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Abstract. Set-valued mappings with finite images are considered. For these mappings, a
theorem on the existence of continuous selections is proved.

1 Introduction

This paper is devoted to continuous selections of a specific type of continuous set-valued map-
pings. Given topological spaces X and Y, recall that a mapping F : X ⇒ Y is called a
set-valued mapping if it corresponds a closed nonempty set F (x) ⊂ Y to each x ∈ X. A set-
valued mapping F : X ⇒ Y is called lower semicontinuous if for each x ∈ X, for each open
set V ⊂ Y intersecting F (x) there exists a neighbourhood U ⊂ X of x such that F (u) ∩ V 6= ∅
for each u ∈ U. A mapping f : X → Y is called a selection of a set-valued mapping F : X ⇒ Y
if f(x) ∈ F (x) for each x ∈ X. Here and below the notation f : X → Y means that f is a
single-valued mapping.

Theorems on the existence and properties of selections play important role in control theory,
variational analysis and differential inclusions theory. One of the classical result in this area is
Michael selection theorem. It states that if X is a paracompact space, Y is a Banach space, a
set-valued mapping F : X ⇒ Y is lower semicontinuous, and F (x) is convex for each x ∈ X,
then F has a continuous selection (see [3]).

In this paper, we obtain a continuous selection theorem for a very specific class of set-valued
mappings, namely, for mappings F : X ⇒ Y satisfying the following condition: there exists a
positive integer number k such that

(?) card(F (x)) = k ∀ x ∈ X.

Here card(F (x)) is the cardinality of the set F (x).
Recall some definitions and auxiliary propositions. A set-valued mapping F : X ⇒ Y is

called upper semicontinuous if for each x ∈ X, for each neighbourhood V ⊂ Y of the set
F (x) there exists a neighbourhood U ⊂ X of x such that F (U) ⊂ V. A set-valued mapping is
called continuous if it is both upper and lower semicontinuous.

It is a straightforward task to ensure that if Y is a Hausdorff space, then for any mapping F :
X ⇒ Y satisfying assumption (?) for some k properties of continuity and lower semicontinuity
are equivalent. For a single-valued mapping this proposition is valid even if the topological space
Y is not a Hausdorff space.
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2 Main result

Theorem 2.1. Let Y be a Hausdorff space, X be a simply-connected topological space (i.e. X
is path-connected and its fundamental group is trivial), a set-valued mapping F : X ⇒ Y be
continuous and satisfy (?) for some positive integer k. Then there exist continuous mappings
fj : X → Y, j = 1, k, such that

F (x) = {f1(x), ..., fk(x)} ∀x ∈ X.

We precede the proof of this theorem by auxiliary propositions.

Lemma 2.1. Let Y be a Hausdorff space, a set-valued mapping F be continuous and satisfy
(?) for some positive integer k. Then for each x̄ ∈ X there exists a neighbourhood U of x̄ and
continuous mappings fj : U → Y, j = 1, k, such that

F (x) = {f1(x), ..., fk(x)} ∀x ∈ U.

Proof. Denote the pairwise different points of F (x̄) by y1, ...yk. Since Y is a Hausdorff space,
there exist pairwise disjoint neighbourhoods V1, ..., Vk ⊂ Y of the points y1, ..., yk, respectively.
Since F is lower semicontinuous, for each j = 1, k there exists a neighbourhood Uj ⊂ X of x̄

such that F (x) ∩ Vj 6= ∅ for each x ∈ Uj. Set U =
k⋂
j=1

Uj. Obviously, U is a neighbourhood of x̄

and
F (x) ∩ Vj 6= ∅ ∀x ∈ U, ∀ j = 1, k.

Thus, since Vj are pairwise disjoint, (?) implies that card(F (x) ∩ Vj) = 1 for each j = 1, k.
Therefore, for each j = 1, k a mapping

fj : U → Y, {fj(x)} = F (x) ∩ Vj ∀x ∈ U

is well defined. We have F (x) = {f1(x), ..., fk(x)} for each x ∈ U, since Vj are pairwise disjoint,
the union of Vj contains F (x), and each Vj contains the only point of F (x). Moreover, the
inclusion yj ∈ Vj implies fj(x̄) = yj, j = 1, k.

Let us prove that fj is continuous for each j = 1, k. Take an arbitrary x ∈ U and a neigh-
bourhood V ⊂ Y of fj(x). Since F is upper semicontinuous, there exists a neighbourhood U ⊂ U
of x such that

F (U) ⊂ (V ∩ Vj) ∪
(⋃
i 6=j

Vi

)
.

It follows from the relations fj(U) ⊂ Vj and Vj ∩ Vi = ∅ for each i 6= j that fj(U) ⊂ V ∩ Vj ⊂ V.
Therefore, fj is continuous.

Lemma 2.2. Let Y be a Hausdorff space, a mapping F : [0, 1] ⇒ Y be continuous and satisfy
(?) for some positive integer k. Then there exist continuous mappings fj : [0, 1] → Y, j = 1, k,
such that

F (x) = {f1(x), ..., fk(x)} ∀x ∈ [0, 1].

Proof. It follows by Lemma 2.1 that for each x ∈ [0, 1] there exists ε(x) > 0 such that the
restriction of F to U(x) := (x − ε(x), x + ε(x)) ∩ [0, 1] is the union of k continuous selections,
whose graphs are pairwise disjoint. Since [0, 1] is compact, there exist a finite subset D0 ⊂ [0, 1]
such that

[0, 1] =
⋃
x∈D0

U(x).
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Let us prove that there exist x0, x1, ..., xn ∈ D0, a0, a1, ..., an ∈ [0, 1] such that

0 = a0 ≤ x1 < a1 < ... < an−1 < xn ≤ an = 1, [ai−1, ai] ⊂ U(xi), i = 1, n.

Set a0 := 0. As x1 take any point that provides maximum to the function x 7→ x+ε(x) on the
set {x ∈ D0 : x−ε(x) < a0}. This point exists, since D0 is finite and intervals (x−ε(x), x+ε(x)),
x ∈ D0, cover the segment [a0, 1]. Set D1 := {x ∈ D0 : x− ε(x) ≥ a0}. By construction, intervals
(x− ε(x), x+ ε(x)), x ∈ D1, cover the segment [x1 + ε(x1), 1].

Set a1 := x1 + ε(x1). For x2 take any point that provides maximum to the function x 7→
x + ε(x) on the set {x ∈ D1 : x − ε(x) < a1}. This point exists since D1 is finite and intervals
(x− ε(x), x + ε(x)), x ∈ D1, cover the segment [a1, 1]. Set D2 := {x ∈ D1 : x− ε(x) ≥ a1}. By
construction, intervals (x− ε(x), x+ ε(x)), x ∈ D2, cover the segment [x2 + ε(x2), 1].

Repeating this procedure we obtain that for some positive integer n at the n-th step the
desired points aj, xj, j = 1, n, are constructed, since the initial set D0 is finite and intervals
(x− ε(x), x+ ε(x)) cover the segment [0, 1].

Let us proceed to the construction of selections. Let fj : U(x1)→ Y, j = 1, k, be continuous
selections of the restriction of F to the interval U(x1) such that

F (x) = {f1(x), ..., fk(x)} ∀x ∈ U(x1).

Mappings fj are defined on the segment [a0, a1] ⊂ U(x1). Let us construct their extensions to
the segment [a0, a2].

Let gi : U(x2)→ Y be continuous selections of the restriction of F to the interval U(x2) such
that

F (x) = {g1(x), ..., gk(x)} ∀x ∈ U(x2).

It follows from relations a1 ∈ U(x1) ∩ U(x2), fi(a1) 6= fj(a1) and gi(a1) 6= gj(a1) for i 6= j that

{f1(a1), ..., fk(a1)} = F (a1) = {g1(a1), ..., gk(a1)}.

In virtue of condition (?) the points fj(aj), j = 1, k, are pairwise different and the points gj(aj),
j = 1, k, are pairwise different. So, the above equality implies that the mappings gj, j = 1, k,
can be renumerated in such a way that the equalities fj(a1) = gj(a1), j = 1, k, hold. So, putting
fj(x) := gj(x) for x ∈ (a1, a2] we extend the mappings fj to the larger domain [a0, a2], preserving
continuity property and the relation

F (x) = {g1(x), ..., gk(x)} ∀x ∈ [0, a2].

Repeating this procedure we extend the mappings fj, j = 1, k to each of the segments [0, aj],
j = 2, k, preserving continuity property and the relation

F (x) = {g1(x), ..., gk(x)} ∀x ∈ [0, aj].

Obviously, the mappings fj, j = 1, k, defined on the segment [0, ak] = [0, 1] are the desired
ones.

Proof of Theorem 2.1. Take an arbitrary point x̄ ∈ X. Denote the pairwise different points of
F (x̄) by y1, ...yk. Set

gph(F ) := {(x, y) : x ∈ X, y ∈ F (x)}.

Take an arbitrary i ∈ {1, ..., k}, denote by Gi a path-component of the set gph(F ) that contains
(x̄, yi). Set

Pi : Gi → X, Pi(x, y) := x ∀ (x, y) ∈ Gi.
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Take an arbitrary i ∈ {1, ..., k}. Let us show that Pi is a covering for each i = 1, k.
First, let us prove that Pi(Gi) = X. Take an arbitrary x ∈ X. Since X is path-connected,

there exists a continuous mapping u : [0, 1]→ X such that u(0) = x̄, u(1) = x. Set

G : [0, 1]→ Y, G(t) := F (u(t)) ∀ t ∈ [0, 1].

Lemma 2.2 implies that there exists a continuous mapping v : [0, 1] → Y such that v(t) ∈ G(t)
for each t ∈ [0, 1], v(0) = yi. Obviously, (u(t), v(t)) ∈ gph(F ) for every t ∈ [0, 1]. Since Gi is a
path-component, we obtain (x, v(1)) ∈ Gi. Thus, the equality Pi(x, v(1)) = x implies x ∈ Pi(Gi).
Therefore, Pi(Gi) = X.

Let us show now that for any x ∈ X there exists a neighbourhood U ⊂ X, a set of indices
J, and disjoint open sets Wj ⊂ G, j ∈ J, such that P−1

i (U) is the union of Wj, j ∈ J, each of
which is mapped homeomorphically onto U by Pi.

It follows by Lemma 2.1 that there exists a neighbourhood U ⊂ X and a continuous mapping
fj : U → Y, j = 1, k, such that F (x) = {f1(x), ..., fk(x)} for each x ∈ U. Set

J := {j : fj(x̄) ∈ Gi}.

The graphs of fj, j = 1, k, are pairwise disjoint, since card(F (x)) ≡ k. Thus, the sets

Wj := {(x, fj(x)) : x ∈ U}, j ∈ J

are pairwise disjoint. Obviously the sets Wj are open, P−1
i (U) is the disjoint union of the

open sets Wj ⊂ Gi, j ∈ J, the restriction of Pi to each Wj, j ∈ J is continuous and bijective.
Moreover, the inverse mappings to these restrictions Pi

∣∣−1

Wj
: U → Wi, j ∈ J, are continuous, since

Pi
∣∣−1

Wj
(x) = (x, fj(x)) for each x ∈ U. Hence, each Wj is mapped homeomorphically onto U by

Pi. Thus, the mapping Pi is a covering.
So, each Pi : Gi → X is a covering mapping, the spaces Gi are path-connected, the space X

is simply-connected. Thus, Pi is a homeomorphism (see, for example, [2], Chapter 18). Set

Qi : Gi → Y, Qi(x, y) ≡ y.

Since fi(x) ≡ Qi(P
−1
i (x)), Qi are continuous and Pi are homeomorphisms, we obtain that the

mappings fi are continuous. Obviously F (x) = {f1(x), ..., fk(x)} for each x ∈ X. �

Remark 1. Under the assumption that both X and Y are compact Hausdorff spaces this result
was proved in [4].

Remark 2. Assumption (?) is essential and cannot be omitted. The set-valued mapping

F : C⇒ C, F (x) = {y ∈ C : y2 = x} for each x ∈ C

provides Р◦ corresponding example. For this mapping, assumption (?) does not hold, since
card(F (x)) = 2 for each x 6= 0 and card(F (0)) = 1, while the rest of the assumptions of
Theorem 2.1 hold. At the same time it follows from Brouwer domain invariance theorem that
F has no continuous selections (for more details see [1], Lemma 1 and Example 2).

Let us eliminate zero from the domain, i.e. consider F as a self-mapping of C \ {0}. In
this case, assumption (?) holds for k = 2, but the space X = C \ {0} is not simply-connected.
Obviously, the mapping F has no continuous selections. This example shows that in Theorem
2.1 the assumption of simple-connectedness is essential.

Acknowledgments

The author’s research was supported by the grant of the Russian Science Foundation (Project
no. 17-11-01168).



On continuous selections of set-valued mappings 87

References

[1] A.V. Arutyunov, S.E. Zhukovskiy, Existence and properties of inverse mappings. Proceedings of the Steklov
Institute of Mathematics 271 (2010), no. 1, 12–22.

[2] Ch. Kosnevski, Introductory course on algebraic topology. Mir, Moscow, 1983 (in Russian).

[3] E. Michael, Continuous selections. I. Annals of Mathematics 63 (1956), no. 2, 361–382.

[4] H. Schirmer, Fix-finite approximation of n-valued multifunctions. Fundamenta Mathematicae 121 (1984),
73–80.

Sergey Evgen’evich Zhukovskiy
Department of Nonlinear Analysis and Optimization
Peoples’ Friendship University of Russia
6 Miklukho-Maklay St
117198 Moscow, Russia
and
Department of Higher Mathematics
Moscow Institute of Physics and Technology (State University)
9 Inststitutskii Per.
141700 Dolgoprudny, Russia
E-mail: s-e-zhuk@yandex.ru

Received: 09.09.2017


