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KUSSAINOVA LEILI KABIDENOVNA

(to the 70th birthday)

On May 3, 2018 was the 70th birthday of Leili Kabidenovna Kus-
sainova, member of the Editorial Board of the Eurasian Mathematical
Journal, professor of the Department of Fundamental Mathematics
of the L.N. Gumilyov Eurasian National University, Doctor of Phys-
ical and Mathematical Sciences (2000), Professor (2006), Honorary
worker of Education of the Republic of Kazakhstan (2005).

L.K. Kussainova was born in the city of Karaganda. In 1972
she graduated from the Novosibirsk State University (Russian Fed-
eration) and then completed her postgraduate studies at the Insti-
tute of Mathematics (Almaty). L.K. Kussainova's scienti�c supervi-
sors were distinguished Kazakh mathematicians T.I. Amanov and M.
Otelbayev.

Scienti�c works of L.K. Kussainova are devoted to investigation
of the widths of embeddings of the weighted Sobolev spaces, to em-
beddings and interpolations of weighted Sobolev spaces with weights

of general type.
She has solved the problem of three-weighted embedding of isotropic and anisotropic Sobolev

spaces in Lebesgue spaces, the problem of exact description of the Lions-Petre interpolation
spaces for a pair of weighted Sobolev spaces.

To solve these problems L.K. Kussainova obtained nontrivial modi�cations of theorems on
Besicovitch-Guzman covers. The �rst relates to covers by multidimensional parallelepipeds,
whereas the second relates to double covers by cubes. These modi�cations have allowed to
obtain the description of the interpolation spaces in the weighted case. Furthermore, by using
the double covering theorem the exact descriptions of the multipliers were obtained for a pair of
Sobolev spaces of general type.

The maximal operators on a basis of cubes with adjustable side length, which were introduced
by L.K. Kussainova, have allowed her to solve the problem of two-sided distribution estimate of
widths of the embedding of two-weighted Sobolev spaces with weights of general type in weighted
Lebesgue spaces.

Under her supervision 6 theses have been defended: 4 candidates of sciences theses and 2
PhD theses.

The Editorial Board of the Eurasian Mathematical Journal congratulates Leili Kabidenovna
Kussainova on the occasion of her 70th birthday and wishes her good health and new achieve-
ments in mathematics and mathematical education.



The awarding ceremony
of the Certi�cate of the Emerging Sources Citation of Index database

In 2016 the Eurasian Mathematical Journal has been included in the Emerging Sources
Citation of Index (ESCI) of the "Clarivate Analytics" (formerly "Thomson Reuters") Web of
Science. In 2018 the second journal of the L.N. Gumilyov Eurasian National University, namely
the Eurasian Journal of Mathematical and Computer Applications was also included in ESCI.

The ESCI was launched in late 2015 as a new database within "Clarivate Analytics". Around
3,000 journals were selected for coverage at launch, spanning the full range of subject areas.

The selection process for ESCI is the �rst step in applying to the Science Citation Index.
All journals submitted for evaluation to the core Web of Science databases will now initially be
evaluated for the ESCI, and if successful, indexed in the ESCI while undergoing the more in-
depth editorial review. Timing for ESCI evaluation will follow "Clarivate Analytics" priorities for
expanding database coverage, rather than the date that journals were submitted for evaluation.

Journals indexed in the ESCI will not receive Impact Factors; however, the citations from
the ESCI will now be included in the citation counts for the Journal Citation Reports, therefore
contributing to the Impact Factors of other journals. If a journal is indexed in the ESCI it
will be discoverable via the Web of Science with an identical indexing process to any other
indexed journal, with full citation counts, author information and other enrichment. Articles in
ESCI indexed journals will be included in an author's H-Index calculation, and also any analysis
conducted on Web of Science data or related products such as InCites. Indexing in the ESCI
will improve the visibility of a journal, provides a mark of quality and is good for authors.

To commemorate this important achievement of mathematicians of the L.N. Gumilyov
Eurasian National University on June 14, 2018, by the initiative of the "Clarivate Analytics",
the awarding ceremony of the Certi�cate of Emerging Sources Citation Index database of "Clar-
ivate Analytics" to the editorial boards of the Eurasian Mathematical Journal and the Eurasian
Journal of Mathematical and Computer Applications was held at the L.N. Gumilyov Eurasian
National University. The programme of this ceremony is attached.
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Astana June 14, 2018
Venue: L.N. Gumilyov Eurasian National University

Astana, Satpayev street 2, Room 259

14:30- 15:00 Visit to the Museum of the history of Education, Museum of L.N. Gumilyov,
Museum of writing

15:00-15:10 Opening speech of moderator
A. Moldazhanova � the First Vice-Rector, Vice-Rector for Academic Works
of L.N. Gumilyov Eurasian National University

15:10-15:20 Oleg Utkin - Managing Director of Clarivate Analytics in Russia and the CIS
15:20-15:30 Certi�cation award ceremony of the Eurasian Mathematical Journal, the

Eurasian Journal of Mathematical and Computer Applications in international
database

15:30-15:45 Kordan Ospanov � Deputy Editor-in-Chief of the Eurasian Mathematical
Journal. History and perspectives of development of the scienti�c journal
Eurasian Mathematical Journal

15:45-16:00 Kazizat Iskakov � Deputy Editor-in-Chief of the Eurasian Journal of Math-
ematical and Computer Applications. History and perspectives of development
of the scienti�c journal Eurasian Journal of Mathematical and Computer Ap-
plications.

16:00-16:10 Closing Ceremony
Memory photo

16:10-16:30 Co�ee break for visitors
16:40-17:20 Lyaziza Mukasheva - O�cial representative of Clarivate Analytics in the

Central Asian region Seminar for editors of scienti�c journals Scienti�c library
of L.N. Gumilyov Eurasian National University room 104
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1 Introduction

Let f ≥ 0 be a sequence of real numbers f = {fi}∞i=1 with non-negative terms.

Let v > 0, u ≥ 0 and w ≥ 0 be weight sequences. Let P+ and P− be the discrete Hardy
operators:

(P+f)i =
i∑

j=1

fj and (P−f)i =
∞∑
j=i

fj, i ≥ 1.

Let A+ and A− be matrix operators of the form:

(A+f)i =
i∑

j=1

ai,jfj and (A−f)i =
∞∑
j=i

aj,ifj, i ≥ 1,

where ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

In papers [5] -[7] under certain conditions on the elements (ai,j) the authors have found
necessary and su�cient conditions for the validity of the inequality:

‖uA±f‖q ≤ C
(
‖vf‖p + ‖wP±f‖p

)
, f ≥ 0,

where 1 < p, q < ∞ and ‖ · ‖q is the standard norm of the space lq. In particular, the case
A± ≡ P± has been studied in work [7] for 1 < p ≤ q <∞.

Here we investigate the following weighted additive estimates for the discrete Hardy operators
P±:

‖uP+f‖q ≤ C
(
‖vf‖p + ‖wA+f‖r

)
, f ≥ 0, (1.1)

‖uP−f‖q ≤ C
(
‖vf‖p + ‖wA−f‖r

)
, f ≥ 0. (1.2)

Let us note that some continuous analogues of inequality (1.1) have been studied in works
[2] -[4].
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2 Main results

Let 1
p

+ 1
p′

= 1. To formulate the main results we need to introduce the following sequences and
quantities:

ϕ+
i =

min
1≤k≤i


(

i∑
j=k

v−p
′

j

)− 1
p′

+

(
∞∑
j=k

wrja
r
j,k

) 1
r


−1

, i ≥ 1,

ϕ−i =

inf
i≤k


(

k∑
j=i

v−p
′

j

)− 1
p′

+

(
k∑
j=1

wrja
r
k,j

) 1
r


−1

, i ≥ 1,

D+ = sup
i≥1

(
∞∑
j=i

uqj

) 1
q

ϕ+
i ,

D− = sup
i≥1

(
i∑

j=1

uqj

) 1
q

ϕ−i .

The main results of the paper are the Theorems 2.1 and 2.2.

Theorem 2.1. Let 1 < max{p, r} ≤ q < ∞ and ai,k ≤ ai,j for 1 ≤ j ≤ k ≤ i. Then inequality
(1.1) holds if and only if D+ < ∞. Moreover, D+ ≈ C, where C > 0 is the least constant in
(1.1).

Proof. Necessity. Let inequality (1.1) hold with the least constant C > 0.

Let us take fi = v−p
′

i for 1 ≤ t ≤ i ≤ z and fi = 0 for 1 ≤ i < t, i > z and t ≤ z. Then

‖uP+f‖q ≥

(
∞∑
i=z

uqi

) 1
q z∑
i=t

v−p
′

i , (2.1)

‖vf‖p =

(
z∑
i=t

v−p
′

i

) 1
p

, (2.2)

‖wA+f‖r ≤

(
∞∑
i=t

wri a
r
i,t

) 1
r z∑
i=t

v−p
′

i . (2.3)

From (1.1), (2.1), (2.2) and (2.3) it follows that(
∞∑
i=z

uqi

) 1
q

≤ C

( z∑
i=t

v−p
′

i

)− 1
p′

+

(
∞∑
i=t

wri a
r
i,t

) 1
r

 .

In view of independence of the left-hand side of the obtained inequality on t : 1 ≤ t ≤ z, we have(
∞∑
i=z

uqi

) 1
q

≤ C(ϕ+
z )−1, ∀z ≥ 1,

from which it follows that
D+ ≤ C. (2.4)
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Su�ciency. Let D+ <∞ and let f = {fi} ≥ 0 be a sequence, for which the right-hand side
of (1.1) is �nite. We can assume without loss of a generality that f1 > 0.

Let k1 = sup{k ∈ Z : 2k ≤ f1}. Then

2k1 ≤ f1 < 2k1+1. (2.5)

Assume that t0 = 1 and t1 = sup{i ∈ N :
i∑

j=1

fj < 2k1+1}. Then t0 ≤ t1 ≤ ∞ and

2k1 ≤
i∑

j=1

fj < 2k1+1 for t0 ≤ i ≤ t1. (2.6)

Let kn = kn−1 + 1 for n ≥ 2 and Tn = {i ∈ N : 2kn ≤
i∑

j=1

fj}. Moreover, let tn = inf Tn if

Tn 6= ∅ and tn =∞ if Tn = ∅.
We see that

tn−1∑
j=1

fj < 2kn ≤
tn∑
j=1

fj for tn <∞ and
tn−1∑
j=1

fj < 2kn for tn =∞. (2.7)

Moreover, if tn < tn+1 ≤ ∞, then

2kn ≤
i∑

j=1

fj < 2kn+1 for tn ≤ i < tn+1. (2.8)

Let N = sup{n ≥ 0 : tn <∞}.
From the de�nition of D+ for any s, k : 1 ≤ s ≤ k we have:

∞∑
i=k

uqi ≤ (D+)q

( k∑
j=s

v−p
′

j

)− 1
p′

+

(
∞∑
j=s

wrja
r
j,s

) 1
r

q

. (2.9)

Let us estimate ‖uP+f‖q. We separately consider the following cases: N = 0, N = 1, N = 2
and N ≥ 3.

If N = 0 we have t1 =∞, then from (2.9) and (2.5) it follows that

‖uP+f‖qq =

t1∑
j=1

uqj(P
+f)qj ≤ 2q(k1+1)

∞∑
j=1

uqj

≤ 2q(D+)q

2k1v1 +

(
∞∑
j=1

wrja
r
j,12rk1

) 1
r

q � (D+)q

v1f1 +

(
∞∑
j=1

wrja
r
j,1f

r
1

) 1
r

q

≤ (D+)q

( ∞∑
i=1

(vifi)
p

) 1
p

+

(
∞∑
j=1

wrj

(
j∑
i=1

aj,ifi

)r) 1
r

q = (D+)q
(
‖vf‖p + ‖wA+f‖r

)q
. (2.10)

Let N = 1. Then 1 ≤ t1 <∞, t2 =∞ and

‖uP+f‖qq ≤
t1∑
j=1

uqj(P
+f)qj +

t2−1∑
j=t1

uqj(P
+f)qj = F1 + F2. (2.11)
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The sum F1 is estimated as in (2.10). Let us estimate F2. Using (2.9), (2.6) and (2.8) we obtain

F2 =

t2−1∑
j=t1

uqj(P
+f)qj ≤ 2qk2

∞∑
j=t1

uqj

≤ 2q(D+)q

2k1

(
t1∑
i=1

v−p
′

i

)− 1
p′

+

(
∞∑
j=1

wrja
r
j,12rk1

) 1
r

q

� (D+)q

( t1∑
i=1

fi

)(
t1∑
i=1

v−p
′

i

)− 1
p′

+

(
∞∑
j=1

wrja
r
j,1f

r
1

) 1
r

q

≤ (D+)q

( ∞∑
i=1

(vifi)
p

) 1
p

+

(
∞∑
j=1

wrj

(
j∑
i=1

aj,ifi

)r) 1
r

q

≤ (D+)q
(
‖vf‖p + ‖wA+f‖r

)q
. (2.12)

Thus, if we combine estimates (2.10) for F1 and (2.12) for F2, we have

‖uP+f‖q � D+
(
‖vf‖p + ‖wA+f‖r

)
. (2.13)

If N = 2, we have

‖uP+f‖qq ≤
t1∑
j=1

uqj(P
+f)qj +

t2−1∑
j=t1

uqj(P
+f)qj +

t3∑
j=t2

uqj(P
+f)qj = F1 + F2 + F3.

Here and in the sequel we assume that
d∑
j=c

= 0 if c > d.

The sum F1 is estimated as in (2.10). If t1 > t2 − 1, then F2 = 0. If t2 > t1, then F2 is
estimated as in (2.12). Therefore, regardless of F2 = 0 or F2 6= 0, it is estimated as in (2.12).
Thus, we need to estimate only F3. From (2.7) for s ≥ 2 we have

2ks−1 = 2ks − 2ks−1 ≤
ts∑
j=1

fj −
ts−1−1∑
j=1

fj =
ts∑

j=ts−1

fj. (2.14)

From (2.6), (2.9) and (2.14) we get

F3 =

t3∑
j=t2

uqj(P
+f)qj ≤ 2qk3

∞∑
j=t2

uqj

≤ 22q(D+)q

2k1

(
t2∑
i=t1

v−p
′

i

)− 1
p′

+

(
∞∑
j=t1

wrja
r
j,t1

2rk1

) 1
r

q

� (D+)q

( t2∑
i=t1

fi

)(
t2∑
i=t1

v−p
′

i

)− 1
p′

+

(
∞∑
j=t1

wrja
r
j,t1

(
t1∑
i=1

fi

)r) 1
r

q

≤ (D+)q

( t2∑
i=t1

(vifi)
p

) 1
p

+

(
∞∑
j=t1

wrj

(
j∑
i=1

aj,ifi

)r) 1
r

q
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≤ (D+)q
(
‖vf‖p + ‖wA+f‖r

)q
. (2.15)

The last estimate (2.15) for F3, together with the estimates for F1 and F2, gives (2.13).
If N ≥ 3, we have

‖uP+f‖qq ≤ F1 + F2 + F̃3 + F4, (2.16)

where

F̃3 =

t3−1∑
j=t2

uqj(P
+f)qj ,

F4 =
N∑
s=3

ts+1−1∑
j=ts

uqj(P
+f)qj .

If t3 > t2, then by (2.8) the value F̃3 is estimated similarly to F3 in (2.15), otherwise F̃3 = 0.

Thus, regardless of F̃3 6= 0 or F̃3 = 0, we have the estimate

F̃3 ≤ (D+)q
(
‖vf‖p + ‖wA+f‖r

)q
. (2.17)

To estimate the value F4 we need to estimate the sum
ts+1−1∑
j=ts

uqj(P
+f)qj for s ≥ 3 regardless

of whether it is zero or nonzero. Using (2.7), (2.9) and (2.14), we have

F4 ≤
N∑
s=3

2qks+1

∞∑
j=ts

uqj ≤ 22q

N∑
s=3

2qks−1

∞∑
j=ts

uqj

≤ 22q(D+)q
N∑
s=3

2ks−1

 ts∑
i=ts−1

v−p
′

i

− 1
p′

+ 2

 ∞∑
j=ts−1

wrja
r
j,ts−1

2rks−2

 1
r


q

� (D+)q

 N∑
s=3

 ts∑
i=ts−1

fi

q ts∑
i=ts−1

v−p
′

i

−
q
p′

+
N∑
s=3

 ∞∑
j=ts−1

wrj

 ts−1∑
i=ts−2

aj,ifi

r
q
r

 = (D+)q (F41 + F42) . (2.18)

By H�older's and Jensen's inequalities we have

F41 ≤
N∑
s=3

 ts∑
j=ts−1

(vjfj)
p


q
p

≤

 N∑
s=3

ts∑
j=ts−1

(vjfj)
p


q
p

≤ 2
q
p

(
tN∑
j=t2

(vjfj)
p

) q
p

� ‖vf‖qp. (2.19)

Again by Jensen's inequality we have

F42 ≤

 N∑
s=3

∞∑
j=ts−1

wrj

 ts−1∑
i=ts−2

aj,ifi

r
q
r
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≤

N+1∑
s=3

N+1∑
k=s

tk−1∑
j=tk−1

wrj

 ts−1∑
i=ts−2

aj,ifi

r
q
r

=

N+1∑
k=3

tk−1∑
j=tk−1

wrj

k∑
s=3

 ts−1∑
i=ts−2

aj,ifi

r
q
r

≤

N+1∑
k=3

tk−1∑
j=tk−1

wrj

 k∑
s=3

ts−1∑
i=ts−2

aj,ifi

r
q
r

≤ 2q

N+1∑
k=3

tk−1∑
j=tk−1

wrj

(
tk−1∑
i=t1

aj,ifi

)r


q
r

�

N+1∑
k=3

tk−1∑
j=tk−1

wrj

(
j∑
i=1

aj,ifi

)r


q
r

≤ ‖wA+f‖qr. (2.20)

If we combine the estimates for all cases N = 0, N = 1, N = 2 and N ≥ 3, we get that (1.1)
holds with the estimate C � D+ for the least constant C > 0 in (1.1), which together with (2.4)
gives C ≈ D+.

Theorem 2.2. Let 1 < max{p, r} ≤ q < ∞ and ai,k ≤ aj,k for 1 ≤ k ≤ i ≤ j. Then inequality
(1.2) holds if and only if D− < ∞. Moreover, D− ≈ C, where C > 0 is the least constant in
(1.2).

Proof. Necessity can be proved similarly to one in Theorem 2.1. Therefore, we need to prove
only su�ciency. Let D− <∞. Then for any k, s : 1 ≤ k ≤ s we have

k∑
j=1

uqj ≤ (D−)q

( s∑
i=k

v−p
′

i

)− 1
p′

+

(
s∑
j=1

wrja
r
s,j

) 1
r

q . (2.21)

Let f = {fi} ≥ 0 be a sequence, for which the right-hand side of (1.2) is �nite. Then from
the condition that ai,k ≤ aj,k for j ≥ i ≥ k we get

∞ >
∞∑
j=k

aj,kfj ≥ ai,k

∞∑
j=i

fj.

Hence, due to the non-triviality of the matrix (ai,j) there exist ai,k > 0, hence
∞∑
j=1

fj <∞.

Let k1 = inf{k ∈ Z : 2−k ≤
∞∑
j=1

fj} and t1 = max{i ≥ 1 : 2−k1 ≤
∞∑
j=i

fj}. Then t1 ≥ 1,

2−k1 ≤
∞∑
j=t1

fj and
∞∑

j=t1+1

fj < 2−k1 . (2.22)

Assume that t0 = 1 and kn = kn−1 + 1 for n ≥ 2. Let tn = max{i ≥ 1 : 2−kn ≤
∞∑
j=i

fj}. Then

2−kn ≤
∞∑
j=tn

fj and
∞∑

j=tn+1

fj < 2−kn . (2.23)

Due to (2.22) inequalities (2.23) are valid for n ≥ 1.
On the basis of (2.23) for n ≥ 1 we get

2−kn+1 = 2−kn − 2−kn+1 ≤
∞∑
j=tn

fj −
∞∑

j=tn+1+1

fj =

tn+1∑
j=tn

fj. (2.24)
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From the construction of the points tn it follows that either tn → ∞ for n → ∞ or there
exists N ≥ 2 such that tN−1 < tN and tN = tn for all n ≥ N+1. In this case fi = 0 for i ≥ N+1.
Therefore, we assume that tN+1 =∞ and tn =∞ for n ≥ N + 1.

Assuming N ≤ ∞, we have

‖uP−f‖qq =

t1∑
j=1

uqj(P
−f)qj +

N∑
n=1

tn+1∑
j=tn+1

uqj(P
−f)qj = F1 + F2. (2.25)

From the de�nition of k1 it follows that (P−f)1 < 2−k1+1. Therefore, on the basis of (2.21),
(2.22) and (2.24) we have

F1 ≤ 22q2−qk2

t1∑
j=1

uqj � (D−)q

2−k2

(
t2∑
i=t1

v−p
′

i

)− 1
p′

+ 2−k2

(
t1∑
j=1

wrja
r
t1,j

) 1
r

q

≤ (D−)q

( t2∑
i=t1

fi

)(
t2∑
i=t1

v−p
′

i

)− 1
p′

+

(
∞∑
i=t2

fi

)(
t1∑
j=1

wrja
r
t1,j

) 1
r

q

� (D−)q

( t2∑
i=t1

(vifi)
p

) q
p

+

(
t1∑
j=1

wrj

(
∞∑
i=j

ai,jfi

)r) q
r

 = (D−)q(F11 + F12). (2.26)

Using (2.21) and (2.23), we get

F2 ≤
N∑
n=1

2−qkn+1

tn+1∑
j=tn+1

uqj

≤ (D−)q
N∑
n=1

2−kn+1

 tn+2∑
i=tn+1

v−p
′

i

− 1
p′

+ 2−kn+1

(
tn+2∑
j=1

wrja
r
tn+2,j

) 1
r


q

� (D−)q

∑
n≥1

2−kn+1

 tn+2∑
i=tn+1

v−p
′

i

− 1
p′

q

+
∑
n≥1

2−kn+1

(
tn+2∑
j=1

wrja
r
tn+2,j

) 1
r

q


= (D−)q(F21 + F22). (2.27)

By (2.24) we obtain

F21 ≤ 2q
∑
n≥1

2−kn+2

 tn+2∑
i=tn+1

v−p
′

i

− 1
p′

q

�
∑
n≥1


 tn+2∑
i=tn+1

fi

 tn+2∑
i=tn+1

v−p
′

i

− 1
p′

q

≤
∑
n≥1

 tn+2∑
i=tn+1

(vifi)
p


q
p

�

(
∞∑
i=t2

(vifi)
p

) q
p

.
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The last estimate, together with (2.26), gives

F11 + F21 �

(
∞∑
i=t1

(vifi)
p

) q
p

≤ ‖vf‖qp. (2.28)

Let us estimate F22:

F22 ≤ 22q
∑
n≥1

2−kn+3

(
tn+2∑
j=1

wrja
r
tn+2,j

) 1
r

q

�
∑
n≥1

tn+2∑
j=1

wrja
r
tn+2,j

 tn+3∑
i=tn+2

fi

r
q
r

≤

∑
n≥1

tn+2∑
j=1

wrj

 tn+3∑
i=tn+2

ai,jfi

r
q
r

=

∑
n≥2

tn+1∑
j=1

wrj

 tn+2∑
i=tn+1

ai,jfi

r
q
r

�

∑
n≥2

n∑
s=0

ts+1∑
i=ts

wrj

 tn+2∑
i=tn+1

ai,jfi

r
q
r

=

∑
s≥0

ts+1∑
j=ts

wrj
∑
n≥s

 tn+2∑
i=tn+1

ai,jfi

r
q
r

≤

∑
s≥0

ts+1∑
j=ts

wrj

∑
n≥s

tn+2∑
i=tn+1

ai,jfi

r
q
r

�

∑
s≥0

ts+1∑
j=ts

wrj

 ∞∑
i=ts+1

ai,jfi

r
q
r

≤

(∑
s≥0

ts+1∑
j=ts

wrj

(
∞∑
i=j

ai,jfi

)r) q
r

�

(
∞∑
j=0

wrj

(
∞∑
i=j

ai,jfi

)r) q
r

= ‖wA−f‖qr. (2.29)

By using the estimate F12 ≤ ‖wA−f‖qr, from (2.25), (2.26), (2.27), (2.28) and (2.29) we get
inequality (1.2) with the estimate C � D− for the least constant C in (1.2).

3 Application

Let us consider an application of the obtained results.
Let k ≥ j ≥ 1, n > 1 and

(k − j + 1)n−1
(1) = (k − j + 1)(k − j + 2) . . . (k − j + n− 1).

Let g = {gi}i∈Z be a sequence such that gi = 0 for i ≤ 0. Then for k ≥ 1 we have

gk =
1

(n− 1)!

k∑
j=1

(k − j + 1)n−1
(1) ∆ngj,

where ∆gi = gi − gi−1, ∆ngi = ∆(∆n−1gi), ∆0gi ≡ gi and n ≥ 1.
According to [1] the sequence {gi} is n-convex for n ≥ 1 if ∆ngi ≥ 0 for i ≥ 1.

Thus, 1-convexity and 2-convexity mean the non-decrease and usual convexity of the sequence
{gi} for i ≥ 1, respectively.

Let Bn be a class of all sequences g = {gi}i∈Z such that gi = 0 for i ≤ 0 and n-convex for
i ≥ 1.

In (1.1) we assume that fi = ∆ngi and ak,j = (k− j + 1)n−1
(1) . It is obvious that ak,j ≤ ak,i for

1 ≤ i ≤ j ≤ k. Then we have

(P+f)i =

j∑
i=1

fi =

j∑
i=1

∆ngi = ∆n−1gj, j ≥ 1.
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Therefore, inequality (1.1) can be rewritten in the form:

‖u∆n−1g‖q ≤ C (‖v∆ng‖p + ‖wg‖r) , g ∈ Bn. (3.1)

Then on the basis of Theorem 2.1 we have the following statement.

Theorem 3.1. Let 1 < max{r, p} ≤ q <∞. Then inequality (3.1) holds if and only if D+
n <∞.

Moreover, D+
n ≈ C, where C > 0 is the least constant in (3.1) and

D+
n = sup

i≥1

(
∞∑
j=i

uqj

) 1
q

ϕ+
n,i,

ϕ+
n,i =

min
1≤k≤i


(

i∑
j=k

v−p
′

j

)− 1
p′

+

(
∞∑
j=k

wrj

(
(j − k + 1)n−1

(1)

)r) 1
r


−1

.

Let us consider sequences g = {gi}i≥1 such that
∞∑
i=1

gi < ∞. Then gi → 0 as i → ∞. Let

∆gi = gi − gi+1, ∆
n
gi = ∆(∆

n−1
gi) and n ≥ 1. Then

gj =
1

(n− 1)!

∞∑
k=j

(k − j + 1)n−1
(1) ∆

n
gj.

Let Bn be a class of the sequences g = {gi}i≥1 such that
∞∑
i=1

gi <∞ and ∆
n
gi ≥ 0 for i ≥ 1.

For {gk} ∈ Bn we assume that fi = ∆
n
gi and ak,j = (k − j + 1)n−1

(1) . Then inequality (1.2)

has the form (3.1) for g ∈ Bn.
Hence, on the basis of Theorem 2.2 we have the following statement.

Theorem 3.2. Let 1 < max{r, p} ≤ q <∞. Then inequality (3.1) holds for g ∈ Bn if and only
if D−n <∞. Moreover, D−n ≈ C, where C > 0 is the least constant in (3.1) and

D−n = sup
i≥1

(
i∑

j=1

uqj

) 1
q

ϕ−n,i,

ϕ−n,i =

inf
i≤k


(

k∑
j=i

v−p
′

j

)− 1
p′

+

(
k∑
j=1

wrj

(
(k − j + 1)n−1

(1)

)r) 1
r


−1

.

Acknowledgments

The paper was written under �nancial support by project AP05130975/GF5 of the Scienti�c
Committee of the Ministry of Education and Science of the Republic of Kazakhstan in priority
area �Intellectual potential of the country�.



Additive estimates for discrete Hardy-type operators 53

References

[1] S.I. Butt, K.A. Khan, J. Pe�cari�c, Generalization of Popoviciu inequality for higher order convex functions
via Taylor polynomial. Acta Universitatis Apulensis. 42 (2015), 181�200.

[2] R. Oinarov, Weighted inequalities for one class of integral operators Doklady Akad. Nauk SSSR. 319 (1991),
no. 5, 1076�1078 (in Russian) English transl. in Soviet Math. Dokl. 44 (1992), no. 1, 291-293.

[3] R. Oinarov, On one three-weighted generalization of Hardy inequality inequality (in Russian). Matematich-
eskie zametki. 54 (1993), no. 2, 56�62 (in Russian). English transl. in Mathematical Notes. 54 (1993) no. 2,
806�810.

[4] R. Oinarov, A.A. Chagirov, Three-weighted inequalities with integral operators Doklady NAN RK. (1993),
13�16 (in Russian).

[5] Z. Taspaganbetova, A. Temirkhanova, Boundedness and compactness of a class of matrix operators. Mat.
Journal. 2 (2011), no. 4, 73�85.

[6] Z. Taspaganbetova, A. Temirkhanova, Boundedness of matrix operators in weighted spaces of sequences and
their apllications. Ann. Funct. Anal. 1 (2011), no. 2, 114�127.

[7] A. Temirkhanova, Estimate for discrete Hardy-type operators in weighted sequence spaces. Ph.D. thesis,
Lule�a University of Technology, Lule�a, 2015; also available as An additive estimate of a class of matrix
operators. Research Report 4, Department of Engineering Sciences and Mathematics, Lule�a University of
Technology, 2015.

Aigerim Kalybay
Department of Economics
KIMEP University
4 Abay Ave
050010 Almaty, Kazakhstan
E-mails: kalybay@kimep.kz

Saltanat Shalginbayeva
Kazakh Ablai Khan University of International Relations and World Languages
200 Muratbayev St
050022 Almaty, Kazakhstan
E-mail:salta_sinar@mail.ru

Received: 19.09.2016


