈ C(Ω, R),

v(0)(t, x) ∈ C(Ω, R).
Step 1. 1) From boundary value problem with integral condition (2.1)�(2.3) for u(t, x) =

u(0)(t, x), v(t, x) = v(0)(t, x) on Ω we �nd z
(1)
1 (t, x) ∈ C(Ω, R) and z

(1)
2 (t, x) ∈ C(Ω, R). 2) From

integral relations (2.4) for z1(t, x) = z
(1)
1 (t, x), z2(t, x) = z

(1)
2 (t, x), we �nd u(1)(t, x) ∈ C(Ω, R),

v(1)(t, x) ∈ C(Ω, R).And so on.
Step k. 1) From boundary value problem with integral condition (2.1)�(2.3) for u(t, x) =

u(k−1)(t, x), v(t, x) = v(k−1)(t, x) on Ω we �nd z
(k)
1 (t, x) ∈ C(Ω, R) and z

(k)
2 (t, x) ∈ C(Ω, R). 2)

From integral relations (2.4) for z1(t, x) = z
(k)
1 (t, x), z2(t, x) = z

(k)
2 (t, x), we �nd u(k)(t, x) ∈

C(Ω, R), v(k)(t, x) ∈ C(Ω, R), k = 1, 2, ... .
Let
K = max

x∈[0,ω]
[k1(x) + k2(x)], c1(x) = max

t∈[0,T ]
|C1(t, x)|, c2(x) = max

t∈[0,T ]
|C2(t, x)|,

d1(x) = max
t∈[0,T ]

|D1(t, x)|, d2(x) = max
t∈[0,T ]

|D2(t, x)|,

p(x) = |P ′2(x)|+ |S ′2(x)|+ b max
t∈[0,b]

∣∣∣∂K2(t, x)

∂x

∣∣∣.
The following statement provides conditions of the realization and convergence of the pro-

posed algorithm. This assertion also de�nes su�cient conditions for the unique solvability of
problem (2.1)�(2.4).
Theorem 4.1 Suppose that
i) the (2× 2) matrix Q(x) is invertible for all x ∈ [0, ω];
ii) the inequalities a) and b) of Theorem 3.1 hold;
iii) for some 0 < χ1 < 1 for all x ∈ [0, ω] the inequality q1(x) = K max

(
c1(x), d2(x)

)
T ≤ χ1

is valid.
Then problem (2.1)�(2.4) has a unique solution {z∗1(t, x), z∗2(t, x), u∗(t, x), v∗(t, x)}.

Proof. The proof will be carried out according to the above algorithm. Let conditions i)-ii) of
Theorem 4.1 hold. On kth step of the algorithm we will solve the following problems

∂z
(k)
1

∂t
= A1(t, x)z

(k)
1 +B1(t, x)z

(k)
2 + C1(t, x)u(k−1) +D1(t, x)v(k−1) + f1(t, x)

∂z
(k)
2

∂t
= A2(t, x)z

(k)
2 +B2(t, x)z

(k)
1 + C2(t, x)v(k−1) +D2(t, x)u(k−1) + f2(t, x)

, (4.1)

P1(x)z
(k)
1 (0, x) + S1(x)z

(k)
1 (a, x) +

∫ a

0

K1(τ, x)z
(k)
1 (τ, x)dτ = ϕ1(x), x ∈ [0, ω], (4.2)

P2(x)z
(k)
2 (0, x) + S2(x)z

(k)
2 (b, x) +

∫ b

0

K2(τ, x)z
(k)
2 (τ, x)dτ = ϕ′2(x)−

−P ′2(x)v(k−1)(0, x)− S ′2(x)v(k−1)(b, x)−
∫ b

0

∂K2(τ, x)

∂x
v(k−1)(τ, x)dτ, x ∈ [0, ω], (4.3)
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u(k)(t, x) = ϕ0(x) +

∫ t

0

z
(k)
1 (τ, x)dτ, v(k)(t, x) = ψ(t) +

∫ x

0

z
(k)
2 (t, ξ)dξ, (t, x) ∈ Ω. (4.4)

For the successive approximations z
(k)
1 (t, x), z

(k)
2 (t, x), u(k)(t, x), v(k)(t, x) we obtain the following

estimates

max
t∈[0,T ]

max
(
|z(k)

1 (t, x)|, |z(k)
2 (t, x)|

)
≤ K ·max

(
max(c1(x), d2(x)) max

t∈[0,T ]
|u(k−1)(t, x)|+

+ max(d1(x), c2(x)) max
t∈[0,T ]

|v(k−1)(t, x)|+ max
(

max
t∈[0,T ]

|f1(t, x)|, max
t∈[0,T ]

|f2(t, x)|
)
,

p(x) max
t∈[0,T ]

|v(k−1)(t, x)|+ max
(
|ϕ1(x)|, |ϕ′2(x)|

))
,

|u(k)(t, x)| ≤ |ϕ0(x)|+
∫ t

0

|z(k)
1 (τ, x)|dτ,

|v(k)(t, x)| ≤ |ψ(t)|+
∫ x

0

|z(k)
2 (t, ξ)|dξ.

Further, from (k+ 1)th step of the algorithm we �nd the successive approximations z
(k+1)
1 (t, x),

z
(k+1)
2 (t, x), u(k+1)(t, x), v(k+1)(t, x).

We construct the di�erences ∆z
(k+1)
1 (t, x) = z

(k+1)
1 (t, x)− z(k)

1 (t, x),

∆z
(k+1)
2 (t, x) = z

(k+1)
2 (t, x)− z(k)

2 (t, x), ∆u(k+1)(t, x) = u(k+1)(t, x)− u(k)(t, x), ∆v(k+1)(t, x) =
v(k+1)(t, x)− v(k)(t, x).

For these di�erences, analogously to the above, we obtain the following estimates

max
t∈[0,T ]

max
{
|∆z(k+1)

1 (t, x)|, |∆z(k+1)
2 (t, x)|

}
≤ K

(
max(c1(x), d2(x)) max

t∈[0,T ]
|∆u(k)(t, x)|+

+[max(d1(x), c2(x)) + p(x)] max
t∈[0,T ]

|∆v(k)(t, x)|
)
, (4.5)

|∆u(k+1)(t, x)| ≤
∫ t

0

|∆z(k+1)
1 (τ, x)|dτ, (4.6)

|∆v(k+1)(t, x)| ≤
∫ x

0

|∆z(k+1)
2 (t, ξ)|dξ. (4.7)

This implies the main inequality

max
{

max
t∈[0,T ]

|∆z(k+1)
1 (t, x)|, max

t∈[0,T ]
|∆z(k+1)

2 (t, x)|
}
≤

≤ q1(x)
{

max
t∈[0,T ]

|∆z(k)
1 (t, x)|, max

t∈[0,T ]
|∆z(k)

2 (t, x)|
}

+

+K[max(d1(x), c2(x)) + p(x)]

∫ x

0

{
max
t∈[0,T ]

|∆z(k+1)
1 (t, ξ)|, max

t∈[0,T ]
|∆z(k+1)

2 (t, ξ)|
}
dξ. (4.8)

From (4.8) and condition iii) of Theorem 2 it follows that the sequences {z(k)
1 (t, x)} and

{z(k)
2 (t, x)} converges to {z∗1(t, x)} and {z∗2(t, x)} as k →∞ for all (t, x) ∈ Ω.
Then from (4.6), (4.7) it follows that the sequences {u(k)(t, x)} and {v(k)(t, x)} are convergent

in the space C(Ω, R) as k → ∞. In this case, the limit functions u∗(t, x) and v∗(t, x) are
continuous on Ω.
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Passing to the limit in relations (4.1)�(4.4) as k → ∞ we obtain that the quadruple
{z∗1(t, x), z∗2(t, x), u∗(t, x), v∗(t, x) is a solution to problem (2.1)�(2.4).

Finally we show that the uniqueness of a solution to problem (2.1)�(2.4). Let the quadruples
{z∗1(t, x), z∗1(t, x), u∗(t, x), v∗(t, x)} and {z∗∗1 (t, x), z∗∗2 (t, x), u∗∗(t, x), v∗∗(t, x)} be solutions to
problem (2.1)�(2.4).

Using inequality (4.8) for the di�erences z∗1(t, x)− z∗∗1 (t, x), z∗2(t, x)− z∗∗2 (t, x), we obtain

max
{

max
t∈[0,T ]

|z∗1(t, x)− z∗∗1 (t, x)|, max
t∈[0,T ]

|z∗2(t, x)− z∗∗2 (t, x)|
}
≤

≤ 1

1− q1(x)
K[max(d1(x), c2(x)) + p(x)]×

×
∫ x

0

max
{

max
t∈[0,T ]

|z∗1(t, ξ)− z∗∗1 (t, ξ)|, max
t∈[0,T ]

|z∗2(t, ξ)− z∗∗2 (t, ξ|
}
dξ. (4.9)

By applying the Gronwall - Bellman inequality in integral equations (4.9), we get

max
{

max
t∈[0,T ]

|z∗1(t, x)− z∗∗1 (t, x)|, max
t∈[0,T ]

|z∗2(t, x)− z∗∗2 (t, x)|
}
≤

≤ exp
{ 1

1− q1(x)
K[max(d1(x), c2(x)) + p(x)]x

}
· 0. (4.10)

From (4.10) it follows z∗1(t, x) ≡ z∗∗1 (t, x) and z∗2(t, x) ≡ z∗∗2 (t, x) for all (t, x) ∈ Ω. Then from

|u∗(t, x)− u∗∗(t, x)| ≤
∫ t

0

|z∗1(τ, x)− z∗∗1 (τ, x)|dτ,

|v∗(t, x)− v∗∗(t, x)| ≤
∫ x

0

|z∗2(t, ξ)− z∗∗2 (t, ξ)|dξ,

we have u∗(t, x) ≡ u∗∗(t, x), v∗(t, x) ≡ v∗∗(t, x). This contradicts with our assumption that
problem (2.1)�(2.4) has two solution, i.e. the quadruples {z∗1(t, x), z∗2(t, x), u∗(t, x), v∗(t, x)}
and {z∗∗1 (t, x), z∗∗2 (t, x), u∗∗(t, x), v∗∗(t, x)}. Therefore, solution to problem (2.1)�(2.4) is unique.
Theorem 4.1 is proved.

Thus, from the equivalence of problems (1.1)�(1.5) and (2.1)�(2.4) we obtain
Theorem 4.2. Suppose that the conditions i)- iii) of Theorem 4.1 are valid.
Then problem (1.1)�(1.5) has a unique solution.
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