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KUSSAINOVA LEILI KABIDENOVNA

(to the 70th birthday)

On May 3, 2018 was the 70th birthday of Leili Kabidenovna Kus-
sainova, member of the Editorial Board of the Eurasian Mathematical
Journal, professor of the Department of Fundamental Mathematics
of the L.N. Gumilyov Eurasian National University, Doctor of Phys-
ical and Mathematical Sciences (2000), Professor (2006), Honorary
worker of Education of the Republic of Kazakhstan (2005).

L.K. Kussainova was born in the city of Karaganda. In 1972
she graduated from the Novosibirsk State University (Russian Fed-
eration) and then completed her postgraduate studies at the Insti-
tute of Mathematics (Almaty). L.K. Kussainova's scienti�c supervi-
sors were distinguished Kazakh mathematicians T.I. Amanov and M.
Otelbayev.

Scienti�c works of L.K. Kussainova are devoted to investigation
of the widths of embeddings of the weighted Sobolev spaces, to em-
beddings and interpolations of weighted Sobolev spaces with weights

of general type.
She has solved the problem of three-weighted embedding of isotropic and anisotropic Sobolev

spaces in Lebesgue spaces, the problem of exact description of the Lions-Petre interpolation
spaces for a pair of weighted Sobolev spaces.

To solve these problems L.K. Kussainova obtained nontrivial modi�cations of theorems on
Besicovitch-Guzman covers. The �rst relates to covers by multidimensional parallelepipeds,
whereas the second relates to double covers by cubes. These modi�cations have allowed to
obtain the description of the interpolation spaces in the weighted case. Furthermore, by using
the double covering theorem the exact descriptions of the multipliers were obtained for a pair of
Sobolev spaces of general type.

The maximal operators on a basis of cubes with adjustable side length, which were introduced
by L.K. Kussainova, have allowed her to solve the problem of two-sided distribution estimate of
widths of the embedding of two-weighted Sobolev spaces with weights of general type in weighted
Lebesgue spaces.

Under her supervision 6 theses have been defended: 4 candidates of sciences theses and 2
PhD theses.

The Editorial Board of the Eurasian Mathematical Journal congratulates Leili Kabidenovna
Kussainova on the occasion of her 70th birthday and wishes her good health and new achieve-
ments in mathematics and mathematical education.



The awarding ceremony
of the Certi�cate of the Emerging Sources Citation of Index database

In 2016 the Eurasian Mathematical Journal has been included in the Emerging Sources
Citation of Index (ESCI) of the "Clarivate Analytics" (formerly "Thomson Reuters") Web of
Science. In 2018 the second journal of the L.N. Gumilyov Eurasian National University, namely
the Eurasian Journal of Mathematical and Computer Applications was also included in ESCI.

The ESCI was launched in late 2015 as a new database within "Clarivate Analytics". Around
3,000 journals were selected for coverage at launch, spanning the full range of subject areas.

The selection process for ESCI is the �rst step in applying to the Science Citation Index.
All journals submitted for evaluation to the core Web of Science databases will now initially be
evaluated for the ESCI, and if successful, indexed in the ESCI while undergoing the more in-
depth editorial review. Timing for ESCI evaluation will follow "Clarivate Analytics" priorities for
expanding database coverage, rather than the date that journals were submitted for evaluation.

Journals indexed in the ESCI will not receive Impact Factors; however, the citations from
the ESCI will now be included in the citation counts for the Journal Citation Reports, therefore
contributing to the Impact Factors of other journals. If a journal is indexed in the ESCI it
will be discoverable via the Web of Science with an identical indexing process to any other
indexed journal, with full citation counts, author information and other enrichment. Articles in
ESCI indexed journals will be included in an author's H-Index calculation, and also any analysis
conducted on Web of Science data or related products such as InCites. Indexing in the ESCI
will improve the visibility of a journal, provides a mark of quality and is good for authors.

To commemorate this important achievement of mathematicians of the L.N. Gumilyov
Eurasian National University on June 14, 2018, by the initiative of the "Clarivate Analytics",
the awarding ceremony of the Certi�cate of Emerging Sources Citation Index database of "Clar-
ivate Analytics" to the editorial boards of the Eurasian Mathematical Journal and the Eurasian
Journal of Mathematical and Computer Applications was held at the L.N. Gumilyov Eurasian
National University. The programme of this ceremony is attached.
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Astana June 14, 2018
Venue: L.N. Gumilyov Eurasian National University

Astana, Satpayev street 2, Room 259

14:30- 15:00 Visit to the Museum of the history of Education, Museum of L.N. Gumilyov,
Museum of writing

15:00-15:10 Opening speech of moderator
A. Moldazhanova � the First Vice-Rector, Vice-Rector for Academic Works
of L.N. Gumilyov Eurasian National University

15:10-15:20 Oleg Utkin - Managing Director of Clarivate Analytics in Russia and the CIS
15:20-15:30 Certi�cation award ceremony of the Eurasian Mathematical Journal, the

Eurasian Journal of Mathematical and Computer Applications in international
database

15:30-15:45 Kordan Ospanov � Deputy Editor-in-Chief of the Eurasian Mathematical
Journal. History and perspectives of development of the scienti�c journal
Eurasian Mathematical Journal

15:45-16:00 Kazizat Iskakov � Deputy Editor-in-Chief of the Eurasian Journal of Math-
ematical and Computer Applications. History and perspectives of development
of the scienti�c journal Eurasian Journal of Mathematical and Computer Ap-
plications.

16:00-16:10 Closing Ceremony
Memory photo

16:10-16:30 Co�ee break for visitors
16:40-17:20 Lyaziza Mukasheva - O�cial representative of Clarivate Analytics in the

Central Asian region Seminar for editors of scienti�c journals Scienti�c library
of L.N. Gumilyov Eurasian National University room 104
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Abstract. A new non-periodic modulus of smoothness related to the Riesz derivative is
constructed. Its properties are studied in the spaces Lp(R) of non-periodic functions with
1 ≤ p ≤ +∞. The direct Jackson type estimate is proved. It is shown that the introduced
modulus is equivalent to the K-functional related to the Riesz derivative and to the approxima-
tion error of the convolution integrals generated by the Fej�er kernel.

DOI: https://doi.org/10.32523/2077-9879-2018-9-2-11-21

1 Introduction, notations and preliminaries

In [13] a periodic modulus of smoothness related to the Riesz derivative was introduced. The
Jackson type estimate and equivalence to the approximation error of the Fej�er means were
proved. In [1] it was shown that the construction of a modulus of smoothness, equivalent to
K-functionals related to the Riesz derivative can be modi�ed.

In [5] it was shown that the approximation error of the convolution integralsMσ(f) generated
by the Fej�er kernel can be completely described in terms of the K-functional related to the Riesz
derivative

‖ f −Mσ(f) ‖p � K〈′〉
(
f, σ−1

)
p
, σ > 0 . (1.1)

In the present paper we continue chain of equivalences (1.1) by adding modulus of smoothness
(Theorem 4.2). Some of the assertions were announced in [2]. In this paper we give complete
proofs of these results. For the generalized moduli of smoothness in non-periodic case we refer
to [3].

We consider Lp(R) spaces with 1 ≤ p ≤ +∞ . If p = +∞ we consider the space C(R) of
bounded uniformly continuous functions equipped with the Chebyshev norm

‖ f ‖C = sup
x∈R
|f(x)| < +∞ .

We denote unimportant positive constants by c (with subscripts and superscripts). They may
be di�erent in di�erent formulas (but not in the same formula). The relation A(f, σ) � B(f, σ)
indicates the equivalence. It means that there exist positive constants c1 and c2 that do not
depend on f and σ, such that c1A(f, σ) ≤ B(f, σ) ≤ c2A(f, σ).

By S and S ′ we denote the Schwartz space of in�nitely di�erentiable rapidly decreasing
functions and its dual space respectively. The Fourier transform and its inverse for g ∈ S ′ are
given by

〈Fg, ϕ〉 = 〈g, Fϕ〉 , ϕ ∈ S,
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〈
F−1g, ϕ

〉
=
〈
g, F−1ϕ

〉
, ϕ ∈ S.

Following [5], we denote by Bp
σ the Bernstein space, which is, by de�nition, the space of all

functions in Lp(R) , which are restrictions to the R of analytic functions of exponential type σ
de�ned on C, that is,

Bp
σ = {f = F |R ∈ Lp(R) : F is analytic onC, |F (x+ iy)| ≤ A · eσ|y|} ,

where A > 0 does not depend on z = x + iy. Henceforth, we use the following notation
Bp =

⋃
σ> 0

Bp
σ. As is well known (see, for instance, [10, p. 181]), by the Paley-Wiener-Schwartz

theorem the Bernstein space can be characterized also in terms of the Fourier transform:

Bp
σ = {f ∈ Lp(R), suppF−1f ⊂ [−σ, σ]}, 1 ≤ p < +∞ ,

Bp
σ = {f ∈ C(R), suppF−1f ⊂ [−σ, σ] }, p = +∞ .

The space Bp
σ is Banach space, equipped with the norm in Lp(R). Based on the Nikolski

inequality (see for example [14]) we have the continuous embeddings

Bp
σ ⊂ Bq

σ, 1 ≤ p < q ≤ ∞.

In particular, any function belonging to a Bernstein space is bounded. Because of the above
properties entire functions of exponential type are often called bandlimited functions.

A number of monographs and papers are devoted to the theory of approximation by ban-
dlimited functions (see, e.g., [4], [5], [6], [7], [14], [17]). As usual, the best approximation of
f ∈ Lp(R) of order σ > 0 is given by

Eσ(f)p = inf
g∈Bpσ
‖f − g‖p .

The convolution integralsM(φ)
σ , that are non-periodic counterparts of the Fourier means in the

trigonometric case (see e.g. [5], [12], [8]), are given by the convolution of f ∈ Lp(R) with the
kernel Kφ

σ = F
[
φ
( ·
σ

)]
(x) ∈ B1

r(φ)σ , σ > 0 , where the generator of method φ is a continuous

complex-valued function, having compact support (r(φ) = sup{ | ξ | : ξ ∈ suppφ } < +∞), such
that φ(−ξ) = φ(ξ) for all ξ ∈ R and φ(0) = 1 . The class of all functions satisfying the above
conditions for φ we denote by K . We note that for f ∈ Bp one has

M(φ)
σ (f ;x) = F

[
φ
( ·
σ

)
F−1[f ](·)

]
(x) . (1.2)

The following theorem holds [5].

Theorem 1.1. Let 1 ≤ p ≤ +∞, φ ∈ K and F [φ](x) ∈ L1(R) , r = r(φ). Then

1)M(φ)
σ , σ > 0 are linear bounded operators mapping Lp(R) to Bp

rσ and

‖M(φ)
σ ‖(p) ≤ ‖M(φ)

σ ‖(1) = ‖M(φ)
σ ‖(∞)

= (2π)−1‖Kφ
σ‖1 = (2π)−1‖F [φ]‖1;

(1.3)

2) the methodM(φ)
σ converges in Lp(R), i.e.,

lim
σ→+∞

‖f −M(φ)
σ (f)‖p = 0, f ∈ Lp(R) ; (1.4)

3) if, in addition, φ(ξ) = 1 for ξ ∈ [−ρ; ρ] , ρ > r(φ), then the inequality

‖f −M(φ)
σ (f)‖p ≤ cEσ(f)p , f ∈ Lp(R) , σ > 0 , (1.5)

holds, where the positive constant c does not depend on f and σ.
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Convolution integrals generated by the Fej�er kernel Mσ , where φ(ξ) = (1 − |ξ|)+ and
a+ = max{a, 0} .

It follows from (1.4) that Bp is dense in Lp(R) , if 1 ≤ p < +∞ ; also B∞ is dense in C(R).
Norm of a linear bounded operator A in Lp(R) is given by ‖A‖(p) = sup

‖f‖p≤1

‖A(f)‖p .

We note that spaces Sσ = Bp
σ ∩ S are dense in Bp

σ only for 1 ≤ p < +∞ [18, p. 22-23]. We
apply the following approximation procedure [14] which works for all 1 ≤ p ≤ +∞ :

Theorem 1.2. Let ϕ ∈ S , such that F [ϕ](x) ≥ 0 , suppF [ϕ] ⊂ [−1; 1] and ϕ(0) = 1 .

(i) If f ∈ Bp
σ , 1 ≤ p < +∞ and ε > 0 , then ϕ(εt)f(t) ∈ Bp

σ+ε ∩ S and (ϕ(ε·)f) → f in
Lp(R) for ε → 0 .

(ii) If f ∈ B∞σ and ε > 0 , then ϕ(εt)f(t) ∈ B∞σ+ε∩S and ‖ϕ(εt)f(t)‖∞ → ‖f‖∞ for ε → 0 .

In our application it will be convenient to work with equivalent de�nition of the Riesz deriva-
tive of g ∈ B∞ (see [5] for details)

g〈
′〉(x) = (2π)−1 (g ∗ F [| · |η(·)]) (x), x ∈ R, (1.6)

where η is an in�nitely di�erentiable function, which has compact support and η(ξ) = 1 for
ξ ∈ [−ρ(g), ρ(g)], where ρ(g) = sup{ | ξ | : ξ ∈ suppF−1g } < +∞.

The K-functional, related to the Riesz derivative is given [5] by

K〈′〉(f, δ)p = inf
g∈Bp

{
‖f − g‖p + δ‖g〈′〉‖p

}
, δ ≥ 0 . (1.7)

We list some elementary properties of (1.7).

Lemma 1.1. Let 1 ≤ p ≤ +∞ and f ∈ Lp(R). Then

(i) the function K〈′〉(f, δ)p increases on [0; +∞) and K〈′〉(f, 0)p = 0;

(ii) for δ1 , δ2 ≥ 0 one has

K〈′〉(f, δ1 + δ2)p ≤ K〈′〉(f, δ1)p + K〈′〉(f, δ2)p ;

(iii) for δ , t ≥ 0 one has
K〈′〉(f, tδ)p ≤ max(1, t)K〈′〉(f, δ)p ; (1.8)

(iv) for f1 , f2 ∈ Lp(R) and δ ≥ 0 it holds

K〈′〉(f1 + f2, δ)p ≤ K〈′〉(f1, δ)p + K〈′〉(f2, δ)p . (1.9)

Proof.
(i) The proof is based on the following inequality for 0 ≤ δ1 ≤ δ2

‖f − g‖p + δ1‖g〈
′〉‖p ≤ ‖f − g‖p + δ2‖g〈

′〉‖p .

Taking into account that Bp is dense in Lp(R) for 1 ≤ p ≤ +∞ , one has
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K〈′〉(f, 0) = inf
g∈Bp

‖f − g‖p + 0 = 0 .

Part (ii) follows from de�nition of K-functional (1.7).
(iii) For 0 ≤ t ≤ 1 (1.8) follows from (i). Let t > 1 and g ∈ Bp . Then

‖f − g‖p + (tδ)‖g〈′〉‖p =

= t
(
t−1‖f − g‖p + δ‖g〈′〉‖p

)
≤ t

(
‖f − g‖p + δ‖g〈′〉‖p

)
.

(1.10)

Now (1.8) follows from (1.10).
(iv) Let g1 , g2 ∈ Bp . Then

K〈′〉(f1 + f2 , δ)p ≤ ‖f1 − g1‖p + δ‖g〈
′〉

1 ‖p

+ ‖f2 − g2‖p + δ‖g〈
′〉

2 ‖p
(1.11)

Now (1.9) is a corollary of (1.11). �

2 The construction of the modulus

We consider the operators:

T̃hf(x) =
3

π2

∑
ν 6=0

f(x+ νh)

ν2
, f ∈ Lp(R) , h ∈ R , (2.1)

∆̃h = T̃h − I , (2.2)

where I is the identity operator. We introduce the modulus of smoothness as

ω〈′〉(f, δ)p = sup
0≤h≤δ

‖ ∆̃hf(x) ‖p , δ ≥ 0 , f ∈ Lp(R) . (2.3)

Following [13], we call (2.3) modulus of smoothness related to the Riesz derivative. We note

that the di�erence operator ∆̃h is associated with the Fourier coe�cients θ∧(ν) , ν ∈ Z of the
2π-periodic function θ, given on x ∈ [0, 2π) by

θ(x) =
3

2π2
x2 − 3

π
x , (2.4)

by the following relation

∆̃hf(x) =
∑
ν∈Z

θ∧(ν)f(x + νh) . (2.5)

Formulas (2.1) and (2.5) are understood in the sense of convergence in Lp(R).

We list some elementary properties of the operators T̃h and ∆̃h.
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Lemma 2.1. Let 1 ≤ p ≤ ∞. Then T̃h and ∆̃h, h ∈ R are linear bounded operators in Lp(R):

‖ T̃h ‖(p) ≤ 1 , h ∈ R , (2.6)

‖ ∆̃h ‖(p) ≤ 2 , h ∈ R , (2.7)

ω〈′〉(f, δ)p ≤ 2 ‖ f ‖p , f ∈ Lp(R) , δ ≥ 0 . (2.8)

Proof. First we prove (2.6). Applying (2.1) and a relation
∞∑
ν=1

1
ν2 = π2

6
, we get for f ∈ Lp(R)

‖ T̃hf ‖p ≤
3

π2

∑
ν 6=0

‖ f(x + νh) ‖p
ν2

≤ ‖ f ‖p .

Estimate (2.7) follows from (2.2). Estimate (2.8) is a corollary of (2.3) and (2.7). �

3 Jackson type estimate

We note that the di�erence operator is of multiplier type, more precisely, for f ∈ L2(R) one has

3

π2

∑
ν∈Z/{0}

f(x + νh)

ν2
= F

[(
3

2π2
(h·)2 − 3

π
(h·)

)
F−1[f ](·)

]
(x) , h ∈ R (3.1)

almost everywhere.

Indeed, both sides of (3.1) make sense in L2(R). Let ϕ ∈ S . Then by virtue of (2.5) we have

F [θ (h·)F−1[f ](·)] (ϕ) =
+∞∫
−∞

θ(hξ)(F−1[f ])(ξ)(F [ϕ])(ξ)dξ

=
+∞∫
−∞

(F−1[f ])(ξ)
∑
ν∈Z

θ∧(ν)eiνhξ(F [ϕ])(ξ)dξ

=
+∞∫
−∞

(F−1[f ])(ξ)
∑
ν∈Z

θ∧(ν)F [ϕ(· − νh)](ξ)dξ

=
+∞∫
−∞

(F−1[f ])(ξ)F

[∑
ν∈Z

θ∧(ν)ϕ(· − νh)

]
(ξ)dξ

=
+∞∫
−∞

(F−1[f ])(ξ)2πF−1

[∑
ν∈Z

θ∧(ν)ϕ(· − νh)

]
(ξ)dξ ,

(3.2)
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where θ(·) is de�ned by (2.4). By applying (3.2) and the Plancherel's theorem we get

F [θ(h·)F−1[f ](·)] (ϕ) =
+∞∫
−∞

f(x)
∑
ν∈Z

θ∧(ν)ϕ(x− νh)dx

=
∑
ν∈Z

θ∧(ν)
+∞∫
−∞

f(x)ϕ(x− νh)dx

=
∑
ν∈Z

θ∧(ν)
+∞∫
−∞

f(x+ νh)ϕ(x)dx

=
+∞∫
−∞

[∑
ν∈Z

θ∧(ν)f(x+ νh)

]
ϕ(x)dx . �

The next theorem establishes the possibility of moving the constants out of the modulus of
smoothness.

Theorem 3.1. For 1 ≤ p ≤ +∞ and t ≥ 0

ω〈′〉(f, tδ)p ≤ c ( 1 + t )3 ω〈′〉(f, δ)p , f ∈ Lp(R) , δ, t ≥ 0 , (3.3)

where the positive constant c does not depend on δ, t and f .

Proof. It is clear that (3.3) follows from the inequality

‖ ∆̃mhf(x) ‖p ≤ Cm3 ‖ ∆̃hf(x) ‖p , f ∈ Lp(R) , h, t ≥ 0 . (3.4)

The proof of (3.4) is splitted into two steps. On the �rst step we obtain (3.4) for f ∈ Bp∩S.
Consider the function θm(ξ) = θ(mξ)

θ(ξ)
, where m ∈ N ,m ≥ 2. We note that by virtue of (3.1) it

holds for f ∈ S

∆̃mhf(x) = F
[
θ(mh·)
θ(h·) · θ(h·)F

−1[f ](·)
]

(x)

= F
[
θm(h·)F−1[∆

(θ)
h f ](·)

]
(x)

=
∑
ν∈Z

θ∧m(ν)g(x + νh) ,

(3.5)

where

g(x) = ∆̃hf(x) ∈ L2(R) . (3.6)

Applying (3.5), (3.6) and the relation [1, Lemma 2]∑
k∈Z

| θ∧m(k) | ≤ Cm3 ,

where the positive constant C does not depend on m, we get
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‖ ∆̃mhf ‖p =

∥∥∥∥∑
ν∈Z

θ∧m(ν) g(x+ νh)

∥∥∥∥
p

≤
∑
ν∈Z

| θ∧m(ν) | ‖ g(x+ νh) ‖p

≤ ‖ g ‖p
∑
ν∈Z

| θ∧m(ν) |

≤ C1m
3 ‖ g ‖p .

On the second step, by applying Theorem 1.2 and the density argument, we obtain (3.3) for
f ∈ Lp(R) . �

The proof of Jackson type estimate is based on the development of the ideas of D. Jackson
[9] and S.B. Stechkin [15], [16] and follows the scheme elaborated by K.V. Runovski and H.-J.
Schmeisser in [13] and [11] for the periodic case. More precisely, we obtain a representation for

M(φ)
σ , containing the shift operator T̃h in its structure, for a suitable choice of the generator.

We consider for φ ∈ K the function

Φ(ξ) =
3

π2

∑
ν 6=0

φ(νξ)

ν2
.

One can show, that Φ ∈ K, r(Φ) = r(φ) and

M(Φ)
σ (f ;x) = (2π)−1

∫
R

T̃−σ−1hf(x)F [φ](h) dh . (3.7)

Theorem 3.2. (Jackson type estimate) Let 1 ≤ p ≤ +∞. Then

Eσ(f)p ≤ c ω〈′〉
(
f, σ−1

)
p
, f ∈ Lp(R) , σ > 0 , (3.8)

where the positive constant c does not depend on f and σ.

Proof. We consider real-valued even in�nitely di�erentiable function φ with support concen-
trated in [−1, 1]. It is clear that

|F [φ](h) | ≤ c (1 + |h |)−5 , h ∈ R . (3.9)
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By applying (2.1), (3.9), Theorem 3.1 and (3.7), we obtain for f ∈ Lp(R) and σ > 0

Eσ(f)p ≤ ‖ f −M(Φ)
σ (f) ‖p ≤ (2π)−1

∫
R

‖T (θ)

−σ−1hf(x)− f(x) ‖p |F [φ](h)| dh ≤

≤
∫
R

ωθ
(
f, σ−1|h |

)
p
|F [φ](h)| dh

≤ c ωθ (f, σ−1)p

∫
R

( 1 + |h | )3 |F [φ](h)| dh

≤ c ωθ (f, σ−1)p

∫
R

( 1 + |h | )−2 dh

≤ c′ ωθ (f, σ−1)p ,

that completes the proof of (3.8). �

4 Equivalence

It is obvious that for φ ∈ K and f ∈ S the following statement holds (in the sense of S ′)

F
[
φ
( ·
σ

)
F−1[f ](·)

]
(x) = F−1

[
φ
( ·
σ

)
F [f ](·)

]
(x) . (4.1)

Theorem 4.1. Let 1 ≤ p ≤ +∞. Then for f ∈ Lp(R) , σ > 0

K〈′〉
(
f, σ−1

)
p
� ω〈′〉

(
f, σ−1

)
p
. (4.2)

Proof.

Step 1. First we show that

ω〈′〉(f, δ)p ≤ cK〈′〉(f, δ)p , f ∈ Lp(R) , δ ≥ 0 . (4.3)

Taking into account that φ(ξ) = (1− | ξ |)+ , θ(ξ) = 3
2π2 ξ

2 − 3
π
ξ , we have

2

3
θ(πξ) = (1− φ2(ξ))

[
2

3
θ(πξ)− φ2(ξ)

]
=

=

[
2

3
θ(πξ) − 1

]
(1− φ2(ξ)) +

(
1− φ2(ξ)

)2
, ξ ∈ R .

Then we get for all h > 0 (M∞ = I) on Bp ∩ S

2

3
∆̃πh =

(
2

3
∆̃πh − I

)
◦ (I +M 1

h
) ◦ (I −M 1

h
) + (I +M 1

h
)2 ◦ (I −M 1

h
)2. (4.4)
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By applying properties of the operators ∆̃h andMσ, (1.3) and (2.7) we get for g ∈ Bp ∩ S
by virtue of (4.4)

2
3
‖∆̃πhg‖p ≤

∥∥∥2
3
∆̃πh − I

∥∥∥
(p)

∥∥I + M1/h

∥∥
(p)
‖ g −M1/h(g) ‖p

+
∥∥I + M1/h

∥∥2

(p)

∥∥(I − M1/h

) (
g − M1/h(g)

)∥∥
p

≤ c1 ‖ (I − M1/h)g ‖p + c2 ‖ (I − M1/h)g ‖p

+ ‖M1/h ‖(p) ‖ (I − M1/h)g ‖p

≤ c3 ‖ (I − M1/h)g ‖p .

By using the approximation procedure (Theorem 1.2) we get

‖∆̃πhg‖p ≤ C ‖ (I − M1/h)g ‖p (4.5)

for g ∈ Bp . Hence, inequality (4.5) is valid also for g ∈ Lp(R) . By applying (1.1), we have

ω〈′〉(f, δ)p ≤ ω〈′〉(f, πδ)p = sup
0≤h≤δ

‖ ∆̃πhf(x) ‖p

≤ C sup
λ≥ δ−1

‖ (I − Mλ)f ‖p

≤ c3 sup
λ≥ δ−1

K〈′〉 (f, 1/λ)p ≤ cK〈′〉(f, δ)p ,

that completes the proof of (4.3).

Step 2. Now we prove the inverse estimate

K〈′〉(f, δ)p ≤ c ω〈′〉(f, δ)p , f ∈ Lp(R) , δ ≥ 0 . (4.6)

For δ = 0 relation (4.6) immediately follows from the de�nition of the modulus of smoothness and

theK-functional. We considerM(ϕ)
1/δ(f ;x) , δ > 0 , where real-valued even in�nitely di�erentiable

function ϕ has a compact support on [−π, π] and ϕ(ξ) = 1 for | ξ | ≤ 1. By virtue of (1.5) one
has

‖ f − M(ϕ)
σ (f) ‖p ≤ cEσ(f)p , f ∈ Lp(R) , σ ≥ 0 . (4.7)

By applying (4.7) and Theorem 3.2, we have

‖ f − M(ϕ)
σ (f) ‖p ≤ cE1/δ(f)p ≤ c′ ω〈′〉(f, δ)p . (4.8)

We consider φ(x) = −3
π

1
Ax−Bϕ(x), where A = 3

2π2 , B = 3
π
. It is obvious that φ ∈ K and

θ(ξ)φ(ξ) = −(3/π) | ξ |ϕ(ξ) , ξ ∈ R .

Hence, by virtue of (1.6), (1.2), (4.1) and (3.1), we get on Bp ∩ S

∆̃δ ◦ M(φ)
1/δ = −(3/π) δ (M(ϕ)

1/δ )〈
′〉 . (4.9)

Combining (4.9) and (1.6) we obtain



20 S.Yu. Artamonov

∆̃δM(φ)
1/δ(g;x) = −(3/π) δ (M(ϕ)

1/δ(g;x) )〈
′〉 , g ∈ Bp ∩ S . (4.10)

By using (1.3) and (4.10), we get

δ ‖ (M(ϕ)
1/δ(g) )〈

′〉 ‖p = (π/3)
∥∥∥ ∆̃δ

(
M(φ)

1/δ(g;x)
)∥∥∥

p
= (π/3)

∥∥∥M(φ)
1/δ

(
∆̃δg(x)

)∥∥∥
p
≤

≤ (π/3)‖M(φ)
1/δ ‖(p) ‖ ∆̃δg(x) ‖p ≤ C ‖ ∆̃δg(x) ‖p .

(4.11)

By applying the approximation procedure (Theorem 1.2), we obtain that (4.11) is valid also for
g ∈ Bp. Now (4.6) follows from (4.8) and (4.11) . �

Combining (1.1) and Theorem 4.1, we obtain the following chain of equivalences.

Theorem 4.2. Let 1 ≤ p ≤ +∞. Then for f ∈ Lp(R) , σ > 0 it holds

‖ f −Mσ(f) ‖p � K〈′〉
(
f, σ−1

)
p
� ω〈′〉

(
f, σ−1

)
p
.

As a corollary of (4.2) we show that estimate (3.3) can be strengthened. Indeed, for m ∈ N
one has

ω〈′〉(f,mδ)p ≤ cK〈′〉(f,mδ)p ≤ c′mK〈′〉(f, δ)p ≤ c′′mω〈′〉(f, δ)p ,

that implies
ω〈′〉(f, tδ)p ≤ c ( 1 + t )ω〈′〉(f, δ)p , f ∈ Lp(R) , δ, t ≥ 0 .
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