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KUSSAINOVA LEILI KABIDENOVNA

(to the 70th birthday)

On May 3, 2018 was the 70th birthday of Leili Kabidenovna Kus-
sainova, member of the Editorial Board of the Eurasian Mathematical
Journal, professor of the Department of Fundamental Mathematics
of the L.N. Gumilyov Eurasian National University, Doctor of Phys-
ical and Mathematical Sciences (2000), Professor (2006), Honorary
worker of Education of the Republic of Kazakhstan (2005).

L.K. Kussainova was born in the city of Karaganda. In 1972
she graduated from the Novosibirsk State University (Russian Fed-
eration) and then completed her postgraduate studies at the Insti-
tute of Mathematics (Almaty). L.K. Kussainova's scienti�c supervi-
sors were distinguished Kazakh mathematicians T.I. Amanov and M.
Otelbayev.

Scienti�c works of L.K. Kussainova are devoted to investigation
of the widths of embeddings of the weighted Sobolev spaces, to em-
beddings and interpolations of weighted Sobolev spaces with weights

of general type.
She has solved the problem of three-weighted embedding of isotropic and anisotropic Sobolev

spaces in Lebesgue spaces, the problem of exact description of the Lions-Petre interpolation
spaces for a pair of weighted Sobolev spaces.

To solve these problems L.K. Kussainova obtained nontrivial modi�cations of theorems on
Besicovitch-Guzman covers. The �rst relates to covers by multidimensional parallelepipeds,
whereas the second relates to double covers by cubes. These modi�cations have allowed to
obtain the description of the interpolation spaces in the weighted case. Furthermore, by using
the double covering theorem the exact descriptions of the multipliers were obtained for a pair of
Sobolev spaces of general type.

The maximal operators on a basis of cubes with adjustable side length, which were introduced
by L.K. Kussainova, have allowed her to solve the problem of two-sided distribution estimate of
widths of the embedding of two-weighted Sobolev spaces with weights of general type in weighted
Lebesgue spaces.

Under her supervision 6 theses have been defended: 4 candidates of sciences theses and 2
PhD theses.

The Editorial Board of the Eurasian Mathematical Journal congratulates Leili Kabidenovna
Kussainova on the occasion of her 70th birthday and wishes her good health and new achieve-
ments in mathematics and mathematical education.



The awarding ceremony
of the Certi�cate of the Emerging Sources Citation of Index database

In 2016 the Eurasian Mathematical Journal has been included in the Emerging Sources
Citation of Index (ESCI) of the "Clarivate Analytics" (formerly "Thomson Reuters") Web of
Science. In 2018 the second journal of the L.N. Gumilyov Eurasian National University, namely
the Eurasian Journal of Mathematical and Computer Applications was also included in ESCI.

The ESCI was launched in late 2015 as a new database within "Clarivate Analytics". Around
3,000 journals were selected for coverage at launch, spanning the full range of subject areas.

The selection process for ESCI is the �rst step in applying to the Science Citation Index.
All journals submitted for evaluation to the core Web of Science databases will now initially be
evaluated for the ESCI, and if successful, indexed in the ESCI while undergoing the more in-
depth editorial review. Timing for ESCI evaluation will follow "Clarivate Analytics" priorities for
expanding database coverage, rather than the date that journals were submitted for evaluation.

Journals indexed in the ESCI will not receive Impact Factors; however, the citations from
the ESCI will now be included in the citation counts for the Journal Citation Reports, therefore
contributing to the Impact Factors of other journals. If a journal is indexed in the ESCI it
will be discoverable via the Web of Science with an identical indexing process to any other
indexed journal, with full citation counts, author information and other enrichment. Articles in
ESCI indexed journals will be included in an author's H-Index calculation, and also any analysis
conducted on Web of Science data or related products such as InCites. Indexing in the ESCI
will improve the visibility of a journal, provides a mark of quality and is good for authors.

To commemorate this important achievement of mathematicians of the L.N. Gumilyov
Eurasian National University on June 14, 2018, by the initiative of the "Clarivate Analytics",
the awarding ceremony of the Certi�cate of Emerging Sources Citation Index database of "Clar-
ivate Analytics" to the editorial boards of the Eurasian Mathematical Journal and the Eurasian
Journal of Mathematical and Computer Applications was held at the L.N. Gumilyov Eurasian
National University. The programme of this ceremony is attached.
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Astana June 14, 2018
Venue: L.N. Gumilyov Eurasian National University

Astana, Satpayev street 2, Room 259

14:30- 15:00 Visit to the Museum of the history of Education, Museum of L.N. Gumilyov,
Museum of writing

15:00-15:10 Opening speech of moderator
A. Moldazhanova � the First Vice-Rector, Vice-Rector for Academic Works
of L.N. Gumilyov Eurasian National University

15:10-15:20 Oleg Utkin - Managing Director of Clarivate Analytics in Russia and the CIS
15:20-15:30 Certi�cation award ceremony of the Eurasian Mathematical Journal, the

Eurasian Journal of Mathematical and Computer Applications in international
database

15:30-15:45 Kordan Ospanov � Deputy Editor-in-Chief of the Eurasian Mathematical
Journal. History and perspectives of development of the scienti�c journal
Eurasian Mathematical Journal

15:45-16:00 Kazizat Iskakov � Deputy Editor-in-Chief of the Eurasian Journal of Math-
ematical and Computer Applications. History and perspectives of development
of the scienti�c journal Eurasian Journal of Mathematical and Computer Ap-
plications.

16:00-16:10 Closing Ceremony
Memory photo

16:10-16:30 Co�ee break for visitors
16:40-17:20 Lyaziza Mukasheva - O�cial representative of Clarivate Analytics in the

Central Asian region Seminar for editors of scienti�c journals Scienti�c library
of L.N. Gumilyov Eurasian National University room 104
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1 Introduction

Consider the following p-Hamiltonian system{
−(|u′|p−2u′)′ + A(t)|u|p−2u = λ∇F (t, u) + µ∇G(t, u) + h(t) a.e. t ∈ [0, T ],
u(0)− u(T ) = u′(0)− u′(T ) = 0,

(1.1)

where T > 0, p > 1, A : [0, T ] → RN×N is a continuous map from the interval [0, T ] to the
set of Nth-order symmetric matrices, λ > 0, µ ≥ 0 and F,G : [0, T ] × RN → R are functions
measurable with respect to t, for all x ∈ RN , continuously di�erentiable in x, for almost every
t ∈ [0, T ], and satisfying the following standard summability condition:

sup
|x|≤a

max{|F (·, x)|, |G(·, x)|, |∇F (·, x)|, |∇G(·, x)|} ∈ L1([0, T ]) (1.2)

for any a > 0. Also suppose that h ∈ L1(0, T ;RN).
It is clear that if ∇F,∇G are assumed to be continuous in [0, T ] × RN , then condition

(1.2) is satis�ed. A special case of dynamical systems are Hamiltonian systems. This type
of equations play an important role in �uid mechanics and gas dynamics. For the study of
Hamiltonian systems see [20, 23]. In recent years, the existence of at least three periodic solutions
for Hamiltonian systems have been studied in many papers (see [6, 12, 13, 15, 16, 17, 27, 28, 36]
and the references therein). For example in [17], the authors proved the existence of periodic
solutions for the following second-order Hamiltonian system{

−ü(t)− q(t)u̇(t) + A(t)u(t) = λ∇F (t, u(t)) + µ∇G(t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

(1.3)

by variational methods in the critical point theory. In problem (1.3), q ∈ L1(0, T ;R). In fact,
for q = 0 problem (1.3) is a special case of problem (1.1) when p = 2. A special case of problem
(1.1) when µ = 0, λ = 1, and A(t) = 0 has been investigated in [32]. In [34] the authors, studied
the existence of at least three periodic solutions for problem (1.1) in the case of h(t) = (0, ..., 0)
using two theorems due respectively to Ricceri (see reference [17] in [34]) and Averna-Bonanno
(see reference [13] in [34]).
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In this paper, using two kinds of Critical Points Theorems obtained in [1] and [7] which we
recall in the next section (Theorem 2.1 and Theorem 2.2), we ensure the existence of at least
three weak solutions or one weak solution for problem (1.1) (see Theorem 3.1 and Theorem 3.3).
This theorem has been used successfully employed to establish the existence of at least three
solutions for perturbed boundary value problems in the papers [3, 4, 9, 14, 19].

2 Preliminaries

Our main tool are two Critical Points Theorems that we recall here in a convenient form.
In the �rst theorem the coercivity of the functional Φ− λΨ is required. This theorem has been
obtained in [7], and it is a more precise version of Theorem 3.2 of [2]. In the second theorem a
special case of the Palais-Smale condition is assumed and it has been obtained in [1].

Theorem 2.1 ([7],Theorem 3.6). Let X be a re�exive real Banach space, Φ : X −→ R be
a functional coercive continuously G�ateaux di�erentiable and sequentially weakly lower semi-
continuous, whose G�ateaux derivative admits a continuous inverse on X∗, Ψ : X −→ R be a
functional continuously G�ateaux di�erentiable, whose G�ateaux derivative is compact. Moreover
let Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x ∈ X, with r < Φ(x) such that

(a1)
supx∈Φ−1(−∞,r] Ψ(x)

r
<

Ψ(x)

Φ(x)
,

(a2) for each λ ∈ Λr :=

]
Φ(x)

Ψ(x)
,

r

supx∈Φ−1(−∞,r] Ψ(x)

[
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ− λΨ has at least three distinct critical points in X.

De�nition 1. Fix r1, r2 ∈ [−∞,+∞] with r1 < r2. A G�atuax di�erentiable function I = Φ−Ψ
satis�es the Palais-Smale condition cut o� lower at r1 and upper at r2 (in short [r1](PS)[r2] -
condition) if any sequence {un} such that
(a) {I(un)} is bounded,
(b) lim

n→+∞
‖I ′(un)‖X∗ = 0,

(c) r1 < Φ(un) < r2 ∀n ∈ N,
has a convergent subsequence.

Remark 1. In De�nition 1 if r1 = −∞ and r2 ∈ R the Palais-Smale condition is denoted by
(PS)[r2], while if r1 ∈ R and r2 = +∞ it is denoted by [r1](PS).

To introduce the next theorem let X be a nonempty set and Φ,Ψ : X → R, be two
functionals. For all r ∈ R , we de�ne

ϕ(r) := inf
v∈Φ−1(]−∞,r[)

sup
u∈Φ−1(]−∞,r[)

Ψ(u)−Ψ(v)

r − Φ(v)
, (2.1)

Theorem 2.2 ([1],Theorem 5.2). Let X be a real Banach space and Φ,Ψ : X −→ R be two
continuously G�ateaux di�erentiable functionals with Φ bounded from below . Fix r > infXΦ and

assume that, for each λ ∈
]
0,

1

ϕ(r)

[
, the functional Iλ = Φ − λΨ satis�es the (PS)[r]-condition

.Then for each λ ∈
]
0,

1

ϕ(r)

[
, there is u0,λ ∈ Φ−1(] −∞, r[) such that Iλ(u0,λ) 6 Iλ(u) for all

u ∈ Φ−1(]−∞, r[) and I
′

λ(u0,λ) = 0.
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We assume that the matrix A satis�es the following conditions:
(i) A(t) = (akl(t)), k = 1, . . . , N , l = 1, . . . , N , is a symmetric matrix with akl ∈ L∞[0, T ] for

any t ∈ [0, T ],
(ii) there exists a positive constant δ such that 〈A(t)|x|p−2x, x〉 ≥ δ |x|p for all x ∈ RN and

t ∈ [0, T ], where 〈·, ·〉 denotes the inner product in RN and in the other hand we know that

〈A(t)|x|p−2x, x〉 ≤ δ̄ |x|p for any x ∈ RN and for every t ∈ [0, T ] where δ̄ ≤
N∑

i,j=1

‖aij‖ ([34]) .

Let us recall some basic concepts. Denote

E = {u : [0, T ]→ RN , u is absolutely continuous, u(0) = u(T ), u′ ∈ Lp([0, T ],RN)}.

Assume that E is equipped with the following norm

‖u‖E =

(∫ T

0

(|u′(t)|p + |u(t)|p)dt

) 1
p

, ∀ u ∈ E.

Also , we consider E with the norm

‖u‖ =

(∫ T

0

[|u′(t)|p + 〈A(t)|u(t)|p−2u(t), u(t)〉]dt

) 1
p

.

The Banach space E is a separable and re�exive. Obviously, E is also a uniformly convex Banach
space.

Due to the inequality

min{1, δ}‖u‖pE ≤ ‖u‖
p ≤ max{1, δ̄}‖u‖pE,

the norm ‖ · ‖ is equivalent to the norm ‖ · ‖E (see [34]).
Since (E, ‖ · ‖) is compactly embedded in C([0, T ],RN) (see [20]), there exists a positive

constant
c ≤ c0 =

q
√

2 max{T
1
q , T−

1
p}(min{1, δ})−

1
p (2.2)

where q = p
p−1

(see [34]), such that

‖u‖∞ ≤ c ‖ u ‖, (2.3)

where ‖u‖∞ = maxt∈[0,T ] | u(t) |.
Now we present the following lemma, which is required in the proof of the main theorem of

this paper.

Lemma 2.1. Let I : X → X∗ be the operator de�ned by

I(u)(v) =

∫ T

0

〈|u′(t)|p−2u′(t), v′(t)〉dt+

∫ T

0

〈A(t)|u(t)|p−2u(t), v(t)〉dt,

for every u, v ∈ X. Then I admits a continuous inverse on X∗.

Proof. Taking into account formula (2.2) from [25] for p > 1, there exists a positive constant Cp
such that if p ≥ 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ Cp|x− y|p, (2.4)

and if 1 < p < 2, then

〈|x|p−2x− |y|p−2y, x− y〉 ≥ Cp
|x− y|2

(|x|+ |y|)2−p . (2.5)
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Now according to inequalities (2.4) and (2.5) for every u, v ∈ X we have,

〈I(u)− I(v), u− v〉 ≥ Cp‖u− v‖p,

which shows that I is strictly monotone. So using ([33], Theorem 26.A(d)), I−1 exists and is
continuous.

De�nition 2. A function u ∈ E is a weak solution to problem (1.1), if∫ T

0

〈|u′(t)|p−2u′(t), v′(t)〉dt+

∫ T

0

〈A(t)|u(t)|p−2u(t), v(t)〉dt

−λ
∫ T

0

〈∇F (t, u(t)), v(t)〉dt− µ
∫ T

0

〈∇G(t, u(t)), v(t)〉dt−
∫ T

0

〈h(t), v(t)〉dt = 0

for every v ∈ E.

3 Main results

In this section, we use the following notation:

F θ :=

∫ T

0

sup
|x|≤θ

F (t, x)dt, t ∈ [0, T ], ∀θ > 0, (3.1)

Gθ :=

∫ T

0

sup
|x|≤θ

G(t, x)dt, t ∈ [0, T ], ∀θ > 0 (3.2)

and

Gx0 :=

∫ T

0

inf
x∈B

G(t, x)dt, (3.3)

where x0 ∈ RN and B = {x ∈ RN : 0 ≤ |x| ≤ |x0|}.

In order to introduce our �rst result, �x θ > 0 , 0 6= x0 ∈ RN such that

δ̄ T |x0|p∫ T

0

F (t, x0)dt

<
θp

cpF θ
,

where c > 0 is from inequality (2.3), and let

Λ :=

 δ̄ T |x0|p

p

∫ T

0

F (t, x0)dt

,
θp

pcpF θ

 , (3.4)

δ∗λ,G := min


θp − pcpλF θ − pcp‖h‖L1[0,T ]θ

p cpGθ
,

δ̄|x0|p T − pλ
∫ T

0

F (t, x0)dt− p
∫ T

0

〈h(t), x0〉dt

pGx0

 ,

(3.5)
and
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δλ,G := min

δ
∗
λ,G,

1

max

{
0, pcpT lim sup

|x|→+∞

supt∈[0,T ] G(t, x)

|x|p

}
 . (3.6)

Here we agree to read
1

0
as +∞ .

Now, we formulate our main result.

Theorem 3.1. Let F : [0, T ]×RN → R satisfy assumption (1.2) and F (t, 0) = 0 for all t ∈ [0, T ].
Assume that the following conditions hold:

(A1) there exist positive constant θ and a point x0 ∈ RN with θ < |x0|c(δ T )
1
p , such that

cpF θ

θp
<

∫ T

0

F (t, x0)dt

δ̄ T |x0|p
;

(A2) lim sup
|x|→+∞

supt∈[0,T ] F (t, x)

|x|p
≤ 0.

Then for every λ ∈ Λ, given by (3.4) and for every function G : [0, T ]× RN → R satisfying
assumption (1.2) with G(t, 0) = 0, for all t ∈ [0, T ] and such that

lim sup
|x|→+∞

supt∈[0,T ] G(t, x)

|x|p
< +∞, (3.7)

there exists µ∗ > 0 such that for each µ ∈ [0, µ∗), problem (1.1) has at least three weak solutions.

Proof. Fix λ ∈ Λ and µ ∈ [0, µ∗) where µ∗ = δ̄λ,G de�ned by (3.6). Let

Φ(u) =
1

p
‖u‖p, Ψ(u) =

∫ T

0

(F (t, u(t)) +
µ

λ
G(t, u(t)) +

1

λ
〈h(t), u〉)dt

for each u ∈ E. Since the critical points of the functional Φ − λΨ on E are weak solutions to
problem (1.1), our aim is to apply Theorem 2.1. It is well known that Ψ is continuously G�ateaux
di�erentiable and the di�erential at the point u ∈ E is

Ψ′(u)(v) =

∫ T

0

〈∇F (t, u(t)), v(t)〉dt+
µ

λ

∫ T

0

〈∇G(t, u(t)), v(t)〉dt+
1

λ

∫ T

0

〈h(t), v(t)〉dt,

for every v ∈ E . Now, we will prove that , Ψ′ is compact. Indeed, it is enough to show that Ψ′

is strongly continuous on E. For this end, for �xed u ∈ E, let un → u weakly in E as n → ∞,
then un converges uniformly to u on [0, T ] as n → ∞ (because E is compactly embedded in
C([0, T ],RN)). Since F and G are continuously di�erentiable in u, for almost every t ∈ [0, T ]
∇F,∇G are continuous in RN for every t ∈ [0, T ], so

∇F (t, un) +
µ

λ
∇G(t, un)→ ∇F (t, u) +

µ

λ
∇G(t, u),

as n→∞. Hence according to the above result and assumption (1.2) we have, Ψ′(un)→ Ψ′(u)
as n → ∞. Thus we proved that Ψ′ is strongly continuous on E, which implies that Ψ′ is a
compact operator by Proposition 26.2 of [33] .
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Moreover, Φ is continuously G�ateaux di�erentiable and the di�erential at the point u ∈ E is

Φ′(u)(v) =

∫ T

0

〈|u′(t)|p−2u′(t), v′(t)〉dt+

∫ T

0

〈A(t)|u(t)|p−2u(t), v(t)〉dt,

for every v ∈ E, Φ is sequentially weakly lower semicontinuous and also,by Lemma 2.1, Φ′ admits
a continuous inverse on E. Now are aim is to apply Theorem 2.1 to Φ and Ψ. To this end , we

will verify conditions (a1) and (a2). Put r =
1

p
(
θ

c
)p. Bearing in mind (2.3), we see that

Φ−1(]−∞, r]) = {u ∈ E; Φ(u) ≤ r}

=

{
u ∈ E;

||u||p

p
≤ r

}
⊆ {u ∈ E; |u(t)| ≤ θ for each t ∈ [0, T ]} .

Now we have

sup
Φ(u)≤r

Ψ(u) = sup
Φ(u)≤r

∫ T

0

(F (t, u(t)) +
µ

λ
G(t, u(t)) +

1

λ
〈h(t), u〉)dt ≤∫ T

0

sup
|x|≤θ

F (t, x)dt+
µ

λ

∫ T

0

sup
|x|≤θ

G(t, x)dt+
1

λ

∫ T

0

sup
|x|≤θ
〈h(t), x〉dt =

F θ +
µ

λ
Gθ +

1

λ
‖h‖L1[0,T ]θ. (3.8)

Since G(t, 0) = 0 for all t ∈ [0, T ], It is clear that Gθ ≥ 0.
Now �x x̄ = x0. Clearly x0 ∈ E . One has

Ψ(x̄) =

∫ T

0

F (t, x0)dt+
µ

λ

∫ T

0

G(t, x0)dt+
1

λ

∫ T

0

〈h(t), x0〉dt ≥

∫ T

0

F (t, x0)dt+
µ

λ
Gx0 +

1

λ

∫ T

0

〈h(t), x0〉dt

Again since G(t, 0) = 0 for all t ∈ [0, T ] we get that Gx0 ≤ 0, and according to assumption (ii)

from the previous section and also to the assumption θ < |x0|c(δ T )
1
p , we have

r <
1

p
δ |x0|p T ≤ Φ(x̄) =

1

p
‖x0‖p =

1

p

∫ T

0

〈A(t)|x0|p−2x0, x0〉dt ≤
1

p
δ̄|x0|p T. (3.9)

Therefore, we have

Ψ(x̄)

Φ(x̄)
≥

∫ T

0

F (t, x0)dt+
µ

λ
Gx0 +

1

λ

∫ T

0

〈h(t), x0〉dt

1

p
δ̄|x0|p T

(3.10)

and
sup

Φ(u)≤r
Ψ(u)

r
≤
F θ +

µ

λ
Gθ +

1

λ
‖h‖L1[0,T ]θ

1

p
(
θ

c
)p

(3.11)
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Since µ < µ∗, one has

µ <
θp − pcpλF θ − pcp‖h‖L1[0,T ]θ

p cpGθ
,

this means that

F θ +
µ

λ
Gθ +

1

λ
‖h‖L1[0,T ]θ

1

p
(
θ

c
)p

<
1

λ
.

On the other hand

µ <

δ̄|x0|p T − pλ
∫ T

0

F (t, x0)dt− p
∫ T

0

〈h(t), x0〉dt

pGx0

,

this means that ∫ T

0

F (t, x0)dt+
µ

λ
Gx0 +

1

λ

∫ T

0

〈h(t), x0〉dt

1

p
δ̄|x0|p T

>
1

λ
.

Then we have

F θ +
µ

λ
Gθ +

1

λ
‖h‖L1[0,T ]θ

1

p
(
θ

c
)p

<
1

λ
<

∫ T

0

F (t, x0)dt+
µ

λ
Gx0 +

1

λ

∫ T

0

〈h(t), x0〉dt

1

p
δ̄|x0|p T

. (3.12)

Hence from (3.10),(3.11) and (3.12) condition (a1) of Theorem 2.1 is veri�ed. Now we prove that
Φ− λΨ is coercive for every λ ∈ Λ.

Since µ < δλ,G, we can �x l > 0 such that

lim sup
|x|→+∞

supt∈[0,T ] G(t, x)

|x|p
< l,

and µl <
1

pcpT
.

Therefore, there exists a function K ∈ L1([0, T ]) such that

G(t, x) ≤ l|x|p +K(t), (3.13)

for every t ∈ [0, T ] and x ∈ RN .
Now, �x 0 < η <

1

pλcpT
− µl

λ
.

By (A2) there is a function Mη ∈ L1([0, T ]) such that

F (t, x) ≤ η|x|p +Mη(t), (3.14)

for every t ∈ [0, T ] and x ∈ RN . Now, for each u ∈ X, by using (2.3) we have

Φ(u)− λΨ(u) =
1

p
‖u‖p − λ

∫ T

0

(F (t, u(t)) +
µ

λ
G(t, u(t)) +

1

λ
〈h(t), u(t)〉)dt ≥

1

p
‖u‖p − λ

∫ T

0

(η|u|p +Mη(t))dt− µ
∫ T

0

(l|u|p +K(t))dt−
∫ T

0

〈h(t), u(t)〉dt ≥

(
1

p
− ληcpT − µlcpT )‖u‖p − λ‖Mη‖L1[0,T ] − µ‖K‖L1[0,T ] − c‖h‖L1[0,T ]‖u‖,
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and thus
lim

‖u‖→+∞
(Φ(u)− λΨ(u)) = +∞,

which means the functional Φ − λΨ is coercive, and condition (a2) of Theorem 2.1 is veri�ed.

Since from (3.12) λ ∈

Φ(x̄)

Ψ(x̄)
,

r

sup
Φ(u)≤r

Ψ(u)

, Theorem 2.1 guarantees the existence of three

critical points for the functional Φ− λΨ, and the proof is complete.

A corollary of Theorem 3.1 is as follows.

Theorem 3.2. Let F : RN → R be a function such that F (0) = 0 and ∇F is continuous in RN .
Moreover, suppose that there exists x0 ∈ RN , such that F (x0) > 0, and

lim inf
|ξ|→0+

F (ξ)

|ξ|p
= lim sup
|ξ|→+∞

F (ξ)

|ξ|p
= 0. (3.15)

Then for each λ > λ∗ :=
δ̄|x0|p

pF (x0)
and for every λ > λ∗ and for every function

G : [0, T ]×RN → R satisfying assumption (1.2) with G(t, 0) = 0 for all t ∈ [0, T ] and such that

lim sup
|ξ|→+∞

supt∈[0,T ] G(t, ξ)

|ξ|p
< +∞,

there exists µ∗ > 0 such that, for each µ ∈ [0, µ∗[, the problem{
−(|u′|p−2u′)′ + A(t)|u|p−2u = λ∇F (u) + µ∇G(t, u) + h(t) a.e. t ∈ [0, T ],
u(0)− u(T ) = u′(0)− u′(T ) = 0.

(3.16)

admits at least three weak solutions.

Proof. Fix λ > λ∗ :=
δ̄|x0|p

pF (x0)
and µ ∈ [0, µ∗[ where µ∗ = δλ,G de�ned by (3.6). According to

condition (3.15) there is a sequence {θn} ⊂]0,+∞[ such that lim
n→∞

θn = 0 and

lim
n→∞

sup
|ξ|≤θn

F (ξ)

θpn
= 0.

So, there exists θ > 0 such that

sup
|ξ|≤θ

F (ξ)

θ
p < min

{
F (x0)

δ̄|x0|pcp
,

1

pcpλ

}
and θ < |x0|c(δ T )

1
p . Now the desired result can be obtained from Theorem 3.1.

Now, we will present an example for Theorem 3.2.

Example 1. Let T = 1, p = 3 and A(t) = I, where I is identity matrix of order 3× 3. Also let

F (x) = |x|14e(1−0.1|x|2) , G(t, x) = e−t|x|3 and h(t) =

 sint
cost− 1

t

 for all x = (x1, x2, x3) ∈ R3

with |x| = (x2
1 + x2

2 + x2
3)

1
2 and t ∈ [0, 1] .

Then for every λ > λ∗ = 1
3e0.9

all the hypotheses of Theorem 3.2 are satis�ed with δ̄ = 1 and
x0 = ( 1√

3
, 1√

3
, 1√

3
).
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At this point, with various changes and new assumptions in Theorem 3.1, the existence of
one weak solution to problem (1.1) will be proved.

Theorem 3.3. Let F : [0, T ]×RN → R satisfy assumption (1.2) and F (t, 0) = 0 for all t ∈ [0, T ].

Suppose that 0 6= x0 ∈ RN is such that |x0| < (
p

T δ̄
)

1
p ,

∫ T

0

F (t, x0)dt > 0 and

∫ T

0

〈h(t), x0〉dt > 0.

Then for every λ ∈ Λ′ =
]
0,

1

F c p
1
p

[
, where F c p

1
p
is de�ned by (3.1), and for every non-

negative function G : [0, T ] × RN → R satisfying assumption (1.2) with G(t, 0) = 0, for all
t ∈ [0, T ], there exists µ∗ > 0 such that for each µ ∈ [0, µ∗) problem (1.1) admits at least one
weak solution.

Proof. Our aim is to apply Theorem 2.2 to problem (1.1). For this purpose �x λ ∈ Λ′ and

consider Gc p
1
p
de�ned by (3.2). Also �x µ ∈ [0, µ∗[ where

µ∗ =
1− λF c p

1
p − c p

1
p‖h‖L1[0,T ]

Gc p
1
p

.

Let Φ and Ψ be as given in the proof of Theorem 3.1. First we prove that Iλ = Φ − λΨ,
satis�es (PS)[r]- condition for all r > 0. Equivalently, we will prove that any sequence {un} ⊂ E
satisfying

L := sup
n
Iλ(un) < +∞ , ‖I ′λ(un)‖E∗ → 0 and Φ(un) < r ∀n ∈ N, (3.17)

contains a convergent subsequence. Since Φ is coercive, from Φ(un) =
1

p
‖un‖p < r, ∀n ∈

N one has that{un} is bounded in E and hence by the Eberlian-Smulyan Theorem, passing
to a subsequence if necessary we can assume that un ⇀ u0. Now since Ψ′ is compact then
Ψ′(un) → Ψ′(u0). But from (3.17) we have I ′λ(un) = Φ′(un) − λΨ′(un) → 0. This implies that
un → Φ′−1(λΨ′(u0)) (because Φ′ is a homeomorphism) and �nally according to the uniqueness
of the weak limit, un → u0 in E and so Iλ satis�es (PS)[r]-condition.

Put r = 1, v = x0 . Then by (3.9) and the condition |x0| < (
p

T δ̄
)

1
p , one has Φ(v) = Φ(x0) <

1 = r. Also if u ∈ Φ−1(]−∞, 1[) then Φ(u) < 1 and so ‖u‖ < p
1
p . Hence according to (2.1) and

(2.3) we get

ϕ(r) = inf
v∈Φ−1(]−∞,r[)

sup
u∈Φ−1(]−∞,r[)

Ψ(u)−Ψ(v)

r − Φ(v)
≤

sup
u∈Φ−1(]−∞,1[)

Ψ(u)−Ψ(x0)

1− Φ(x0)
≤

sup
u∈Φ−1(]−∞,1[)

Ψ(u) ≤ F cp
1
p

+
µ

λ
Gcp

1
p

+
1

λ
cp

1
p‖h‖L1[0,T ]. (3.18)

Since

µ < µ∗ =
1− λF cp

1
p − cp

1
p‖h‖L1[0,T ]

Gcp
1
p

one has

F cp
1
p

+
µ

λ
Gcp

1
p

+
1

λ
cp

1
p‖h‖L1[0,T ] <

1

λ
. (3.19)

Hence from (3.18) and (3.19) we get

λ ∈ Λ′ ⊆
]
0,

1

ϕ(r)

[
.
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So all assumptions of Theorem 2.2 are veri�ed. Therefore for every λ ∈ Λ′ the functional Iλ
admits at least one critical point that is a weak solution to problem (1.1).

Now we point out the following applications of Theorem 3.3 when F does not depend on t.

Theorem 3.4. Let F : RN → R be a non-negative function with F (0) = 0 and ∇F be continuous
in RN and such that

|∇F (x)| ≤ a0 + a1|x|p−1 (3.20)

for all x ∈ RN where a0 and a1 are constants.

Then for every λ ∈ ]0, λ∗[ where λ∗ =
(
T (a0c p

1
p + a1c

p)
)−1

and for every non-negative
function G : [0, T ] × RN → R satisfying assumption (1.2) with G(t, 0) = 0, for all t ∈ [0, T ],
there exist µ∗ > 0 such that for each µ ∈ [0, µ∗[ the problem{

−(|u′|p−2u′)′ + A(t)|u|p−2u = λ∇F (u) + µ∇G(t, u) a.e. t ∈ [0, T ],
u(0)− u(T ) = u′(0)− u′(T ) = 0.

(3.21)

admits at least one weak solution.

Proof. First, we see that

F (x)− F (0) =

∫ 1

0

〈∇F (sx).x〉ds.

Then from condition F (0) = 0 and (3.20) one has

F (x) =

∫ 1

0

|∇F (sx)||x|ds 6
∫ 1

0

(a0 + a1s
p−1|x|p−1)|x|ds = a0|x|+

a1

p
|x|p.

Now,we have

F cp
1
p

=

∫ T

0

sup

|x|≤cp
1
p

F (x)dt ≤
∫ T

0

sup

|x|≤cp
1
p

(a0|x|+
a1

p
|x|p)dt = T (a0cp

1
p + a1c

p) =
1

λ∗
. (3.22)

Therefore from (3.22) one has, λ ∈]0, λ∗[⊆
]
0,

1

F cp
1
p

[
and the conclusion follows from Theorem

3.3.

Remark 2. If in Theorem 3.4, λ∇F (0) + µ∇G(t, 0) 6= (0, 0, 0, ..., 0) then problem (3.21) has at

least one non-trivial weak solution whose norm in E is less than p
1
p .

Finally, we present the following example to illustrate Theorem 3.4.

Example 2. Let F (x) = |x|3(1− cos(ln(1 + |x|2))). By a simple computation it can be shown
that |∇F (x)| ≤ 8|x|2 for all x ∈ RN . So (3.20) is satis�ed with a0 = 0, a1 = 8 and p = 3.
Then for every λ ∈ ]0, 1

8c3
[ and for every non-negative function G : [0, T ] × RN → R satisfying

assumption (1.2) with G(t, 0) = 0, for all t ∈ [0, T ] and ∇G(t, 0) 6= 0 , there exist µ∗ > 0 such
that for each µ ∈]0, µ∗[ the problem{

−(|u′|u′)′ + A(t)|u|u = λ∇F (u) + µ∇G(t, u) a.e. t ∈ [0, 1],
u(0)− u(1) = u′(0)− u′(1) = 0.

(3.23)

admits at least one non-trivial weak solution.
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