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Abstract. In the work, a concept of sublinear independence in an arbitrary convex cone is
introduced and the corresponding generalization of Hamel basis is studied. Applying these
results to the cones generated by uniquely divisible semigroups ((UD)–semigroups) allows us to
extend obtained results for the class of (UD)–semigroups. Some applications are considered.

Introduction

Hamel basis (or algebraic basis) is a fundamental concept in the theory of linear spaces that is
closely connected to the concept of linear independence (see, e.g. [8]). This concept was intro-
duced originally by Hamel [15] where an example of a real discountinuous additive function was
constructed. The base of such a construction is the remarkable fact of infinite linear dimension
of R over Q. It was explained soon an essential difference between algebraical and topological
dimensions in case of the infinite-dimensional linear spaces over R. Remind, e.g., that in any
such a space Hamel basis is uncountable.

Remind also that a non-algorithmicity of constructing Hamel basis in infinite dimensional case
overcomes often by the following significant result (the so-called Basic Lemma): each linearly
independent subset of a linear space can be added to some Hamel basis in this space. In
particular, each topological basis (Riecz basis) in a topological vector space can be added to such
a basis. The numerous applications of Hamel bases are well known and turned our attention to
them.

Let us pass to the problem of constructing an analogue of a Hamel basis in an abstract convex
cone. It is clear that this problem is sufficiently important in modern non-smooth analysis
because the convex and other types of cones play there the role that is analogous to the role of
linear spaces in smooth analysis. But a series of essential obstacles takes place on this way. We
list some of them.

1. First, the transition from linear spaces over R to the cones over R+ requires finding an
appropriate replacement to the basic concept of linear independence itself.

2. Secondly, using of the positive coefficients leads us to the necessity of replacing of expan-
sions of the form x =

∑
λkhk by "bi-expansions" of the form x+

∑
λkhk =

∑
µkhk.

3. Finally, "bi-expansions" are non-unique.

Thus, the present work is devoted to overcoming of the above mentioned obstacles and to
researching the below cone-analogue of Hamel basis. In the section 1.1 we study the concepts of
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sublinear independence and bi-expansion in an abstract convex cone, in Section 1.2 we study the
concept of sublinear Hamel basis therein, in Section 1.3 – some applications. Next, in Section 2
we generalize the means above over the frame of convex cones by using the concept of uniquely
divisible semigroup that is recently got involved by us in [19].

1 Hamel basis in convex cone

1.1 Sublinear independence and bi-expansions

As is known, the concept of linear independence in the frame of linear spaces is based on the
representation of an arbitrary vector in the form of a linear combination of the basis vectors.
But in the frame of the convex cones we need to pass to a more general representation of the
given vector by means of a couple of linear combinations of the basis vectors with non-negative
coefficients, i.e. by means of the so-called bi-expansion. This construction leads us to the concept
of sublinear independence.

Definition 1. Let X be a convex cone, M ⊂ X. Let us introduce two types of the envelopes of
M :

(i) L+(M) = {
∑n

k=1 λkhk | hk ∈M ;λk ∈ R+;n ∈ N} − the plus-linear span of M ;

(ii) Lsub(M) = {h ∈ X| h+
∑n

k=1 λkhk =
∑n

k=1 µkhk;hk ∈M,λk ≥ 0, µk ≥ 0, n ∈ N}

– the sublinear span of M.

(1.1)

We call the representation (1.1) bi-expansion (or subinear expansion) of h. If (1.1) takes place,
we say that h subinearly depends on M .

Remark 1. 1. Using the concept of formal difference 	 (see [22]), the expansion (1.1) can
be written in the form

Lsub(M) = L+(M)	 L+(M).

2. In the plus-linear combinations of the form
∑n

k=1 λkhk the vectors hk can be repeated.

3. Since the vector h =
∑n

k=1 λkhk allows the trivial bi-expansion h + 0 =
∑n

k=1 λkhk, then
the following inclusion

L+(M) ⊂ Lsub(M)

holds for anyM ⊂ X. Here it is possible Lsub(M) 6= L+(M). Let, e.g., X = R, h1 = 1, h2 =
−1. Then h2 + (λ+ 1)h1 = λh1, whence h2 ∈ Lsub(h1) follows. However, h2 /∈ L+(h1).

As for any convex cone the following implication

(x+ y1 = z1, x+ y2 = z2)⇒ (y1 + z2 = y2 + z1), (1.2)

is valid, then the corresponding property of the sub-uniqueness takes place.

Proposition 1.1. The following implication (in short form)(
h+

∑1
λkhk =

∑1
µkhk ; h+

∑2
λkhk =

∑2
µkhk

)
⇒

⇒
(∑1

λkhk +
∑2

µkhk =
∑2

λkhk +
∑1

µkhk

)
.

(1.3)
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holds. But the inverse statement:(
h+

∑1
λkhk =

∑1
µkhk ;

∑1
λkhk +

∑2
µkhk =

∑2
λkhk +

∑1
µkhk

)
⇒

⇒
(
h+

∑2
λkhk =

∑2
µkhk

)
.

(1.4)

holds only for cones that satisfy the cancellation law (see [5]):

(x+ y = x+ z)⇒ (y = z). (1.5)

Proof. So, (1.3) follows from (1.2) immediately. In case of (1.4) we obtain (briefly):(
h+

∑1

λ
=
∑1

µ

)
⇒
(
h+

∑1

λ
+
∑2

µ
=
∑1

µ
+
∑2

µ

)
⇒

⇒
((
h+

∑2

λ

)
+
∑1

µ
=
∑2

µ
+
∑1

µ

)
⇒
(
h+

∑2

λ
=
∑2

µ

)
.

Definition 2. A set M ⊂ X is called sublinearly closed, if Lsub(M) = M.

Proposition 1.2. For any M ⊂ X the set Lsub(M) is sublinearly closed, i.e.

Lsub(Lsub(M)) = Lsub(M). (1.6)

Proof. Let N = Lsub(M), then

Lsub(N) =

{
h ∈ X

∣∣∣∣ h+
n∑
k=1

λkhk =
n∑
k=1

µkhk

∣∣∣∣λk, µk ∈ R+; hk ∈ N

}
. (1.7)

Here, in view of hk ∈ Lsub(M), we obtain

hk +
m∑
l=1

λklhkl =
m∑
l=1

µklhkl, for some hkl ∈M and λkl, µklR+. (1.8)

Substitution of (1.8) into (1.7), leads to h+
n∑
k=1

m∑
l=1

(λkλkl)hkl =
n∑
k=1

m∑
l=1

(µkµkl)hkl, whence (1.6)

follows.

1.2 Sublinear Hamel basis in convex cone

Here we describe constructing a sublinear analogue of the algebraic basis with the difference,
consisting in the replacement of the standard expansion for a linear space by the bi-expansion
of type (1.7)

1. Let card(X) = J be the minimal order type of the cardinality card(X) (see, e.g.,[11]).
Choose some representative from each cone ray R+ · x ∈ X and let XR be a set of such
representatives. Obviously, card(XR) = J . Let us index by j ∈ J all elements from
XR : XR = {xj}j∈J .
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2. Now, let us begin constructing a sublinear basis. Set h1 = x1 = xj1 . Consider the set

LRsub(h1) = {xj ∈ XR | xj + λ1h1 = µ1h1, (λ1, µ1 ∈ R+)}. (1.9)

Since Lsub(h1) ⊃ L+(h1), then LRsub(h1) = Lsub(h1) ∩XR. Thus, two cases are possible.

a) Lsub(h1) = X. In this case any element x ∈ X allows a bi-expansion of the type (1.9),
and we can introduce Hamel basis H = {h1}.

b) Lsub(h1) $ X. In this case let us choose the minimal index j2 ∈ J, j2 � j1, such that
xj2 /∈ LRsub(h1), and denote by h2 = xj2 the second element of a sublinear Hamel basis
H.

3. Let us describe, for clearness, the second step of the constructing, too. Consider the set

LRsub(h1, h2) = {xj ∈ XR | xj + (λ1h1 + λ2h2) = (µ1h1 + µ2h2) (λi, µi ∈ R+)} (1.10)

The following two cases are possible.

a) Lsub(h1, h2) = X. In this case, any element x ∈ X allows a bi-expansion of form (1.10)
and we can introduce sublinear Hamel basis H = {h1, h2}.

b) Lsub(h1, h2) 6= X. In this case let us choose the minimal index j3 � j2 from J , such
that xj3 /∈ LRsub(h1, h2) and denote h3 = xj3 the third element of sublinear Hamel basis
H.

4. The general step of the induction. Suppose that the elements hi of sublinear Hamel basis
are chosen for i ≺ i0 and, in addition,

ji = min
{
j � ji′ , i

′ ≺ i : xji /∈ LRsub({hi′}i′≺i)
}
.

The two cases are possible:

a) Lsub({hi}i�i0) = X. In this case any element x ∈ X allows a bi-expansion of the form

x+
n∑
k=1

λkhik =
n∑
k=1

µkhik (ik � i0), (1.11)

and it makes it possible to introduce the sublinear Hamel basis H = Lsub({hi}i�i0).

b) Lsub({hi}i�i0) 6= X. In this case let us choose such minimal index ji1 > ji0 from J that
xji1 /∈ LRsub({hi}i�i0), and set hi1 = xji1 as the following element of sublinear Hamel
basis H. Then the inductive construction can be continued.

5. Finally, according to the transfinite induction principle, we obtain a sublinear Hamel basis
H = {hi}i∈I , where I belongs to J and is cofinal with J . In addition, each element x ∈ X
allows a bi-expansion of form (1.11).

6. The sub-uniqueness of bi-expansion follows from Proposition 1.2 (briefly):(
x+

∑1

λ
=
∑1

µ
; x+

∑2

λ
=
∑2

µ

)
⇒
(∑1

λ
+
∑2

µ
=
∑2

λ
+
∑1

µ

)
. (1.12)
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Note that in the case of linear spaces condition (1.12) is equivalent to the uniqueness of
the usual expansion respective to the algebraic basis:

x =
n∑
k=1

(µk − λk)hik .

Let us formulate the obtained result.

Theorem 1.1. For any convex cone X there exists a sublinear Hamel basis H = {hi}i∈I with
the following properties:

1) the elements of the basis H are sublinearly independent;
2) the basis H is minimal;
3) any vector x ∈ X allows bi-expansion by the basis H of the form

x+
n∑
k=1

λkhik =
n∑
k=1

µkhik (λk ≥ 0, µk ≥ 0), (1.13)

and the expansion is sub-unique.

Let us consider a consequence of Theorem 1.1. First, introduce a concept of the sublinear
kernel of an arbitrary convex cone.

Definition 3. Let X be a convex cone, x ∈ X. Say that x is an invertible element of X if there
exists such element x− ∈ X that x+ x− = 0. The set of the all invertible elements of X denote
by Ker−(X) (or, simply, X−) and call it a sublinear kernel of X.

Note some obvious properties of the sublinear kernels.

Proposition 1.3. Let X− be a sublinear kernel of X. Then:

(i) ∀x ∈ X− ∃!x− ∈ X− : x+ x− = 0;

(ii) ∀x ∈ X− : (x−)− = x;

(iii) setting (−λ) · x = λ · x− for λ ≥ 0 we can represent X as a linear space.

Consider, as a concrete example, a dihedral angle, formed by two semihyperplanes in a linear
space.

Example 1. Let E be a real linear space, H1 and H2 be some homogeneous hyperplanes in E,
L = H1 ∩H2 (codimH1 = codimH2 = 1, codimL = 2.)

Then L divides each hyperplane Hi into two semihyperplanes, e.g., H−i and H+
i . Set X =

co(H−1 ∪H−2 ). It is easy to see that X is a convex cone and L = ker−(X). In the present case
the decomposition into direct sum

X = X− ⊕X+ , X+ = co(G−1 ∪G−2 ),

where G−i are the corresponding semihyperplanes in Hi, is evident.
Note that in this example the coneX+ plays a role of "planar angle" with respect to "dihedral

angle" X.
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Let us find out now a form of bi-extension (1.13) for the elements of the sublinear kernel X−
of an arbitrary convex cone X.

1) Construct a sublinear Hamel basis in X in a certain way, by choosing at first all possible
invertible basis vectors h−i (i ∈ I−) and denoting by H− = {h−i }i∈I− . All consequent basis
vectors denote by h+

i (i ∈ I+), H+ = {h+
i }i∈I+ , I = I−∪̇I+. Selecting in the bi-extension (1.13)

the summands from H− and H+ leads to the equality

h+

(∑
k

−λkh
−
ik

+
∑
k

+λkh
+
ik

)
=

(∑
k

−µkh
−
ik

+
∑
k

+µkh
+
ik

)
.

From here it follows(
h+

∑
k

−λkh
−
ik
−
∑
k

−µkh
−
ik

)
+
∑
k

+λkh
+
ik

=
∑
k

+µkh
+
ik
. (1.14)

2) By denoting by h+ the expression in parentheses in (1.14) and by setting

h− =
∑
k

−µkh
−
ik
−
∑
k

−λkh
−
ik
,

we rewrite (1.14) in a form of the system
h− =

∑
k
−µkh

−
ik
−
∑

k
−λkh

−
ik

; (h−ik ∈ H
−);

h+ +
∑

k
+λkh

+
ik

=
∑

k
+µkh

+
ik

; (h+
ik
∈ H+);

h = h− + h+.

(1.15)

Let us mention that h− does not depend on the choice of Hamel basis, but h+ does depend on
it.

Definition 4. Call the set H+ = {h+|h ∈ X} the sublinear cokernel of the cone X and denote
it by Coker+(X).

So, taking into account the equalities (1.15) let us formulate the obtained result.

Theorem 1.2. An arbitrary convex cone X allows decomposition into the direct sum

X = X− ⊕X+ = Ker−(X)⊕ Coker+(X). (1.16)

Here the elements from X− allow usual "uni-expansion":

h− =
n∑
k=1

νk · h−ik (νk ∈ R);

but the elements from cokernel X+ assume bi-expansion only:

h+ +
n∑
k=1

λkh
+
ik

=
n∑
k=1

µkh
+
ik
.

Note also that uniqueness of h+ is not assumed; so the term "direct sum" is meant here in
generalized sense. Apparently, Theorem 1.2 can be interpreted as a "general theorem on dihedral
angle".
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1.3 Functional separability and embedding of a convex cone into a
linear space

First of all, let us show that for each convex cone X that satisfies (CL), a linear space X ′+ of the
all R+-linear functionals on X separates points in X. Note that it is necessary to check precisely
separability of any couple x 6= x′ in X. In contrast to the case of linear space, we cannot restrict
ourselves to checking separability of any non-zero point from zero only.

1) So, let x 6= x′ and some sublinear Hamel basis H = {hi}i∈I in X be chosen. By virtue of
Proposition 1.1 and Theorem 1.1, corresponding bi-expansions

x+
∑
k

λkhik =
∑
k

µkhik and x′ +
∑
k

λ′khik =
∑
k

µ′khik

are not equivalent, i.e. ∑
k

λkhik +
∑
k

µ′khik 6=
∑
k

λ′khik +
∑
k

µkhik .

Hence, such a number k0 exists that

λk0 · hik0 + µ′k0 · hik0 6= λ′k0 · hik0 + µk · hik0 . (1.17)

2) Now, let us define a functional f0 on H as follows:

f0(hik0 ) = 1, f0(hi) = 0 (при i 6= ik0).

Next, continue f0 on any vector x ∈ X by (+)–linearity with the help of bi-expansion:

f0(x+
∑
k

λkhik) = f(
∑
k

µkhik).

From here it follows

f0(x) =
∑
k

(µk − λk)f(hik) = (µk0 − λk0)f(hik0 ) = µk0 − λk0 .

Here, in view of (1.17), x′ 6= x implies

f0(x′) = µ′k0 − λ
′
k0
6= µk0 − λk0 = f0(x).

Thus, f0 separates the point x and x′ in X. Let us formulate the obtained result.

Theorem 1.3. If X is a convex cone that satisfies (CL) then its dual linear space X ′+ separates
points in X.

Remark 2. Note that in case of absence (CL) in X the preceding scheme of proof is not
applicable, in view of possible presence of repeating elements in sublinear Hamel basis. In fact,
the inverse to Theorem 1.3 is also valid. Let, e.g. x + y = x + z, but y 6= z. Then, for any
f ∈ X ′+ we obtain (f(x)+f(y) = f(x)+f(z))⇒ (f(y) = f(z)), i.e. y and z are not functionally
separable with respect to X ′+. Analogous statement holds in case of absence of the distributive
law (λ+ µ)x 6= (λx+ µx) for a non-convex cone.
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Now, let us pass to the bi-dual space X ′′+ = (X ′+)′ and consider a so called "evaluation map"
Λx(f) = f(x) where x ∈ X, f ∈ X ′+. It is easy to see that

Λx+y(f) = f(x) + f(y) = Λx(f) + Λy(f); Λαx(f) = α · f(x) = α · Λx(f) (α ∈ R+);

Λx(f + g) = f(x) + g(x) = Λx(f) + Λx(g); Λx(βf) = βf(x) = β · Λx(f) (β ∈ R).

Thus, Λx ∈ X ′′+. Next, define an embedding X 7→ X ′′+ in a standard way: x ∈ X 7→ Λx ∈ X ′′+.
Then the injectivity of the given embedding follows from Theorem 1.3:

(x 6= x′)⇒ (∃f ∈ X ′+ : f(x) 6= f(x′))⇔ (∃f ∈ X ′+ : Λx(f) 6= Λx′(f))⇔ (Λx 6= Λx′).

So, by using Hamel basis we come to one more proof of the classical principle. Let us formulate
the obtained result.

Theorem 1.4. If a convex cone X satisfies (CL) then X assumes a linear injective embedding

into some linear space E : X
(lin)
↪→ E.

Corollary 1.1. Under the embedding x 7→ Λx the linear kernel Ker−(X) passes to some linear
subspace of E. This is a maximal subspace of E that is contained in the image of X with respect
to the given embedding.

2 Hamel basis in a cone generated by a uniquely divisible semigroup

The theory of abstract convex cones has ancient origins (see G. Birkhoff [6], H. Rädström [23]).
Its active development was started with the works of G. Godini [13], R. E. Worth [27] and
R. Urbanski [26]. In the last decades development of the theory is connected with the works of
K. Keimel and W. Roth [17], B. Fuchssteiner, W. Lusky, T. A. Abreu, E. Corbacho and other
mathematicians (see [12]–[25]). Special types of convex cones in function spaces are actively
researched in the works of Russian and Soviet mathematicians M. L. Goldman, P. P. Zabreiko,
V. D. Stepanov and E. Bahtigareeva (see [14]–[3]). The different classes of abstract convex cones
were researched also by and F. S. Stonyakin and me (see [20],[25]).

Last time a steady interest in creation of an efficient theory of abstract non-convex cones
arises. Such theory should make it possible to extend essentially the frame of application of
convex and nonsmooth analysis. Actually, the problem is reduced to a choice among the two
following approaches:

a) either total refusal of second distributive law (DL)2: (λ + µ)x = λx + µx, (see, e.g. [18]–
[16]);

b) or such generalization of (DL)2 that allows us to keep valid most of the means of the
convex cones theory (see our recent work [19]).

By following the second way, we are based in [19] on the concept of a divisible semigroup that
is well known in algebra and analysis (see, e.g. [7]–[10]). To this condition we add a requirement
of the "unique divisibility" that makes it possible to introduce in the given semigroup a so called
"additive product" of scalars by vectors. Thus, we can construct an additive embedding of the
given semigroup into some convex cone. So, let us explain briefly the mentioned results. Let us
note that the scheme of exposition in this paper differs significantly from those in [19].
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2.1 Uniquely divisible semigroups and their additive completions

In what follows, (X,+) is an Abelian semigroup (with additive terminology). Make the notation:∑
n
x = x+ . . .+ x (∀x ∈ X,n ∈ N);

∑
0
x = 0.

Introduce a unique divisibility condition by combining the classical divisibility condition (2.1)
with the additional exact divisibility conditions (2.2)–(2.3).

Definition 5. Say that an Abelian semigroup (X,+) is uniquely divisible (or, (UD)-semigroup),
if the following conditions:

(i) ∀x ∈ X ∀n ∈ N ∃y ∈ X :
∑

n
y = x; (2.1)

(ii)
(∑

n
y1 =

∑
n
y2, n 6= 0

)
⇒ (y1 = y2); (2.2)

(iii)
(∑

n1

y =
∑

n2

y, y 6= 0
)
⇒ (n1 = n2) (2.3)

are hold.

Let us note some properties of (UD)-semigroups that follow from (2.1)–(2.3) and allows us
later to introduce correctly "additive multiplication".

Theorem 2.1. If X is a (UD)-semigroup then:

(i) ∀x ∈ X ∀n ∈ N ∃!y ∈ X :
∑

n
y =

∑
m
x;

(ii) (m1/n1 = m2/n2)⇒
[(∑

n1

y =
∑

m1

x
)
⇔
(∑

n2

y =
∑

m2

x
)]
.

Let us consider a way to construct an extensive enough class of semigroups.

Example 2. Say that Abelian semigroup X is an "exact semigroup" if the condition (iii) from
Definition 5 (∑

n1

y =
∑

n2

y, y 6= 0
)
⇒ (n1 = n2)

holds. Next if X is an exact semigroup then Let us carry out a factorization of X as follows:

(y1Ry2)⇔ (∃n ∈ N :
∑

n
y1 =

∑
n
y2).

It is easy to see that the factor-semigroup X/R forms a (UD)-semigroup with respect to the
corresponding factor-addition.

Now, introduce in X "additive multiplication" , first by non-negative rational scalars and
mention correctness of the definition.

Definition 6. Let x ∈ X, r = m/n ∈ Q+. Set

(y = r ∗ x) :⇔
(∑

n
y =

∑
m
x
)
.

Theorem 2.2. The Definition 6 is well-defined; moreover, (X,+, ∗) forms a convex cone over
Q+.

Next, to extend the cone above up to a convex cone over R+, let us carry out some "additive
completion" of X by means of "additive Dedekind sections".
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Definition 7. For any x ∈ X call an additive Dedekind section in Q+ ∗ x = {r ∗ x| r ∈ Q+}
such a partition Q+ ∗ x = A1∪̇A2 that A1 and A2 are non-empty sets and

(r1 ∗ x ∈ A1, r2 ∗ x ∈ A2)⇒ (r1 < r2).

Denote such section by A1|A2. Like a scalar case, let us extract three possible kinds of
Dedekind sections:

(i) A1|A2 is of the first kind if either A1 contains the maximal element or A2 contains the
minimal element (but not simultaneously);

(ii) A1|A2 is of the second kind if both A1 and A2 contain the extremal elements;

(iii) A1|A2 is of the third kind if neither A1 nor A2 contain the extremal elements.

Like scalar case, from the uniqueness conditions (2.2)–(2.3) it easy follows.

Theorem 2.3. If X is a (UD)-semigroup and x ∈ X then each Dedekind section in Q+ ∗ x is
either of the first or of the second kind, only.

Now, denote by [x] the first kind section generated by x ∈ X with x belonging to the lower
class of section and let us construct an additive completion of X.

Definition 8. If X is a (UD)-semigroup and x ∈ X call a set of all Dedekind sections in Q+ ∗ x
an the additive completion of Q+ ∗ x and denote it by [Q+ ∗ x]. Here, like the scalar case, we
identify the sections of first kind with the same extremal element and define addition and a
linear order in [Q+ ∗ x] with the help of upper classes of the sections. Finally, set[

X
]

=
⋃
x∈X

[Q+ ∗ x]

and call it an additive completion of X.

Next, the classical Dedekind theorem (see [4]) states that all Dedekind sections in R are of
the first kind, only. But from the uniqueness conditions (2.2)–(2.3) follows also an isomorphism
between Q+ and Q+ ∗ x: (r1 6= r2)⇒ (r1 ∗ x 6= r2 ∗ x), whence an isomorphism R+ and R+ ∗ x
follows as well. So, Dedekind theorem remains valid for (UD)-semigroups.

Theorem 2.4. If X is a (UD)-semigroup, then its additive completion [X] is additively complete,
i.e. [[X]] ∼= [X].

Let us extract a rather wide class of additively complete (UD)-semigroups, i.e. (UD)-
semigroups that satisfy condition [[X]] ∼= [X].

Theorem 2.5. Let (X,+, ·) be a (UD)-cone. Suppose that such a continuous and strongly
increasing function ϕ : Q+ → R+ exists that

∀x ∈ X, ∀r ∈ Q+ : r ∗ x = ϕ(r) · x;

i.e. the cone X is additively homogeneous. Then X is additively complete and we can set

α ∗ x = ϕ(α) · x (α ∈ R+, x ∈ X).

Let us give a concrete example.
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Example 3. Let R(p)
+ be R+ equipped with the addition

x1 ⊕ x2 = (xp1 + xp2)1/p.

and with the usual multiplication. Then the additive multiplication in X takes form α ∗ x =
α1/p · x.

Finally, let us formulate the main result of this section.

Theorem 2.6. Let X be a (UD)-semigroup. Then the following statements are valid:

(i) the addition completion ([X],+, ∗) forms a convex cone;

(ii) the canonical embedding X ↪→ [X] (x 7→ [x]) is injective and additive;

(iii) if moreover, X is additively complete, then the isomorphism [X] ∼= X holds.

Remark 3. By summing the preceding results, let us emphasize that each section of the second
kind in Q+∗x can be identified with the product α∗x, where α is an irrational number generated
by the corresponding section A1|A2 in Q.

But in view of Theorem 2.6, if X is an additively complete (UD)-semigroup then all sections
of the sets Q+ ∗ x (x ∈ X) are of the first kind. Thus, in this case all "additive rays" in
X can be identified with the sets R+ ∗ x, i.e. up to isomorphism, X contains all products
α ∗ x (α ∈ R+, x ∈ X).

2.2 Additive Hamel basis in a (UD)-semigroup

By using results of Subsection 2.1, we extend here the main results of Section 1 to the case of a
uniquely divisible semigroup. So, let (X,+) be a uniquely divisible semigroup, ([X],+, ∗) be its
additive completion.

By virtue of Theorem 1.1, it is possible to choose some sublinear Hamel basis [H] = {γi∗hi}i∈I
in [X], where hi ∈ X. In particular, for any x ∈ X an expansion

x+
n∑
k=1

αk ∗ (γk ∗ hik) =
n∑
k=1

βk ∗ (γk ∗ hik),

takes place. From here, by denoting λk = αkγk and µk = βkγk it follows

x+
n∑
k=1

λk ∗ hik =
n∑
k=1

µk ∗ hik . (2.4)

Thus, the system H = {hik} forms an additive basis in X, under the condition that the
products λk ∗ hik and µk ∗ hik separately can be not from X. Obviously that in the case of
additively complete X all summands in 2.4 are from X. Let us formulate the obtained result.

Theorem 2.7. If X is a (UD)-semigroup then such an additive Hamel basis H = {hi}i∈I in X
exists that each element x ∈ X allows bi-expansion of the type

x+
n∑
k=1

λk ∗ hik =
n∑
k=1

µk ∗ hik , (2.5)

where the summands are from [X]. In the case of an additively complete X all summands in 2.5
belong to X.
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At last, by combining statements 1.4 and 1.1 with Theorem 1.1, we come to results on embed-
ding of a (UD)-semigroup. Here we also take into account that the presence of the "cancellation
law" ((x+ y = x+ z)⇒ (y = z)) in X implies the same in [X].

Theorem 2.8. If a (UD)-semigroup X satisfies (CL), then X allows additive injective embedding
into some linear space E.

Corollary 2.1. Under the conditions of Theorem 2.8, a semigroup kernel Ker−(X) allows an
additive injection into such a subspace of E that is maximal subspace which is contained in [X].
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