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1 Introduction

Let I := (c, d) ⊂ R, p ∈ [1,∞], p′ := p
p−1

, L1 be the Lebesgue measure on I, M(I) be the vector
space of all L1-measurable functions f : I → [−∞,∞], and let Lp(I) be the Lebesgue space. Also
we put

Lploc(I) :=
{
f ∈M(I) : ‖χ(a,b)f‖Lp(I) <∞, ∀a, b ∈ I

}
,

Lploc([c, d)) :=
{
f ∈M(I) : ‖χ(c,x)f‖Lp(I) <∞, ∀x ∈ I

}
,

Lploc((c, d]) :=
{
f ∈M(I) : ‖χ(x,d)f‖Lp(I) <∞, ∀x ∈ I

}
.

Let
w ∈M(I), w > 0 L1-almost everywhere on I, w ∈ Lploc((c, d]) (1.1)

and (if the measure in the integral is omitted, then the integral is taken with respect to the measure
L1)

ρ(f) :=

{(∫
I

∣∣w(x)
∫ x
c
f
∣∣p dx) 1

p , p ∈ [1,∞),

L1-ess supx∈I w(x)
∣∣∫ x
c
f
∣∣ , p =∞;

Csp,w(I) :=
{
f ∈ L1

loc([c, d))
∣∣∣ ‖f‖Csp,w(I) <∞

}
, ‖f‖Csp,w(I) := ρ(|f |),

Chp,w(I) :=
{
f ∈ L1

loc([c, d))
∣∣∣ ‖f‖Chp,w(I) <∞

}
, ‖f‖Chp,w(I) := ρ(f).

It is clear that Csp,w(I) is embedded in Chp,w(I). Since w satisfies condition (1.1) then f ∈ M(I)
with compact support belongs to the space Csp,w(I). The space (Csp,w(I), ‖ · ‖Csp,w(I)) is called
weighted Cesàro space, it has been actively studied (see [6, 3] and the survey [1]). We call the space
(Chp,w(I), ‖ · ‖Chp,w(I)) weighted altered Cesàro space. This space has been studied in the works
[9, 10, 14].
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Let (X, ‖ · ‖) be the normed space of elements of M(I). We define the “strong” associated space
(Köthe dual space) of X by

X ′s := (X, ‖ · ‖)′s :=

{
g ∈M(I)

∣∣∣ ‖g‖X′s := sup
h∈X\{0}

∫
I
|hg|
‖h‖

<∞

}
and the “weak” associated space of X by

X ′w :=(X, ‖ · ‖)′w :=

{
g ∈M(I)

∣∣∣ fg ∈ L1(I)∀f ∈ X & ‖g‖X′w := sup
h∈X\{0}

|
∫
I
hg|
‖h‖

<∞

}
,

which is isomorphic to the subspace of the set X∗ of all continuous functionals of the form f 7→
∫
I
fg,

f ∈ X. It is clear that X ′s ⊂ X ′w.
The classic Cesàro space Csp,w0(I0) (where I0 := (0,∞) and w0(x) := 1

x
, x ∈ I0) has been studied

since 1970s. For p ∈ (1,∞) both spaces Csp,w0(I0) and Chp,w0(I0) appeared [11, 12] when solving the
problem of describing the associated spaces with order one weighted Sobolev space on the real line,
defined as

W 1
p (I0) := {f ∈ L1

loc(I0) : Df ∈ L1
loc(I0) & ‖f‖W 1

p (I0) <∞}, (1.2)

where ‖f‖W 1
p (I0) := ‖f‖Lp(I0) + ‖ 1

w0
Df‖Lp(I0). As proved in [9, Theorem 3.3]

(W 1
p (I0))′s = Csp′,w0(I0),

(W 1
p (I0))′w = (Csp′,w0(I0), ‖ · ‖Chp′,w0

(I0)),

(X, ‖ · ‖W 1
p (I0))

′
w = Chp′,w0(I0),

where
X := {f ∈ AC(I0) | ∃f(0+), ∃b ∈ I0 : χ(b,∞)f = 0}.

Note that X differs from
◦◦
W 1
p (I0) := {f ∈ AC(I0) | supp f is a compact in I0}, (1.3)

which plays an important role in the results of [11, 12]. The example in Section 2 shows that

(
◦◦
W 1
p (I0), ‖ · ‖W 1

p (I0))
′
w 6= Chp′,w0(I0). The key difference is the fact that the space (

◦◦
W 1
p (I0), ‖ · ‖W 1

p (I0))
′
w

contains functions that are not integrable at the left end of the segment I0.
From the definition of associated spaces it follows that (Csp,w(I))′s = (Csp,w(I))′w and

‖g‖(Csp,w(I))′s = ‖g‖(Csp,w(I))′w for g ∈ (Csp,w(I))′s and p ∈ [1,∞]. For p ∈ [1,∞) the space Csp,w(I)
is an order ideal and it has an absolutely continuous norm. Then for Λ ∈ (Csp,w(I))∗ there exists
g ∈ (Csp,w(I))′s such that ‖Λ‖(Csp,w(I))∗ = ‖g‖(Csp,w(I))′s and Λf =

∫
I
fg, f ∈ Csp,w(I) (see [2, Chapter

1, Theorem 4.1]).
The problem of describing the associated spaces of Csp,w(I) was solved in [3] with the help of an

essential
∫ d
x
wp-concave majorant (see [3, Definition 2.11]), and in [15] with the help of a monotone

majorant.
For p ∈ [1,∞) characterizations of dual spaces of weighted altered Cesàro space are given in [10].

The key step of the proof was the approximation of an element of the space Chp,w(I) by elements
with compact support. For p = ∞ there is no such approximation but it is possible (see Section 3)
to describe the associated spaces of Ch∞,w(I) with a weight satisfying the conditions

w(x) =

[∫ x

c

v

]−1

∈ (0,∞), x ∈ I, v ∈M(I), v ∈ L1
loc([c, d)), lim

b→d−

∫ b

c

v =∞. (1.4)
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Throughout this article, A . B and B & A mean that A ≤ cB, where the constant c depends
only on p and may be different in different places. If both A . B and A & B hold, then we write
A ≈ B. N is the set of natural numbers, R is the set of all real numbers, Df is the weak derivative of
f ∈M(I). The space of all locally absolutely continuous functions f : I → R is denoted by ACloc(I),
AC(I) is the space of all absolutely continuous functions. The symbol BPV (I) denotes the space of
all functions f : I → R that have bounded pointwise variation (see [5, §2.1]). For any Borel measure
λ defined on Borel subsets of I, the symbol ‖λ‖ means |λ|(I), where |λ| is the total variation of λ. If
f ∈ BPV (I), then λf denotes the unique real Borel measure such that λf ((a, b]) = f(b+) − f(a+)
for all a, b ∈ I, with a ≤ b (see [5, Theorem 5.13]). C1

c (I) is the space of all real-valued continuously
differentiable functions with compact support in I; C0(I) is the space of all real-valued continuous
functions on I that vanish at infinity (see [13, 3.16]).

2 Connection with a Sobolev space

Let W 1
p (I0) be as defined in (1.2) and

◦◦
W 1
p (I0) be as defined in (1.3). We start with an example

showing that (
◦◦
W 1
p (I0), ‖ · ‖W 1

p (I0))
′
w 6= Chp′,w0(I0).

Example. According to [12, Remark 5.1] the following relation holds

g ∈ (
◦◦
W 1
p (I0), ‖ · ‖W 1

p (I0))
′
w ⇔ (g ∈ L1

loc(I0) & [G(g) + G(g)] <∞),

where for g ∈ L1
loc(I0)

G(g) ≈

∫ ∞
0

1

tp′

∣∣∣∣∣
∫ t

t
2

g

∣∣∣∣∣
p′

dt

 1
p′

,

G(g) ≈

∫ ∞
0

1

tp′(2−p′)

∣∣∣∣∣
∫ 2t

t

y−p
′

[∫ t

y
2

g

]
dy

∣∣∣∣∣
p′

dt

 1
p′

=

∫ ∞
0

1

tp′(2−p′)

∣∣∣∣∣
∫ t

t
2

g(x)

[∫ 2x

t

y−p
′
dy

]
dx

∣∣∣∣∣
p′

dt

 1
p′

.

Further,

G(g) ≈

∫ ∞
0

1

tp′(2−p′)

∣∣∣∣∣
∫ t

t
2

g(x)

[
t1−p

′ − (2x)1−p′

p′ − 1

]
dx

∣∣∣∣∣
p′

dt

 1
p′

=
1

p′ − 1

∫ ∞
0

1

tp′

∣∣∣∣∣
∫ t

t
2

g(x)

[
1−

(
2x

t

)1−p′
]
dx

∣∣∣∣∣
p′

dt

 1
p′

=
1

p′ − 1

∫ ∞
0

1

tp′

∣∣∣∣∣
∫ t

t
2

g −
(

2

t

)1−p′ ∫ t

t
2

g(x)x1−p′ dx

∣∣∣∣∣
p′

dt

 1
p′

.

Hence, for g ∈ L1
loc(I0) the inequality [G(g) + G(g)] <∞ is equivalent to∫ ∞
0

1

tp′

∣∣∣∣∣
∫ t

t
2

g

∣∣∣∣∣
p′

dt

 1
p′

+

∫ ∞
0

1

tp′(2−p′)

∣∣∣∣∣
∫ t

t
2

g(x)x1−p′ dx

∣∣∣∣∣
p′

dt

 1
p′

<∞.
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Now let p = p′ = 2, g(x) := 1
x

sin 1
x
χ(0,1](x), x ∈ I0. Then∫ 1

0

|g(x)| dx =

∫ 1

0

| sin 1
x
|

x
dx =

∫ ∞
1

| sin y|
y

dy =∞,

∫ ∞
1

∣∣∣∣∣
∫ t

t
2

g(x)

x
dx

∣∣∣∣∣
2

dt =

∫ 2

1

∣∣∣∣∣
∫ 1

t
2

sin 1
x

x2
dx

∣∣∣∣∣
2

dt ≤ 4,

∫ 1

0

∣∣∣∣∣
∫ t

t
2

g(x)

x
dx

∣∣∣∣∣
2

dt =

∫ 1

0

∣∣∣∣∣
∫ t

t
2

sin 1
x

x2
dx

∣∣∣∣∣
2

dt =

∫ 1

0

∣∣∣∣∣
∫ 2

t

1
t

sin y dy

∣∣∣∣∣
2

dt

=

∫ ∞
1

1

x2

∣∣∣∣∫ 2x

x

sin y dy

∣∣∣∣2 dx <∞,
∫ ∞

1

1

t2

∣∣∣∣∣
∫ t

t
2

g

∣∣∣∣∣
2

dt =

∫ 2

1

1

t2

∣∣∣∣∣
∫ 1

t
2

sin 1
x

x
dx

∣∣∣∣∣
2

dt ≤ 1.

Moreover, from ∣∣∣∣∫ 2y

y

sin t

t
dt

∣∣∣∣ =

∣∣∣∣∫ 2y

y

d cos t

t

∣∣∣∣ =

∣∣∣∣cos t

t

∣∣∣2y
y

+

∫ 2y

y

cos t

t2
dt

∣∣∣∣ ≤ 5

2y
,

we have the estimates∫ 1

0

1

t2

∣∣∣∣∣
∫ t

t
2

g

∣∣∣∣∣
2

dt =

∫ 1

0

1

t2

∣∣∣∣∣
∫ t

t
2

sin 1
x

x
dx

∣∣∣∣∣
2

dt =

∫ 1

0

1

t2

∣∣∣∣∣
∫ 2

t

1
t

sin y

y
dy

∣∣∣∣∣
2

dt

=

∫ ∞
1

∣∣∣∣∫ 2x

x

sin y

y
dy

∣∣∣∣2 dx ≤ 25

4

∫ ∞
1

dy

y2
<∞.

Therefore, g ∈ L1
loc(I0) \ L1

loc([0,∞)) and [G(g) + G(g)] <∞, that is

g ∈ (
◦◦
W 1

2 (I0), ‖ · ‖W 1
2 (I0))

′
w \ Ch2,w0(I0).

Now we show that in the case of a decreasing weight w satisfying condition (1.4) the spaces
Cs∞,w(I) and Ch∞,w(I) are associated spaces of the space W 1

1 (I) defined in formula (2.1). In par-
ticular, the theorem contains a criterion for the embedding of W 1

1 (I) into the Lebesgue space L1
g(I)

with arbitrary weight g and thereby complements the results obtained in [4], [7, Chapter III], [8].

Theorem 2.1. Let w satisfy condition (1.4), v > 0 L1-almost everywhere on I,

X := {f ∈ AC(I), | ∃f(c+), ∃b ∈ I : χ(b,d)f = 0}

and
W 1

1 (I) := {f ∈ L1
loc(I) : Df ∈ L1

loc(I) & ‖f‖W 1
1 (I) <∞}, (2.1)

where ‖f‖W 1
1 (I) := ‖vf‖L1(I) + ‖ 1

w
Df‖L1(I). Then

(W 1
1 (I))′s = Cs∞,w(I), (2.2)

(W 1
1 (I))′w = (Cs∞,w(I), ‖ · ‖Ch∞,w(I)), (2.3)

(X, ‖ · ‖W 1
1 (I))

′
w = Ch∞,w(I). (2.4)
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Proof. We fix an arbitrary element f ∈ W 1
1 (I). Then there exists an ACloc(I) representative f̃ of f .

For any x, y ∈ I such that x > y we have

|f̃(x)− f̃(y)| ≤
∫ x

y

|Df | ≤ ‖χ(y,d)w‖L∞(I)‖χ(y,d)
1
w
Df‖L1(I).

Hence, there exists the limit f̃(d−). Since ‖vf‖L1(I) < ∞ and v 6∈ L1
loc((c, d]) then f̃(d−) = 0. In

addition, w ∈ L∞loc((c, d]) implies Df ∈ L1
loc((c, d]). Consequently, f(x) = −

∫ d
x
Df for L1-almost all

x ∈ I.
Further, for an arbitrary h ∈ L1(I) since w ∈ L∞loc((c, d]) then wh ∈ L1

loc((c, d]), and for fh(y) :=∫ d
y
wh, y ∈ I, we have

‖vfh‖L1(I) =

∫
I

∣∣∣∣v(y)

∫ d

y

wh

∣∣∣∣ dy ≤ ‖h‖L1(I), ‖ 1
w
Dfh‖L1(I) = ‖h‖L1(I),

that is fh ∈ W 1
1 (I) and ‖fh‖W 1

1 (I) ≤ 2‖h‖L1(I).
If g ∈ Cs∞,w(I) then for any f ∈ W 1

1 (I) \ {0}∫
I
|fg|

‖f‖W 1
1 (I)

≤
∫
I
|(Df)(x)|

(∫ x
c
|g|
)
dx

‖ 1
w
Df‖L1(I)

≤ ‖g‖Cs∞,w(I), (2.5)

that is g ∈ (W 1
1 (I))′s and ‖g‖(W 1

1 (I))′s
≤ ‖g‖Cs∞,w(I).

Now let g ∈ (W 1
1 (I))′s. Since (see [2, Lemma 2.8]) for g ∈ M(I) the equalities ‖g‖(L1(I))′s =

‖g‖(L1(I))′w = ‖g‖L∞(I) hold, we get the estimate

‖g‖(W 1
1 (I))′s

≥ sup
h∈L1(I)\{0}

∫
I
|f|h|g|

‖f|h|‖W 1
1 (I)

≥ sup
h∈L1(I)\{0}

∫
I
|g(y)|

(∫ d
y
w|h|

)
dy

2‖h‖L1(I)

= sup
h∈L1(I)\{0}

∫
I
|h(x)|w(x)

(∫ x
c
|g|
)
dx

2‖h‖L1(I)

=
1

2
‖g‖Cs∞,w(I), (2.6)

and (2.2) is proved.
By [11, Theorem 2.5] the equalities (W 1

1 (I))′w = (W 1
1 (I))′s = Cs∞,w(I) hold. Besides that, for any

g ∈ Cs∞,w(I), f ∈ W 1
1 (I) we have∫

I

fg =

∫
I

g(x)

(∫ d

x

Df

)
dx =

∫
I

(Df)(y)

(∫ y

c

g

)
dy. (2.7)

Hence, similarly to (2.5) and (2.6) we get ‖g‖(W 1
1 (I))′w

≈ ‖g‖Ch∞,w(I), and (2.3) is proved.
Further, for any a ∈ I there exists a function f ∈ X such that χ(c,a)f = χ(c,a), and this implies

(X, ‖ · ‖W 1
1 (I))

′
w ⊂ L1

loc([c, d)). Therefore, for any a ∈ I, f ∈ X, g ∈ L1
loc([c, d)), taking into account

the decrease of the function w we have∣∣∣∣∫ d

a

fg

∣∣∣∣ =

∣∣∣∣∫ d

a

g(x)

(∫ d

x

Df

)
dx

∣∣∣∣ =

∣∣∣∣∫ d

a

(Df)(y)

(∫ y

a

g

)
dy

∣∣∣∣
≤ ‖f‖W 1

1 (I) sup
y∈[a,d)

∣∣∣∣w(y)

[∫ y

c

g −
∫ a

c

g

]∣∣∣∣ ≤ 2‖g‖Ch∞,w(I)‖f‖W 1
1 (I).

Passing to the limit as a→ c+, we obtain ‖g‖(X,‖·‖
W1

1 (I)
)′w ≤ 2‖g‖Ch∞,w(I).
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If g ∈ (X, ‖ · ‖W 1
1 (I))

′
w and h ∈ L1(I) with supph ⊂ (c, b] for some b ∈ I, equalities (2.7) hold with

f := fh. Therefore,

‖g‖(X,‖·‖
W1

1 (I)
)′w ≥ sup

b∈I
sup

h∈L1(I)\{0},supph⊂(c,b]

∣∣∣∫ bc g(y)
(∫ b

y
wh
)
dy
∣∣∣

2‖h‖L1(I)

≥ sup
b∈I

sup
h∈L1(I)\{0},supph⊂(c,b]

∣∣∣∫ bc h(x)w(x)
(∫ x

c
g
)
dx
∣∣∣

2‖h‖L1(I)

=
1

2
sup
b∈I

sup
x∈(c,b]

∣∣∣∣w(x)

∫ x

c

g

∣∣∣∣ =
1

2
‖g‖Ch∞,w(I),

and (2.4) follows.

3 Associated spaces of Ch∞,w(I)

As in the case p <∞ the “strong” associated space of Ch∞,w(I) is the null space. This follows from
Lemma 3.1, the proof of which is similar to the proof of [10, Lemma 2.2].

Lemma 3.1. Let w satisfy condition (1.1), [a, b] ⊂ I and h ∈ L1([a, b]). For any ε > 0 there exists
f ∈M(I) such that supp f ⊂ [a, b], |f | = |h| on (a, b) and ‖f‖Ch∞,w(I) < ε.

The next two lemmas contain the key constructions for obtaining a criterion for an element to
belong to the “weak” associated space of Ch∞,w(I).

Lemma 3.2. Let w satisfy condition (1.4).
1. If g ∈ (Ch∞,w(I))′w then vg ∈ L1(I). If g ∈ (Cs∞,w(I), ‖ · ‖Ch∞,w(I))

′
w and v > 0 L1-almost

everywhere on I then
‖vg‖L1(I) ≤ ‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))

′
w
. (3.1)

2. Let (a) g ∈ (Ch∞,w(I))′w and Ag := ‖g‖(Ch∞,w(I))′w , or (b) v > 0 L1-almost everywhere on
I, g ∈ (Cs∞,w(I), ‖ · ‖Ch∞,w(I))

′
w and Ag := ‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))

′
w
. Then there exists a BPV (I)

representative g̃ of g
w
and the estimate

‖λg̃‖ ≤ ‖vg‖L1(I) + Ag (3.2)

holds.

Proof. 1. Since v ∈ Ch∞,w(I) then vg ∈ L1(I) for g ∈ (Ch∞,w(I))′w. Now let v > 0 L1-almost
everywhere on I. Then for any f ∈M(I)

‖f‖Cs∞,w(I) ≤ ‖fv‖L∞(I),

and for g ∈ (Cs∞,w(I), ‖ · ‖Ch∞,w(I))
′
w the relations

‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))
′
w
≥ sup

f : f
v
∈L∞(I)\{0}

∣∣∫
I
f
v
vg
∣∣

‖f
v
‖L∞(I)

= sup
h∈L∞(I)\{0}

∣∣∫
I
hvg
∣∣

‖h‖L∞(I)

= ‖vg‖L1(I)

hold.



On the associated spaces 61

2. We fix an arbitrary function φ ∈ C1
c (I) and put f := D( 1

w
φ) = vφ + 1

w
Dφ. Then f ∈ L1(I)

and ‖f‖Ch∞,w(I) = maxx∈I |φ(x)|. If v > 0 L1-almost everywhere on I then f ∈ Cs∞,w(I). From
vg ∈ L1(I) we have

∫
I
|φvg| <∞. Hence,

∫
I
| 1
w
gDφ| <∞ and

|
∫
I

1
w
gDφ|

max
x∈I
|φ(x)|

≤
|
∫
I
φvg|

max
x∈I
|φ(x)|

+
|
∫
I
fg|

‖f‖Ch∞,w(I)

≤ ‖vg‖L1(I) + Ag.

For φ ∈ C1
c (I) we put Λφ :=

∫
I

1
w
gDφ. By the Hahn – Banach theorem there exists an extension

Λ̃ ∈ (C0(I))∗ of the functional Λ for which the estimate

‖Λ̃‖(C0(I))∗ ≤ ‖vg‖L1(I) + Ag

holds.
By the Riesz theorem [13, 6.19] on the representation of a linear continuous functional on C0(I)

there exists a unique regular real Borel measure λ such that ‖λ‖ = ‖Λ̃‖(C0(I))∗ and Λ̃ϕ =
∫
I
ϕdλ for

any ϕ ∈ C0(I).
We define hg(x) := λ(I ∩ (−∞, x]), x ∈ I. Then hg ∈ BPV (I) and applying [5, Corollary 5.41],

we have ∫
I

1

w
gDφ = Λ̃φ =

∫
I

φ dλ = −
∫
I

hgDφ

for any φ ∈ C1
c (I). Hence, 1

w
g + hg L1-almost everywhere on I coincides with a constant function.

Therefore, there exists a BPV (I) representative g̃ of g
w
, and λg̃ = λhg = λ are valid (see [5, Remark

5.14]).

Lemma 3.3. Let w satisfy condition (1.4), f ∈ Ch∞,w(I), g ∈ L∞loc(I), vg ∈ L1(I),
∫
I
|fg| < ∞, g

w

has an BPV (I) representative g̃. Then∣∣∣∣∫
I

fg

∣∣∣∣ ≤ 2
(
‖vg‖L1(I) + ‖λg̃‖

)
‖f‖Ch∞,w(I). (3.3)

Proof. We fix γ ∈ (0, 1). For n ∈ N we define

bn := sup
{
x ∈ I :

1

w(x)
≤ n

}
, an := inf

{
x ∈ I :

1

w(x)
≥ 1

n

}
.

Since 1
w
is a continuous function, limx→d−

1
w(x)

=∞ and limx→c+
1

w(x)
= 0, then 1

w(bn)
= n, 1

w(an)
= 1

n
.

Moreover, since {x ∈ I : 1
w(x)
≤ n} ⊂ {x ∈ I : 1

w(x)
≤ n + 1}, then bn ≤ bn+1. If b := limn→∞ bn < d

then v ∈ L1
loc([c, d)) implies ∞ = limn→∞

1
w(bn)

= 1
w(b)

< ∞ and we get a contradiction. Hence,
limn→∞ bn = d. Analogously, an ↓ c as n→∞.

Let n0 ∈ N be such that an0 < bn0 . For n ≥ n0 we define αn ∈ [an, bn] such that 1
w(αn)

=

minx∈[an,bn]
1

w(x)
. Then 1

w(αn)
> 0 and αn < bn. We claim that limn→∞ αn = c. We fix an arbitrary

a > c. Since an ↓ c as n→∞ there exists n1 > n0 such that an1 < a. Let n2 > n1 and 1
n2
< 1

w(αn1 )
.

Then for n > n2 we have αn ∈ [an, an1 ] because of 1
w(x)
≥ n1 >

1
w(an1 )

for x ≥ bn1 . Hence, αn < a.

Since
∫ bn
αn
|f | < ∞ then by [13, 3.14] for n ≥ n0 there exists a function f̄n ∈ Cc((αn, bn)) such

that
∫ bn
αn
|f − f̄n| ≤ 1

w(αn)n
(1 + ‖gχ[αn,bn]‖L∞(I))

−1. Now we choose βn ∈ (bn, d), θn ∈ {−1, 1} so that

the equality θn
∫ βn
bn
wγv +

∫ bn
αn
f̄n = 0 holds. For

fn := f̄nχ[αn,bn] + θnw
γvχ[bn,βn], n ≥ n0
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we have ∫ x

c

fn = 0, x ∈ (c, αn] ∪ [βn, d),

sup
x∈(αn,bn]

w(x)

∣∣∣∣∫ x

c

fn

∣∣∣∣ = sup
x∈(αn,bn]

w(x)

∣∣∣∣∫ x

αn

(f̄n − f) +

∫ x

c

f −
∫ αn

c

f

∣∣∣∣
≤ 1

n
+ 2 sup

x∈[αn,bn]

w(x)

∣∣∣∣∫ x

c

f

∣∣∣∣ ≤ 2‖f‖Ch∞,w(I) +
1

n

and

sup
x∈(bn,βn)

w(x)

∣∣∣∣∫ x

c

fn

∣∣∣∣ ≤ sup
x∈(bn,βn)

w(x)

[∣∣∣∣∫ bn

αn

(f̄n − f) +

∫ bn

c

f −
∫ αn

c

f

∣∣∣∣+

∫ x

bn

wγv

]
≤ 2‖f‖Ch∞,w(I) +

1

n
+ sup

x∈(bn,βn)

w(x)[w(x)γ−1 − w(bn)γ−1]

(1− γ)

≤ 2‖f‖Ch∞,w(I) +
1

n
+

1

(1− γ)nγ
.

Moreover,∣∣∣∣∫
I

fg −
∫
I

fng

∣∣∣∣ ≤ ∫ αn

c

|fg|+ ‖gχ[αn,bn]‖L∞(I)

∫ bn

αn

|f − f̄n|+
∫ ∞
bn

|fg|+
∣∣∣∣∫ ∞
βn

wγvg

∣∣∣∣
≤
∫ αn

c

|fg|+ 1

n2
+

∫ ∞
bn

|fg|+ 1

nγ
‖vg‖L1(I).

Thus, limn→∞
∫
I
fng =

∫
I
fg.

Now we put Fn(x) := w(x)
∫ x
c
fn, x ∈ I. Then Fn ∈ ACloc(I), suppFn is a compact in I and

fn = vFn + 1
w
DFn L1-almost everywhere on I. Using [5, Corollary 5.40], we get∫

I

fng =

∫
I

vgFn +

∫
I

1

w
gDFn =

∫
I

vgFn −
∫
I

Fn dλg̃.

Consequently, ∣∣∣∣∫
I

fng

∣∣∣∣ ≤ (‖vg‖L1(I) + ‖λg̃‖
)

sup
x∈I

w(x)

∣∣∣∣∫ x

c

fn

∣∣∣∣
and (3.3) follows by passing to the limit as n→∞.

Now we can formulate the criterion of an element g ∈M(I) belonging to the space (Ch∞,w(I))′w
and get a two-sided estimate on the norm of the element of the “weak” space in case v > 0 L1-almost
everywhere on I.

Theorem 3.1. Let w satisfy condition (1.4), g ∈M(I). The following statements are equivalent:
(i) g ∈ (Ch∞,w(I))′w;
(ii) vg ∈ L1(I), g ∈ L∞(I), and χ(b,d)g = 0 for some b ∈ I, g

w
has an BPV (I) representative.

Moreover, if v > 0 L1-almost everywhere on I, then

‖g‖(Ch∞,w(I))′w ≈
(
‖vg‖L1(I) + ‖λg̃‖

)
,

where g̃ is an BPV (I) representative of g
w
.
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Proof. (ii)⇒ (i). For f ∈ Ch∞,w(I) we have f ∈ L1
loc([c, d)) and therefore∫

I

|fg| ≤ ‖g‖L∞(I)

∫ b

c

|f | <∞.

Using Lemma 3.3 for g̃ ∈ g
w
∩BPV (I) we get the estimate

‖g‖(Ch∞,w(I))′w ≤ 2
(
‖vg‖L1(I) + ‖λg̃‖

)
<∞.

(i) ⇒ (ii). We denote E := {x ∈ I : g(x) 6= 0}. Suppose that L1((t, d) ∩ E) > 0 for any
t ∈ I. Then there exists {[ak, bk]}∞1 such that bk < ak+1 and

∫ bk
ak
|g| > 0. We choose θk ∈ (0,∞) so

that the inequality θk
∫ bk
ak
|g| ≥ 1 holds. By Lemma 3.1 there exists fk ∈ M(I) with the properties:

‖fk‖Ch∞,w(I) < 2−k, supp fk ⊂ [ak, bk] and |fk| = θk on (ak, bk). Then for the function f :=
∑∞

k=1 fk
we have ‖f‖Ch∞,w(I) ≤ 1 and ∫

I

|fg| ≥
∞∑
k=1

θk

∫ bk

ak

|g| ≥
∞∑
k=1

1 =∞.

This contradicts g ∈ (Ch∞,w(I))′w. Thus, there exists point b ∈ I such that gχ(b,d) = 0.
Now we assume that g 6∈ L∞(I). Then there exists h ∈ L1((c, b)) such that

∫ b
c
|hg| = ∞. Let

a1 := b and ak ↓ c as k → ∞. By Lemma 3.1 there exists fk ∈ M(I) with properties: supp fk ⊂
[ak+1, ak], ‖fk‖Ch∞,w(I) < 2−k and |fk| = |h| on (ak+1, ak). Then for the function f :=

∑∞
k=1 fk we

have ‖f‖Ch∞,w(I) ≤ 1 and ∫
I

|fg| ≥
∫ b

c

|hg| =∞.

This contradicts the relation g ∈ (Ch∞,w(I))′w, that is g ∈ L∞(I).
By Lemma 3.2 we have vg ∈ L1(I), g

w
∩ BPV (I) 6= ∅. If v > 0 L1-almost everywhere on I

the statement 1 of Lemma 3.2 implies the estimate 3‖g‖(Ch∞,w(I))′w ≥
(
‖vg‖L1(I) + ‖λg̃‖

)
for g̃ ∈

g
w
∩BPV (I).

Using the results for the weighted Cesàro space, we can also characterize the space (Cs∞,w(I), ‖ ·
‖Ch∞,w(I))

′
w in the case of v > 0 L1-almost everywhere on I.

Theorem 3.2. Let w satisfy condition (1.4), v > 0 L1-almost everywhere on I and g ∈M(I). The
following statements are equivalent:

(i) g ∈ (Cs∞,w(I), ‖ · ‖Ch∞,w(I))
′
w;

(ii) vg ∈ L1(I), g
w
has an BPV (I) representative and

∫
I
v(t)‖g‖L∞([t,d)) dt <∞.

Moreover, ‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))
′
w
≈
(
‖vg‖L1(I) + ‖λg̃‖

)
, where g̃ is an BPV (I) representative of

g
w
.

Proof. First,
∫
I
v(t)‖g‖L∞([t,d)) dt < ∞ is equivalent to g ∈ (Cs∞,w(I))′w by [1, Remark 4.3], [15,

Theorem 4].
(ii)⇒ (i). Since

∫
I
v(t)‖g‖L∞([t,d)) dt <∞ then g ∈ L∞loc(I). Moreover, for f ∈ Cs∞,w(I) we have∫

I
|fg| <∞, and the estimate

‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))
′
w
≤ 2

(
‖vg‖L1(I) + ‖λg̃‖

)
<∞

follows from Lemma 3.3.
(i) ⇒ (ii). By Lemma 3.2 we have vg ∈ L1(I), g

w
∩ BPV (I) 6= ∅ and the esti-

mate 3‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))
′
w
≥
(
‖vg‖L1(I) + ‖λg̃‖

)
holds for g̃ ∈ g

w
∩ BPV (I). Further, since

‖g‖(Cs∞,w(I))′w ≤ ‖g‖(Cs∞,w(I),‖·‖Ch∞,w(I))
′
w
, we obtain

∫
I
v(t)‖g‖L∞([t,d)) dt <∞.
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[14] V.D. Stepanov, On Cesàro and Copson type function spaces. Reflexivity, J. Math. Anal. Appl. 507 (2022), no.
1, article 125764.

[15] V.D. Stepanov, On spaces associated with weighted Cesàro and Copson spaces, Math. Notes, 111 (2022), no. 3,
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