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KUSSAINOVA LEILI KABIDENOVNA

(to the 70th birthday)

On May 3, 2018 was the 70th birthday of Leili Kabidenovna Kus-
sainova, member of the Editorial Board of the Eurasian Mathematical
Journal, professor of the Department of Fundamental Mathematics
of the L.N. Gumilyov Eurasian National University, Doctor of Phys-
ical and Mathematical Sciences (2000), Professor (2006), Honorary
worker of Education of the Republic of Kazakhstan (2005).

L.K. Kussainova was born in the city of Karaganda. In 1972
she graduated from the Novosibirsk State University (Russian Fed-
eration) and then completed her postgraduate studies at the Insti-
tute of Mathematics (Almaty). L.K. Kussainova's scienti�c supervi-
sors were distinguished Kazakh mathematicians T.I. Amanov and M.
Otelbayev.

Scienti�c works of L.K. Kussainova are devoted to investigation
of the widths of embeddings of the weighted Sobolev spaces, to em-
beddings and interpolations of weighted Sobolev spaces with weights

of general type.
She has solved the problem of three-weighted embedding of isotropic and anisotropic Sobolev

spaces in Lebesgue spaces, the problem of exact description of the Lions-Petre interpolation
spaces for a pair of weighted Sobolev spaces.

To solve these problems L.K. Kussainova obtained nontrivial modi�cations of theorems on
Besicovitch-Guzman covers. The �rst relates to covers by multidimensional parallelepipeds,
whereas the second relates to double covers by cubes. These modi�cations have allowed to
obtain the description of the interpolation spaces in the weighted case. Furthermore, by using
the double covering theorem the exact descriptions of the multipliers were obtained for a pair of
Sobolev spaces of general type.

The maximal operators on a basis of cubes with adjustable side length, which were introduced
by L.K. Kussainova, have allowed her to solve the problem of two-sided distribution estimate of
widths of the embedding of two-weighted Sobolev spaces with weights of general type in weighted
Lebesgue spaces.

Under her supervision 6 theses have been defended: 4 candidates of sciences theses and 2
PhD theses.

The Editorial Board of the Eurasian Mathematical Journal congratulates Leili Kabidenovna
Kussainova on the occasion of her 70th birthday and wishes her good health and new achieve-
ments in mathematics and mathematical education.



The awarding ceremony
of the Certi�cate of the Emerging Sources Citation of Index database

In 2016 the Eurasian Mathematical Journal has been included in the Emerging Sources
Citation of Index (ESCI) of the "Clarivate Analytics" (formerly "Thomson Reuters") Web of
Science. In 2018 the second journal of the L.N. Gumilyov Eurasian National University, namely
the Eurasian Journal of Mathematical and Computer Applications was also included in ESCI.

The ESCI was launched in late 2015 as a new database within "Clarivate Analytics". Around
3,000 journals were selected for coverage at launch, spanning the full range of subject areas.

The selection process for ESCI is the �rst step in applying to the Science Citation Index.
All journals submitted for evaluation to the core Web of Science databases will now initially be
evaluated for the ESCI, and if successful, indexed in the ESCI while undergoing the more in-
depth editorial review. Timing for ESCI evaluation will follow "Clarivate Analytics" priorities for
expanding database coverage, rather than the date that journals were submitted for evaluation.

Journals indexed in the ESCI will not receive Impact Factors; however, the citations from
the ESCI will now be included in the citation counts for the Journal Citation Reports, therefore
contributing to the Impact Factors of other journals. If a journal is indexed in the ESCI it
will be discoverable via the Web of Science with an identical indexing process to any other
indexed journal, with full citation counts, author information and other enrichment. Articles in
ESCI indexed journals will be included in an author's H-Index calculation, and also any analysis
conducted on Web of Science data or related products such as InCites. Indexing in the ESCI
will improve the visibility of a journal, provides a mark of quality and is good for authors.

To commemorate this important achievement of mathematicians of the L.N. Gumilyov
Eurasian National University on June 14, 2018, by the initiative of the "Clarivate Analytics",
the awarding ceremony of the Certi�cate of Emerging Sources Citation Index database of "Clar-
ivate Analytics" to the editorial boards of the Eurasian Mathematical Journal and the Eurasian
Journal of Mathematical and Computer Applications was held at the L.N. Gumilyov Eurasian
National University. The programme of this ceremony is attached.
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Astana June 14, 2018
Venue: L.N. Gumilyov Eurasian National University

Astana, Satpayev street 2, Room 259

14:30- 15:00 Visit to the Museum of the history of Education, Museum of L.N. Gumilyov,
Museum of writing

15:00-15:10 Opening speech of moderator
A. Moldazhanova � the First Vice-Rector, Vice-Rector for Academic Works
of L.N. Gumilyov Eurasian National University

15:10-15:20 Oleg Utkin - Managing Director of Clarivate Analytics in Russia and the CIS
15:20-15:30 Certi�cation award ceremony of the Eurasian Mathematical Journal, the

Eurasian Journal of Mathematical and Computer Applications in international
database

15:30-15:45 Kordan Ospanov � Deputy Editor-in-Chief of the Eurasian Mathematical
Journal. History and perspectives of development of the scienti�c journal
Eurasian Mathematical Journal

15:45-16:00 Kazizat Iskakov � Deputy Editor-in-Chief of the Eurasian Journal of Math-
ematical and Computer Applications. History and perspectives of development
of the scienti�c journal Eurasian Journal of Mathematical and Computer Ap-
plications.

16:00-16:10 Closing Ceremony
Memory photo

16:10-16:30 Co�ee break for visitors
16:40-17:20 Lyaziza Mukasheva - O�cial representative of Clarivate Analytics in the

Central Asian region Seminar for editors of scienti�c journals Scienti�c library
of L.N. Gumilyov Eurasian National University room 104
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Abstract. We study the ellipticity of the symbols of operators associated with parabolic di�eo-
morphisms of spheres and we show, that if for some smoothness exponent of the Sobolev space
the symbol of an operator is invertible, then the symbol is invertible for all exponents of Sobolev
spaces.
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1 Introduction

The object of this study is the symbol of elliptic operators associated with actions of a discrete
group G on a smooth manifold. Such operators are referred to as G-operators below and pre-
sented as linear combinations of compositions of pseudodi�erential operators (PDO) and shift
operators. Previously they were studied, for example, by A.B. Antonevich [1]. The essential
di�erence between the theory of elliptic G-operators and a similar theory of PDO is that the
ellipticity of such operators and their Fredholm property depend on the smoothness exponent s
of the Sobolev spaces Hs. Thus, it is natural to describe the values of exponents s, for which
the symbol of such operators is invertible in the relevant Sobolev spaces and, as a corollary, the
G-operator is elliptic. It is known, that, in the case of isometric di�eomorphisms, the Fredholm
property of operators does not depend on s, so it is interesting to consider problems for di�eo-
morphisms, which do not preserve a Riemannian metric. In [2, 3] the �rst steps in the study
of nonisometric actions were done. In particular, it was shown for dilations of spheres that the
set of s, for which a G-operator is elliptic, is a �nite or (semi)in�nite interval. In the present
paper we consider shifts along the trajectories of a nonisometric parabolic di�eomorphism of an
m−dimensional sphere.

The paper consists of several parts. Statement of the problem and expressions for the symbol
are given in Section 2, Section 3 contains the main theorem and its proof. An example in
Section 4 illustrates this theorem. In this example we consider an operator, associated with a
di�eomorphism of the circle S1.

2 Statement of the problem

On an m-dimensional sphere Sm, let us consider a parabolic di�eomorphism

g : Sm → Sm, x 7→ x+ e, (2.1)
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which has one �xed point x0 = ∞. Here Sm \ x0 is identi�ed with the space Rm with the
coordinates x; e ∈ Rm is a given nonzero vector. Di�eomorphism (2.1) is a shift along the vector
e.

Consider operators of the form

D =
∑
k

DkT
k : Hs(Sm)→ Hs−d(Sm), (2.2)

where
∑

k is a �nite sum, T is the shift operator corresponding to di�eomorphism (2.1), Tu(x) =
u(x+ e), s ∈ R, Dk is a PDO of order d on Sm, k ∈ Z.

To de�ne the symbol of operator D, we need to compute a special density associated with
the di�eomorphism g (see [3]). To calculate this density we can the following formula:

µx,ξ,s(n) =

∣∣∣∣det
∂gn

∂x

∣∣∣∣
∣∣∣∣∣∣
((

∂gn

∂x

)T)−1

ξ

∣∣∣∣∣∣
2s

, (x, ξ) ∈ T ∗0 Sm. (2.3)

Density (2.3) has di�erent expressions depending on whether (x = ∞) or not. Let us consider
both cases.

1. Let us compute the density at x0 =∞. The di�eomorphism gn in the pair of coordinate
charts x and x′, where x′ = x

|x|2 are the coordinates in a neighbourhood of x0 =∞, will have the
form

gn(x′) =

x′

|x′|2 + ne∣∣∣ x′

|x′|2 + ne
∣∣∣2 = x′ +O(|x′|2). (2.4)

Hence

∂gn

∂x′

∣∣∣∣
x′=0

= Id is the identity matrix.

As Id = IdT = Id−1, and det(Id) = 1, so density (2.3) at x =∞ is equal to

µx,ξ,s(n) = 1. (2.5)

2. If x 6= ∞, then gn in the pair of coordinate charts x and x′, where x′ = x
|x|2 are the

coordinates in a neighbourhood of the point x0 =∞, is presented as

x 7→ x′ = g′(x) =
x+ e

|x+ e|2
. (2.6)

We set e = (1, 0, ..., 0)T for simplicity. Then the di�erential of gn is equal to

∂gn

∂x
=



∂gn1
∂x1

∂gn1
∂x2

. . .
∂gn1
∂xm

∂gn2
∂x1

∂gn2
∂x2

. . .
∂gn2
∂xm

...
...

. . .
...

∂gnm
∂x1

∂gnm
∂x2

. . .
∂gnm
∂xm


=
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=



1

|x+ ne|2
− 2(x1 + n)2

|x+ ne|4
−2(x1 + n)x2

|x+ ne|4
. . .

−2(x1 + n)xm
|x+ ne|4

−2x2(x1 + n)

|x+ ne|4
1

|x+ ne|2
− 2x2

2

|x+ ne|4
. . .

−2x2xm
|x+ ne|4

...
...

. . .
...

−2xm(x1 + n)

|x+ ne|4
−2xmx2

|x+ ne|4
. . .

1

|x+ ne|2
− 2x2

m

|x+ ne|4


.

Hence we express the Jacobian as

det

(
∂gn

∂x

)
= −|x+ ne|−2m,

((
∂gn

∂x

)T)−1

=

(
∂gn

∂x

)−1

=

=


−(x1 + n)2 + x2

2...+ x2
m −2(x1 + n)x2 . . . −2(x1 + n)xm

−2x2(x1 + n) (x1 + n)2 − x2
2 + ...+ x2

m . . . −2(x2 + n)xm
...

...
. . .

...
−2xm(x1 + n) −2xmx2 . . . (x1 + n)2 + ...− x2

m

 . (2.7)

So, up to equivalence as n→∞, density (2.3) is equal to

µx,s(n) =

= |x+ ne|−2m

∣∣∣∣∣∣∣∣∣


−(x1 + n)2 + x22...+ x2m −2(x1 + n)x2 . . . −2(x1 + n)xm

−2x2(x1 + n) (x1 + n)2 − x22 + ...+ x2m . . . −2(x2 + n)xm
...

...
. . .

...
−2xm(x1 + n) −2xmx2 . . . (x1 + n)2 + ...− x2m



ξ1
ξ2
...
ξm


∣∣∣∣∣∣∣∣∣
2s

∼

∼ |n|4s−2m

∣∣∣∣∣∣∣∣∣


−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1



ξ1
ξ2
...
ξm


∣∣∣∣∣∣∣∣∣
2s

∼ |n|2(2s−m). (2.8)

Now, using the de�nition of the symbol (e.g., see [3]), we obtain the symbol of operator (2.2).
It has di�erent expressions depending on whether x = ∞ or not. So, at a point (x, ξ) ∈ T ∗0 Sm,
x 6=∞ we have the symbol

σ(D)(x, ξ) =
∑
k

σ(Dk)(x+ ne, ξ)T k : l2(Z, µx,ξ,s)→ l2(Z, µx,ξ,s−d), (2.9)

where T u(n) = u(n+ 1) is the shift operator of sequences, and the space l2(Z, µx,ξ,s) consists of
sequences {u(n)}, n ∈ Z, square summable with respect to the density µx,ξ,s, which we previously
obtained in (2.8).

At x =∞, we de�ne the symbol as

σ(D)(∞, ξ′) =
∑
k

σ(Dk)(∞, ξ′)T k : l2(Z)→ l2(Z), (2.10)

where ξ′ = (−ξ1, ξ2 ..., ξm). Symbol (2.10) does not depend on the smoothness exponent s of
Sobolev space.
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Lemma 2.1. There exists the limit

lim
n→∞

|n|−2dσ(Dk)(x+ ne, ξ),

which we denote by σ(Dk)(∞, ξ).

Proof. We change the coordinates: x′ =
x

|x|2
and set x′n =

x+ ne

|x+ ne|2
. Then using (2.7), we get

ξ′n =

((
∂gn

∂x

)T)−1

ξ ∼ |n|2


−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ξ = |n|2ξ′. (2.11)

Hence,

|n|−2dσ(Dk)(x+ n, ξ) = |n|−2dσ′(Dk)(x
′
n, ξ
′
n) ∼

∼ |n|−2dσ′(Dk)

(
x+ ne

|x+ ne|2
, |n|2ξ′

)
= |n|−2d|n|2dσ′(Dk)

(
x+ ne

|x+ ne|2
, ξ′
)
, (2.12)

where σ′(Dk) is the symbol of operator Dk de�ned for points with coordinates x′ and ξ′ in a
neighbourhood of in�nity. As n→∞, the last expression has a limit equal to σ′(Dk)(0, ξ

′).

Note that (2.10) is a di�erence operator with constant coe�cients.

3 Main result

The following theorem is the main result of the present paper.

Theorem 3.1. Let operator (2.2) satisfy ellipticity conditions for some s = s0, that is symbols
(2.9) and (2.10) are invertible for s = s0 and all (x, ξ) ∈ T ∗0 Sm. Then symbols (2.9) and (2.10)
are invertible for all s ∈ R.

Proof. This statement is obvious for symbol (2.10), as this symbol does not depend on s. The
invertibility of symbol (2.9) is equivalent to the following three conditions: symbol (2.9) is
Fredholm; the kernel of symbol (2.9) is trivial; the index of symbol (2.9) is equal to zero.

1. First, we prove the Fredholm property of symbol (2.9) for all s. For this purpose we
replace operator (2.9) with an isomorphic one. Consider the commutative diagram

Then operator (2.9) is isomorphic to the operator

σ′(D)(x, ξ) = (1 + |n|)2(s−d)−m

(∑
k

σ(Dk)(x+ ne, ξ)T k
)

(1 + |n|)m−2s =

= (1 + |n|)−2d
∑
k

(
1 + |n|

1 + |n+ k|

)2s−m

σ(Dk)(x+ ne, ξ)T k : l2(Z)→ l2(Z). (3.1)
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It is obvious that the Fredholm property of operator (2.10) does not depend on the smoothness
exponent s. Let us show that the Fredholm property of operator (2.9) does not depend on s
too. To this end, it su�ces to show that operators (3.1) and (2.10) di�er by a compact operator.
Indeed, let us consider the di�erence of these operators

(1 + |n|)−2d
∑
k

(
1 + |n|

1 + |n+ k|

)2s−m

σ(Dk)(x+ ne, ξ)T k −
∑
k

σ(Dk)(∞, ξ′)T k =

=
∑
k

(
(1 + |n|)−2d

(
1 + |n|

1 + |n+ k|

)2s−m

σ(Dk)(x+ ne, ξ)− σ(Dk)(∞, ξ′)

)
T k. (3.2)

As coe�cients of operator (3.2) have zero limits (by Lemma 2.1)

|n|−2d

(
1 + |n|

1 + |n+ k|

)2s−m

σ(Dk)(x+ ne, ξ′)− σ(Dk)(∞, ξ)→ 0 as n→∞,

the di�erence of operators (3.1) and (2.10) is a compact operator. Hence, the Fredholm property
of operator (2.9) does not depend on s.

2. Second, let us show that the kernel of operator (2.9) is independent of s. Consider solutions
of the following equation(∑

k

σ(Dk)(x+ ne, ξ)T k
)
u(n) = 0, {u(n)} ∈ l2(Z, µx,s). (3.3)

The following theorem due to Poincar�e enables us to describe the behavior of solutions of
equation (3.3) at in�nity.

Theorem 3.2 (Poincar�e). Given a linear homogeneous di�erence equation

u(n+ k) + ak−1(n)u(n+ k − 1) + ak−2(n)u(n+ k − 2) + ...+ a0(n)u(n) = 0 (3.4)

such that
1) there exist �nite limits of its coe�cients

lim
n→+∞

ai(n) = ai, i = 0, ..., k − 1;

2) the roots of the characteristic equation

λk + ak−1λ
k−1 + ak−2λ

k−2 + ...+ a1λ+ a0 = 0 (3.5)

satisfy condition |λi| 6= |λj|, for i 6= j,
then for any nontrivial solution u(n) of (3.4) there exists the limit

lim
n→+∞

u(n+ 1)

u(n)
= λj for some 1 ≤ j ≤ k. (3.6)

Let us apply the Poincar�e theorem to our equation (3.3).
Now we obtain invertibility condition for symbol (2.9). We use the Fourier transform for

operator (2.10) and get the function∑
k

σ(Dk)(∞, ξ′)eiϕk, 0 < ϕ ≤ 2π. (3.7)
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We can also write the characteristic polynomial for a �nite-di�erence equation (2.10)

σ′′(D)(x, ξ′) =
∑
k

σ(Dk)(∞, ξ′)λk (3.8)

and consider the following characteristic equation∑
k

σ(Dk)(∞, ξ′)λk = 0. (3.9)

From the invertibility of operator (2.10) it follows that the roots λj of equation (3.9) satisfy
λj 6= eiϕ, ϕ ∈ [0, 2π]. Hence, we get

|λj| 6= 1 for all j.

Let us assume that the trajectory symbol at the �xed point satis�es the conditions of the
Poincar�e theorem (e.g, see [4]). In particular, all the roots of the characteristic polynomial (3.9)
have di�erent absolute values.

The characteristic equation is given by (3.9).
Let u(n) be a nonzero solution of equation (3.3). Then by the Poincar�e theorem, we get

u(n+ 1)

u(n)
= λj + εj(n), where εj(n)→ 0 as n→∞. (3.10)

Following [4] we write equalities for all n = 0, 1, ...s− 1

u(1)

u(0)
= λj + εj(0),

u(2)

u(1)
= λj + εj(1),

. . . . . . .

u(s)

u(s− 1)
= λj + εj(n− 1).

Next we multiply them and get

u(n) = u(0)
n−1∏
l=0

[λj + εj(l)].

We replace the product
n−1∏
l=0

[λj + εj(l)]

by the product of equal binomials λj + ηj(l). We have

λj + ηj(n) = n

√√√√n−1∏
l=0

[λj + εj(l)] = λj
n

√√√√n−1∏
l=0

[
1 +

εj(l)

λj

]
,

and (see [4])

lim
n→∞

λj
n

√√√√n−1∏
l=0

[
1 +

εj(l)

λj

]
= 1.
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Hence, ηj(l) is the mean value of all εj(l), l = 0, ...n− 1, that is ηj(n)→ 0 as n→∞.
Now we denote u(0) by C and get an expression for solutions of equation (3.3) in the following

form (see [4])
u(n) = C[λj + ηj(n)]n, (3.11)

where λj is a root of characteristic equation (3.9).

Lemma 3.1. If u ∈ ker(σ(D)) belongs to l2(Z, µs0), then u ∈ l2(Z, µs) for all s.

Proof. Given u ∈ kerσ(D), u(n) is presented as in (3.11). Hence u ∈ l2(Z, µs) whenever∑
j

∣∣∣C[λj + ηj(n)]n
∣∣∣2|n|2(2s−m) <∞. (3.12)

It remains to show that the convergence of (3.12) does not depend on s. By the d'Alembert's
ratio test we have

lim
n→∞

∣∣∣C[λj + ηj(n+ 1)]n+1
∣∣∣2|n+ 1|2(2s−m)∣∣∣C[λj + ηj(n)]n
∣∣∣2|n|2(2s−m)

= |λj|2. (3.13)

Series (3.12) converges if |λj| < 1 and diverges if |λj| > 1. Thus, the convergence of this series
does not depend on the smoothness exponent s. This implies the statement of Lemma 2.1.

3. Finally, we check that

indσ(D)(x, ξ) = indσ′(D)(x, ξ) = 0. (3.14)

By the index formula for operators with stabilizing coe�cients, we get

indσ′(D)(x, ξ) = w
(
σ′(D)(+∞, ξ)

)
− w

(
σ′(D)(−∞, ξ)

)
=

= w

(∑
k

σ(Dk)(+∞, ξ)eiϕk
)
− w

(∑
k

σ(Dk)(−∞, ξ)eiϕk
)
, (3.15)

where w is the winding number of a function on S1. As σ(Dk)(+∞, ξ) = σ(Dk)(−∞, ξ) by
Lemma 2.1 so the winding numbers in (3.15) are equal, and we get indσ′(D)(x, ξ) = 0.

The proof of Theorem 3.1 is now complete.

4 Example

Here we study the Fredholm property of the operator

D = 1 + a(x)T : Hs(S1)→ Hs(S1), (4.1)

where Tu(x) = u(x + 1) is a shift operator, a(x) ∈ C∞(S1). Let us demonstrate independently
that Theorem 2.1 holds for this operator.

The symbol of operator (4.1) is presented as

σ(D)(x) = 1 + a(x+ n)T : l2(Z, µs)→ l2(Z, µs), (4.2)

where T u(n) = u(n+ 1) and the density µs,n = |n|2(2s−1).
1. First, we study the Fredholm property of symbol (4.2). To this end, we consider the

commutative diagram
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and replace operator (4.2) with an isomorphic one

σ′(D)(x) = (1 + |n|)2s−1(1 + a(x+ n)T )(1 + |n|)1−2s = 1 +

(
n

n− 1

)2s−1

a(x+ n)T .

As n→∞ we obtain the symbol

σ′′(D)(x) = 1 + a(∞)eiϕ, 0 ≤ ϕ < 2π, (4.3)

which is invertible for |a(∞)| 6= 1. This condition obviously does not depend on s, moreover, it
must be noted that operator (4.3) is the symbol of operator (4.1) at x0 = ∞. Operators (4.2)
and (4.3) di�er by a compact operator, thus, this proves that the Fredholm property of operator
(4.2) also does not depend on s.

2. Second, we study the kernel of operator (4.2). To this end, we consider a nontrivial
solution of the following equation σ(D)(x)u(n) = 0.

Operator (4.2) acts on sequences {u(n)} as(
1 + a(x+ n)T

)
u(n) = u(n) + a(x+ n)u(n− 1).

Let us �nd solutions of the equation

u(n) + a(x+ n)u(n+ 1) = 0. (4.4)

We rewrite the equation as

u(n) + a(+∞)u(n+ 1) +
(
a(x+ n)− a(+∞)

)
u(n+ 1) = 0.

We make a change x′ = 1
x+n

, when x is �xed and n→ +∞ and obtain

a(x′)− a(0) = a(0) + a′(0)x′ +O(x′2)− a(0) =
C

n
+O

(
1

n2

)
.

Here and below C is a constant. We obtain the following equation

u(n) +

(
a(+∞) +

C

n
+O

(
1

n2

))
u(n− 1) = 0.

Its solution is of the form

u(n) =
n∏
j=1

(
−a(+∞)− C

j
−O

(
1

j2

))
= (a(−∞))n

n∏
j=1

(
1 +

C
a(+∞)

j
+O

(
1

j2

))
.

Hence,

ln |u(n)| = n ln |a(+∞)|+
n∑
j=1

ln

(
1 +

C
a(+∞)

j
+O

(
1

j2

))
,
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and as n→∞ this expression is equivalent to

ln |u(n)| ∼ n ln |a(+∞)|+
n∑
j=1

| C
a(+∞)

|
j

∼ n ln |a(+∞)|+
∣∣∣∣ C

a(+∞)

∣∣∣∣ ∫ n

1

dx

x
∼

∼ n ln |a(+∞)|+
∣∣∣∣ C

a(+∞)

∣∣∣∣ lnn.
Thus,

|u(n)| ∼ eC−n ln |a(+∞)|+| C
a(+∞) | = C|a(+∞)|nnα, (4.5)

where α ∈ R.
Let u ∈ kerσ(D). Then for the sequences {u(n)} we obtain asymptotic behavior (4.5). Hence,

u ∈ l2(Z, µs) only when ∑
n

C|a(∞)|2n|n|2(α+2s−1) <∞. (4.6)

We see that the convergence of series (4.6) does not depend on s as |a(∞)| 6= 1.

3. At the last step we investigate the index of operator (4.2). Firstly, we check the equality

indσ′(D)(x) = 0.

According to the formula for the index of operators with stabilizing coe�cients we get

indσ′(D)(x) = w
(
σ′(D)(+∞)

)
− w

(
σ′(D)(−∞)

)
= w

(
1 + a(+∞)eiϕ

)
− w

(
1 + a(−∞)eiϕ

)
.

As a(+∞) = a(−∞) by the conditions of our problem, so

w
(
σ′(D)(+∞)

)
= w

(
σ′(D)(−∞)

)
,

and indσ′(D)(x) = 0.
As

indσ′(D)(x) = dim(kerσ′(D)(x))− dim(cokerσ′(D)(x)),

so dim(cokerσ′(D)(x)) = 0, so dim(cokerσ(D)(x)) = 0.
Thus, we see that Theorem 2.1 holds for this example and the invertibility of symbol (4.2)

does not depend on s.
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