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Abstract. We consider a mixed vector autoregressive model with deterministic exogenous
regressors and an autoregressive matrix that has characteristic roots inside the unit circle. The
errors are (2+ε)-integrable martingale differences with heterogeneous second-order conditional
moments. The behavior of the ordinary least squares (OLS) estimator depends on the rate
of growth of the exogenous regressors. For bounded or slowly growing regressors we prove
asymptotic normality. In case of quickly growing regressors (e.g., polynomial trends) the result
is negative: the OLS asymptotics cannot be derived using the conventional scheme and any
diagonal normalizer.

1 Introduction

We consider the asymptotic distribution of the OLS estimator of matrix parameters A and B in
the vector autoregression

yt = Axt +Byt−1 + et, t = 1, ..., n, (1.1)

where yt, xt, and et are random vectors. The xt are assumed to be exogenous (determined
outside the system) and known, the yt are observed and the unobserved errors et are martingale
differences. For the general theory of vector autoregressions one can consult [16], [14], and [9].
Models with deterministic xt are of special interest in some applications. In particular, the OLS
asymptotics for autoregressions with polynomial trends has been a long-standing issue (see [14,
chapter 16] and our Section 2.9).

Our purpose is to develop an asymptotic theory of vector autoregressions (1.1) with as-
sumptions on the deterministic regressors general enough to include various special cases (e.g.,
polynomial and logarithmic trends), with possible discontinuities arising in the theory of struc-
tural breaks. The framework is based on the Lp-approximability theory [17] previously applied
to a scalar autoregressive model [18]

yt = αxt + βyt−1 + et, t = 1, ..., n, (1.2)

(α and β are real parameters). We call (1.2) a basic model. The results presented here are par-
tially new even in this special case and show that vector autoregressions require quite different
techniques than spatial models [21], [22] and static models with slowly varying regressors [20].
Because of space limitations, in this paper we consider only the stable case (when the character-
istic roots of B lie inside the unit circle |λ| < 1). [28] and [24] give an idea of the state of affairs
in the unstable case.
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So far, the paper [3] has been the most advanced in the stable case. They allow for both
stochastic and deterministic exogenous regressors. When only deterministic regressors are in-
volved, our result has a wider area of applicability, under less stringent assumptions. Anderson
and Kunitomo impose, among others, three infinite series of conditions, and removing them has
been one of our goals. A detailed comparison of the two results, along with some methodological
remarks, will be provided in the end of Section 2.

To investigate a model with polynomial trends, [27] have suggested a linear transforma-
tion. However, that transformation uses unknown coefficients and therefore is not feasible. Our
asymptotic result in case of polynomial trends is negative in the sense to be described later.
Moreover, in Section 2.9 we show that the derivation of the asymptotic distribution of the OLS
estimator for an autoregression with a linear trend given in [14, Section 16.3] contains an error.

There have been other suggestions to model deterministic regressors. One approach is appro-
priate for studying consistency of the OLS estimator; see [24] for the details and history. Another
has been proposed in [6] in the context of nonlinear models. Finally, Phillips [25] has employed
properties of slowly varying functions [7] to model asymptotically collinear regressors. Mynbaev
[20] has shown that all sequences of weights arising in the Phillips approach are L2-approximable.

To explain the main results we need some notation. By putting equations (1.1) side by side
we can write them in a matrix form

Yn = AXn +BY −n + En (1.3)

where
Yn = (y1, ..., yn), Xn = (x1, ..., xn), Y −n = (y0, ..., yn−1), En = (e1, ..., en). (1.4)

Let s(M) denote the size of a matrix M (a pair of its dimensions). We suppose that s(Yn) =

s(En) = s× n, s(Xn) = r× n, s(A) = s× r, s(B) = s× s. Denoting Γ = (A,B), Zn =

(
Xn

Y −n

)
we write (1.3) as

Yn = ΓZn + En. (1.5)

The formula for the OLS estimator of Γ is [16]

Γ̂n = YnZ
′
n(ZnZ

′
n)−1. (1.6)

A basic fact about OLS estimators is that they should be centered and normalized to obtain
convergence in distribution. Let Dn be some nonsingular, diagonal (possibly stochastic) matrix,
called a normalizer. Then (1.5) and (1.6) imply(

Γ̂n − Γ
)
Dn = EnZ ′nD−1

n (D−1
n ZnZ

′
nD
−1
n )−1. (1.7)

We use the name N-factor (numerator) for EnZ ′nD−1
n and D-factor (denominator) for

D−1
n ZnZ

′
nD
−1
n . By the conventional scheme of deriving the OLS asymptotics we mean the

procedure consisting of three steps:
(1) choose an appropriate normalizer Dn,
(2) prove convergence of the N -factor in distribution to a normal vector, and
(3) prove convergence of the D-factor in probability to some nonstochastic matrix Q.

Then, if detQ 6= 0, convergence in distribution of
(

Γ̂n − Γ
)
Dn follows trivially from (1.7) and

the conventional scheme.
Qualitatively, the contribution of this paper consists of two statements.
Positive statement. A nonstochastic normalizer Dn, which takes into account the relative

rates of growth of the exogenous and endogenous regressors, is chosen in such a way that both
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the N -factor and D-factor converge. The convergence is proved in the class of regressors xt that
become L2-approximable upon normalization. This class includes constants, polynomial and
logarithmic trends and slowly varying regressors. Not surprisingly, all sets of regressors fall into
one of two categories: either detQ 6= 0 or detQ = 0. The condition detQ 6= 0 is completely
characterized in terms of the growth rates of the regressors. In case detQ 6= 0, naturally, there
is asymptotic normality of the OLS estimator. The heterogeneity of the errors may result in a
degenerate OLS asymptotics even when Q is nonsingular.

Negative statement. In the asymptotically collinear case (when detQ = 0 with our
normalizer) we prove that there is no diagonal, possibly stochastic, normalizer that would render
the conventional scheme feasible. Thus, in terms of the diagonal normalizer choice, our positive
statement is final.

The negative answer means that the conventional scheme has to be modified to deal with the
asymptotically collinear case. We think that this can be done following the ideas of [25]. The
corresponding result would be very interesting because Phillips considers only static models. In
addition to the negative statement, in Section 2.9 we prove that using non-diagonal normalizers
does not work for the basic model (1.2). A full study of the issue is beyond the scope of this
paper.

The main results are stated and the ideas are explained in Section 2. Section 2 is concluded
with examples. All proofs are given in Section 3.

2 Main results

2.1 Elements of the conventional scheme

Everywhere we abide by the usual matrix algebra conventions: all vectors are column-vectors
and all matrices in the same formula are compatible. All properties of the Kronecker product,
trace and vectorization we use can be found in [16]. detA is also denoted |A|. ‖x‖2 denotes the
Euclidean norm of a vector x.

The choice of the normalizer is of principal importance. If the lag is absent from the basic
model, yt = αxt + et, the best normalizer is known to be Dn = ‖x‖2 , where x = (x1, ..., xn)′,
see [1, Theorem 2.6.1] and [2, Theorem 3.5.4]. We call ‖x‖2 the growth rate of the regressor
xt. When, on the other hand, there is no exogenous regressor, yt = βyt−1 + et, the normalizer
is
√
n [1, Theorem 5.5.6]. The question is: how interaction of xt and yt−1 in the basic model

with nonzero α, β is to be reflected in the normalizer? The answer has been given in [18]. Let
us call

√
n the borderline rate. If the growth rate of the regressor xt is equal to or lower than

the borderline rate, then β̂ − β must be normalized by the borderline rate. If ‖x‖2 exceeds
√
n,

then β̂ − β must be normalized by the growth rate of xt. α̂ − α must always be normalized by
the latter. This verbal description translates to

Dn

(
α̂− α
β̂ − β

)
=

(
‖x‖2 0

0 max{‖x‖2 ,
√
n}

)(
α̂− α
β̂ − β

)
. (2.1)

In Section 2.9 we show that for the basic model this choice cannot be improved even in the class
of non-diagonal normalizers.

In the vector case (1.3) we use as a normalizer for Xn the matrix

dn = diag [dn1, ..., dnr]

with Euclidean norms dni = (
∑n

t=1 x
2
it)

1/2 of rows of Xn on the main diagonal. Generalizing
upon (2.1) we choose ∆nIs as a normalizer for Y −n , where

∆n = max{dn1, ..., dnr,
√
n} (2.2)
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and Is is the identity matrix of size s× s. Implicit in this choice is the presumption that all lags
of y should converge at the same rate. Denoting

Hn = d−1
n Xn, Dn =

(
dn 0
0 ∆nIs

)
(s+r)×(s+r)

(2.3)

we finalize the definition of the elements of the conventional scheme with

D−1
n Zn =

(
Hn

1
∆n
Y −n

)
. (2.4)

2.2 Representation of the N- and D-factors

It is easy to obtain from (1.1) by induction

yt =
t∑

s=1

Bt−s(Axs + es) +Bty0, t = 1, ..., n. (2.5)

Let F be a matrix of size s × n with columns denoted Ft, t = 1, ..., n. With the matrix B we
associate an operator PB acting on F according to

(PBF )t =
t−1∑
s=1

Bt−1−sFs, t = 1, ..., n.

Here and in the sequel we put
∑n

j=m ... = 0 if n < m. This definition and (2.5) imply

Y −n = Mn + ρn

where
Mn = PB(AXn + En) = PB(AdnHn + En), ρn = (y0, By0, ..., B

n−1y0) (2.6)

are the main part and residual, respectively. From (2.4) we see that the N -factor equals

EnZ ′nD−1
n =

(
EnH ′n,

1

∆n

EnM ′
n

)
+

(
0,

1

∆n

Enρ′n
)

(2.7)

and the D-factor is

D−1
n ZnZ

′
nD
−1
n =

(
HnH

′
n

1
∆n
HnM

′
n

1
∆n
MnH

′
n

1
∆2

n
MnM

′
n

)
(2.8)

+

(
0 1

∆n
Hnρ

′
n

1
∆n
ρnH

′
n

1
∆2

n
(Mnρ

′
n + ρnM

′
n + ρnρ

′
n)

)
.

All terms containing the residual will be shown to be asymptotically negligible.

2.3 Lp-approximability

The main idea behind Lp-approximability is to approximate sequences of deterministic vectors
{wn : n = 1, 2, ...} with functions of a continuous argument. For example, for a given sequence
{wn}, where wn has n coordinates for each n, one can postulate existence of a continuous
function W on [0, 1] such that maxt=1,...,n |wnt −W (t/n)| → 0, see a similar assumption in [28,
Equation (5.141)]. To allow approximation by discontinuous and unbounded functions, it is
better to use Lp spaces.
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Let p ∈ [1,∞], ‖W‖p =
(∫ 1

0
|W (x)|p dx

)1/p

if p < ∞ and ‖W‖∞ = ess supx∈(0,1) |W (x)|.
Denote by Lp the space of measurable functions on (0, 1) with a finite norm ‖W‖p < ∞. Let
us partition the interval [0, 1) into subintervals it = [(t − 1)/n, t/n), t = 1, ..., n. Since, in
general, elements of Lp are not continuous, instead of values W (t/n) we need to use averages
over subintervals n

∫
it
W (x)dx. Those averages are scaled by n−1/p for convenience. In this way

we obtain a discretization operator δnp : Lp → Rn defined by

(δnpW )t = n1−1/p

∫
it

W (x)dx, t = 1, ..., n.

Let lp be a discrete analog of Lp with the norm ‖w‖p =
(∑

t∈T |wt|p
)1/p

, p < ∞, and ‖w‖∞ =
maxt∈T |wt|, p =∞. The set of indices T depends on the context. In particular, we use Rn

p (the
set of n-dimensional vectors) and the set Mp of matrices of all sizes.

Definition 1. We say that a sequence {zn} , where zn ∈ Rn for each n, is Lp-approximable
if there exists a function zc ∈ Lp such that ‖zn − δnpzc‖p → 0, n → ∞. In this case we also
say that {zn} is Lp-close to zc. The superscript c is used to emphasize that zc is considered a
continuous proxy for zn.

This notion is designed for modeling deterministic regressors in linear models and should
be distinguished from Lp-approximability introduced in [26] for approximating stochastic pro-
cesses by other, less complex, ones in nonlinear models. The toolkit that accompanies our
Lp-approximability facilitates calculation of various limits which would be hard to evaluate oth-
erwise.

Example 1. For a polynomial trend xt = tk, where k ≥ 0 is an integer, the norm ||x||2 is of
order nk+1/2 [14, Equation (16.1.13)]. Unless xt is a constant, ||x||2 grows faster than

√
n. The

normalized trend h = x/||x||2 is L2-close to hc(x) = (2k + 1)1/2xk [23].

To handle vector autoregressions, we need generalizations of the above definitions to matrix-
valued functions. Denote τn = {1, ..., n}. For a matrix-valued function F : τn → Mp its norm is
defined by

||F ; lp(τn,Mp)|| =

{ (∑n
t=1 ||Ft||pp

)1/p
, p <∞,

max1≤t≤n||Ft||∞, p =∞.

We always assume that such a function has values of the same size. By definition, the discretiza-
tion operator is applied to matrices element-wise. A sequence {Fn} such that Fn ∈ lp(τn,Mp) for
all n and s(F1) = s(F2) = ... is called Lp-approximable if there is a matrix F c with components
from Lp such that ||Fn − δnpF c; lp(τn,Mp)|| → 0, n → ∞. If this is true we also say that {Fn}
is Lp-close to F c. Obviously, uniform boundedness of norms

sup
n
||Fn; lp(τn,Mp)|| <∞ (2.9)

is necessary for Lp-approximability. We write F c ∈ Lp to mean that all components of F c belong
to Lp. F c ∈ C[0, 1] has a similar meaning where C[0, 1] is the set of continuous functions on
[0, 1].

A matrix F with n columns is considered a function on τn with values Ft equal to its columns,
t = 1, ..., n.
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2.4 Assumptions

Here we list and discuss the assumptions used in our positive statement.

Assumption 1. (Stability) All eigenvalues of B satisfy |λ| < 1.

This condition implies existence of c > 0 and λ ∈ (0, 1) such that ||Bk|| ≤ cλk, k = 0, 1, ...,
see, for example, [1, Lemma 5.5.1]. For this reason all series containing powers of B will converge.

Assumption 2. (On normalized regressors) The sequence {Hn} (see (2.3)) is L2-close to some
vector Hc ∈ L2.

Assumption 2 is satisfied for polynomial trends and is not satisfied for exponential trends
[23]. Normalized sequences arising from slowly varying functions also satisfy Assumption 2 [20].

By d→ and dlim ( p→ and plim) we denote convergence and limit in distribution (in probability,
respectively). I(A) denotes the indicator of a set A.

Assumption 3. (On errors) For the error matrices En we assume a slightly more general struc-
ture than (1.4): En = (en1, ..., enn) where the columns ent may depend on n and satisfy the
following conditions:

(i) For each n, the columns ent are martingale differences (m.d.s) with respect to nested σ-
fields Fn0 ⊂ Fn1 ⊂ ... ⊂ Fnn, that is, ent is Fnt-measurable and E(ent|Fn,t−1) = 0.

(ii) supn,tE||ent||
p
2 <∞ for some p > 2 and conditional expectations Σnt = E(ente

′
nt|Fn,t−1) are

constant matrices.

(iii) Denote Σn a function on τn with values Σn1, ...,Σnn. The sequence {Σn} is assumed to be
L∞-close to some Σc ∈ C[0, 1].

(iv) plimK→∞ supn,t E(||ent||22I(||ent||2 > K)|Fn,t−1) = 0 and the σ-fields are nested over n:
Fnt ⊂ Fn+1,t for 1 ≤ t ≤ n, n ≥ 1.

The standard implication of condition (ii) is that ||ent||22 are uniformly integrable (u.i.) and

E(ense
′
nt|Fn,max{s,t}−1) =

{
0, s 6= t,
Σnt, s = t.

(2.10)

Normally this equation will be used in conjunction with the law of iterated expectations, without
explicitly mentioning it. One of conditions in [3] is

1

n

n∑
t=1

Σnt
p→ Σ.

In this equation, the information about heterogeneity contained in Σnt is forgotten in the limit
matrix Σ. Assumption 3(iii) and Theorem 3.1 allow us to prove

1

n

n∑
t=1

Σnt →
∫ 1

0

Σc(x)dx

where the limit expression retains the heterogeneity information. Assumption 3 allows the errors
to degenerate in the limit, as in the following example.
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Example 2. Let e1, e2, ... be i.i.d. variables satisfying Eet = 0 and σ2 = Ee2
t < ∞. Take

any sequence {fn} of vectors fn ∈ Rn such that {fn} is L∞-close to some f ∈ C[0, 1] (one can
take fn = (f(1/n), f(2/n), ..., f(1))′, for example, see [17, Theorem 3.3(b)]), and put ent = fntet.
Let Ft = σ(ej : j ≤ t) be the least σ-field such that e1, ..., et are Ft-measurable. Then ent is
Ft-measurable, E(ent|Ft−1) = 0 by independence, Σnt = E(e2

nt|Ft−1) = f 2
ntEe

2
t = σ2f 2

nt ≤ c. It is
easy to see that {Σn} is L∞-close to σ2f 2. Thus, in the limit Σn vanishes where f 2 vanishes.

Assumption 4. (Stabilization of relative growth rates of regressors) The limits (see (2.2))

κi = lim
n→∞

dni
∆n

∈ [0, 1], i = 1, ..., r; κQ = lim
n→∞

√
n

∆n

∈ [0, 1]

exist.

By looking at κQ we shall be able to distinguish the cases |Q| = 0 from |Q| 6= 0. Denoting

bn =
1

∆n

dn, b = diag[κ1, ..., κr],

under Assumption 4 one has b = lim bn. Since b accounts for the balance between the growth rates
of regressors (including lags), it is natural to name it a balancer. The matrix J = (I−B)−1Ab will
be called a jack, because it is a "subordinate part of a machine, rendering convenient service".

Assumption 5. (On the initial value) E||y0||22 <∞.

2.5 Convergence of the D-factor

Denote

G =

∫ 1

0

Hc(Hc)′dx, Ξ(x) =
∞∑
s=0

BsΣc(x)B′s

G is the Gram matrix of the system (Hc)1, ..., (H
c)r ∈ L2. The condition |G| 6= 0 means linear

independence of this system (or asymptotic linear independence of the rows of H) and implies
positivity of |G| [12, Chapter IX, § 5]. In all statements below |G| 6= 0 will be assumed or implied
by other conditions.

It is easy to see that the matrix Ξ(x) solves the equation Ξ(x) − BΞ(x)B′ = Σc(x), see [1,
Chapter 5, Exercise 27]. Since the solutions of similar equations Ξ−BΞ = Σc and Ξ−ΞB′ = Σc

are given by a left resolvent (I − B)−1Σc and right resolvent Σc(I − B′)−1, it is natural to call
Ξ(x) an enveloping resolvent. Let

Q =

(
G GJ ′

JG JGJ ′ + κ2
Q

∫ 1

0
Ξ(x)dx

)
.

Lp-lim denotes the limit in the norm (E ‖X‖p2)1/p.

Theorem 2.1. If Assumptions 1-5 hold, then

(i) the D-factor converges in L1(Ω): L1- limD−1
n ZnZ

′
nD
−1
n = Q.

(ii) The condition |Q| 6= 0 is equivalent to a combination of three conditions:

(a) κQ > 0 , (b) |G| 6= 0, (c) |
∫ 1

0
Ξ(x)dx| 6= 0.

Note that when |G| 6= 0, by the determinant of a partitioned matrix rule

|Q| = |G|
∣∣∣∣JGJ ′ + κ2

Q

∫ 1

0

Ξ(x)dx− JGG−1GJ ′
∣∣∣∣ = κ2s

Q |G|
∣∣∣∣∫ 1

0

Ξ(x)dx

∣∣∣∣ . (2.11)

This equation shows that |Q| does not depend on A.
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2.6 Convergence of the N-factor

Put

Ω1(x) =

(
Hc(Hc)′ Hc(Hc)′J ′

JHc(Hc)′ JHc(Hc)′J ′ + κ2
QΞ(x)

)
,

so that Q =
∫ 1

0
Ω1(x)dx. The asymptotic behavior of the N -factor involves more complex inte-

grals of Ω1.

Theorem 2.2. Let Assumptions 1-5 hold. Then

(i) the N-factor converges in distribution

vec(EnZ ′nD−1
n )

d→ N

(
0,

∫ 1

0

Ω1(x)⊗ Σc(x)dx

)
. (2.12)

(ii) The inequality
∣∣∣∫ 1

0
Ω1(x)⊗ Σc(x)dx

∣∣∣ 6= 0 is equivalent to a set of three conditions:

(a) κQ > 0 , (b) |
∫ 1

0
[Hc(Hc)′]⊗ Σcdx| 6= 0, (c) |

∫ 1

0
Ξ(x)⊗ Σc(x)dx| 6= 0.

An integral like
∫ 1

0
Ω1(x) ⊗ Σc(x)dx can be termed an error-weighed integral of Ω1. In the

last proposition we see three such integrals. Any of them may degenerate, depending on the
behavior of Σc (see the example in the next section).

Corollary 2.1. If Assumptions 1-5 hold and κQ = 0, then, in addition to convergence (2.12),
for the partitioning EnZ ′nD−1

n = (Un, Vn), where Un = EnH ′n and Vn = 1
∆n
En(Y −n )′, we can assert

convergence Un
d→ U , Vn

d→ V where vecU ∼ N
(

0,
∫ 1

0
[Hc(Hc)′]⊗ Σcdx

)
and V is proportional

to U , V = UJ ′.

2.7 Positive statement

Equations vec(AB) = (B′ ⊗ I)vecA and (1.7) lead to

vec
((

Γ̂n − Γ
)
Dn

)
= [(D−1

n ZnZ
′
nD
−1
n )−1 ⊗ I]vec(EnZ ′nD−1

n )

which, in combination with Theorems 2.1 and 2.2, immediately gives the following result:

Theorem 2.3. (Convergence of the OLS estimator, case κQ > 0) Let Assumptions 1-5 hold. If
|Q| 6= 0, then

vec
((

Γ̂n − Γ
)
Dn

)
d→ N

(
0,

∫ 1

0

(Q−1Ω1Q
−1)⊗ Σcdx

)
.

Example 3. Here we show that the condition |Q| 6= 0 does not guarantee nondegeneracy of the
limit distribution. Let there be only two regressors. Take functions Hc

1 and Hc
2 and a matrix Σc

with nonoverlapping supports on [0, 1]. Then the product [Hc(Hc)′]⊗Σc is a null matrix and it
can be seen from Theorem 2.2 that the N -factor converges to a degenerate normal vector. If we
take the regressors to be of form {δn2H

c
1}, {δn2H

c
2}, then the norms of the rows of Xn will have

finite limits ‖Hc
1‖2, ‖Hc

2‖2 and ∆n will equal
√
n for all large n, leading to κQ = 1. Then using

Theorem 2.1 it is straightforward to show that |Q| 6= 0 and Theorem 2.3 is applicable.
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2.8 Negative statement

The system of vector equations (1.1) with just one lag of the dependent variable encompasses
a variety of cases we do not cover in the negative result. For example, [16, Section 10.5.1] has
a system in which yt includes lagged exogenous regressors. The additional assumption we need
will be modeled on the system of scalar equations

yt = α1x1t + ...+ αrxrt + β1yt−1 + ...+ βsyt−s + et

which can be written in form (1.1) with matrices

A =


α1 ... αr
0 ... 0
... ... ...
0 ... 0


s×r

, B =


β1 ... βs−1 βs
1 ... 0 0
... ... ... ...
0 ... 1 0


s×s

(2.13)

if the xt, yt and et in (1.1) are x1t

...
xrt


r×1

,


yt
yt−1

...
yt−s+1


s×1

,


et
0
...
0


s×1

,

respectively. Here we have r different exogenous regressors and just one (scalar) dependent
variable, even though in the vector form there is an s-dimensional dependent vector.

We say that model (1.1) is a proper mixed autoregression if all diagonal elements of JGJ ′
are positive for any nonzero balancer b. The name is explained by the fact that this condition is
fulfilled in case (2.13) with all the alphas different from zero (Lemma 3.7).

Theorem 2.4. (Inapplicability of the conventional scheme, case κQ = 0) Suppose, Assumptions
1-5 are satisfied, |G| 6= 0, κQ = 0 and the model is a proper mixed autoregression. Then by
Theorem 2.1 the D-factor converges in mean to Q with |Q| = 0, so that the conventional scheme
does not work. Moreover, there is no diagonal (possibly stochastic) normalizer D̃n for which the
D-factor would converge in probability to a nonsingular nonstochastic matrix:

plimD̃−1
n ZnZ

′
nD̃
−1
n = Q̃, |Q̃| 6= 0. (2.14)

To emphasize the strength of this result, we state it in a different form.

Corollary 2.2. Under the conditions of the last theorem, our normalizer is unique up to an
asymptotically constant diagonal factor. If the conventional scheme works with some diagonal
D̃n, then it will work with our Dn too.

Besides, in the next section we show that, under reasonable conditions, for the basic model
the negative statement extends to non-diagonal D̃n.

2.9 Examples and discussion

We give examples for both the positive and negative statements. The way heterogeneous errors
are implemented here is different from that in [3]. Besides, Anderson and Kunitomo expend a
lot of effort to relax the integrability requirement on the errors. To facilitate comparison and
concentrate on essential differences, we assume homogeneous errors and replace their conditional
uniform integrability condition on et by our p-summability condition. Thus, in Examples 4, 5 and
6 we suppose that |β| < 1 and {et} is an i.i.d. sequence with Eet = 0, σ2 = Ee2

t , sup E|et|p <∞
for some p > 2.
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Example 4. Regarding the elements of the basic model suppose that

(a) The normalized regressor h = x/ ‖x‖2 , where x = (x1, ..., xn)′, is L2-close to a function
hc ∈ L2.

(b) The limits κ1 = limn→∞ ‖x‖2 /∆n, κQ = limn→∞
√
n/∆n, where ∆n = max{‖x‖2 ,

√
n},

exist.

Put

Q =

(
1 ρ

ρ ρ2 +
σ2κ2Q

(1−β)2

)
, where ρ =

ακ1

1− β
.

If κQ is positive, then |Q| 6= 0 and(
‖x‖2 (α̂− α)

∆n(β̂ − β)

)
d→ N(0, σ2Q−1).

This statement follows from Theorem 2.3 and has actually been obtained in [18] under a stronger
errors integrability condition.

[3] for the same basic model assume:

(i) Letting Ft = σ(ej : j ≤ t) suppose that xt is Ft−1-measurable.

(ii) 1
n

maxt=1,...,n x
2
t

p→ 0, as n→∞.

(iii) 1
n

∑n
t=1 x

2
t

p→M, as n→∞, where M is a constant.

(iv) 1
n

n−h∑
t=1

xt+hxt
p→ Mh = M−h, as n → ∞, for all h = 0, 1, 2, ..., where Mh are constants and

M0 > 0.

(v) 1
n

n−h∑
t=1

xt+het
p→ 0, as n→∞, for all h = 1, 2, ...

(vi) 1
n

n∑
t=max{r,s}+2

et−1−ret−1−s
p→ δrsσ

2 =

{
σ2, r = s
0, r 6= s

, as n→∞, for all r, s = 0, 1, 2, ...

Define L =
∑∞

s=0 β
sαM−(s+1). Then the limit Q = plim 1

n

∑n
t=1 y

2
t−1 exists, det

(
Q L
L M0

)
6=

0 and
√
n

(
α̂− α
β̂ − β

)
d→ N

(
0, σ2

(
Q L
L M0

)−1
)
.

Remark 1. Since Anderson and Kunitomo focus on stochastic regressors, no wonder they need
to impose many more conditions. Note that each of (iv), (v) and (vi) consists of an infinite series
of assumptions.

Remark 2. Unfortunately, in case of a deterministic xt, the only obvious simplification is that
(i) becomes trivial and in (ii), (iii) and (iv) p→ can be replaced by→ . Condition (vi) has nothing
to do with the regressors and does not simplify. In case of i.i.d. errors it follows from the weak
law of large numbers but otherwise can be burdensome. Conditions (ii) and (iii) exclude quickly
growing regressors (in case of polynomials, starting from the linear trend). There is clearly a
need for a dedicated result for deterministic regressors.
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Remark 3. In their general Theorem 3, Anderson and Kunitomo put exogenous and endogenous
regressors into one pile, and then in their Theorems 4, 5 and 6 specify the general result to
autoregression and mixed autoregression by sorting out the regressors. A drastic reduction in
the number of assumptions in our result is due to Lp-approximability and the fact that, from
the very beginning, we keep separately the exogenous regressors from the lags of the dependent
variable. The method here also improves upon [18]: the weak law of large numbers for mixingales
[5] and theorem on transforms of martingales [8] are not used, while the errors integrability
requirement is lower and heterogeneous errors are allowed.

Example 5. For the model yt = α1 + α2t + β1yt−1 + et with α1α2 6= 0, the pair of regressors
{1, t} by Example 1 is L2-close (upon normalization) to a pair of functions {1,

√
3t}, which is

linearly independent in L2. dn1 is of order
√
n, dn2 and ∆n are of order n3/2, κ1 = 0, κ2 = 1,

κQ = 0 and by the negative result the conventional scheme does not work with our or any other
diagonal normalizer.

Next we discuss the issue of non-diagonal normalization. [1] worked with diagonal normal-
izers. [3] in their Theorem 3 introduced a non-diagonal normalizer Dn. They have fixed the
properties of Dn axiomatically, without indicating how it can be constructed from the data.
Therefore their Theorem 3 cannot be applied in practice. No attempt to justify the introduction
of non-diagonal normalizers has been made. In their specification of that theorem to a mixed
autoregression, they have reverted back to the traditional

√
n, thus forfeiting the opportunity to

capture different growth rates of the regressors (which was not their goal). One may conjecture
that when κQ = 0 and, hence, |Q| = 0, using non-diagonal normalizers may save the situation.
In the following example we present evidence that this is not the case for the basic model.

Example 6. Consider the basic model under the assumptions (a), (b) of Example 4. Suppose
κQ = 0 and D̃n is a non-diagonal matrix. By [12, Chapter IX, §14, Theorem 9] there exist a
symmetric matrix Sn, Sn = S ′n, and an orthogonal matrix On, O

′
nOn = I, such that D̃n = SnOn.

This equation implies D̃′n = O′nSn and

Q̃n ≡ D̃−1
n ZnZ

′
nD̃
′−1
n = O−1

n S−1
n ZnZ

′
nS
−1
n On.

Since O±1
n have determinants 1 or −1, premultiplication by O−1

n and postmultiplication by On

cannot change the asymptotic behavior of |S−1
n ZnZ

′
nS
−1
n |, so we can safely assume that D̃n is

symmetric. (This part of the argument holds for the general model (1.3).)
By [12, Chapter IX, §13, Equation (119)] there exist a diagonal matrix Dn = diag[d̄n1, d̄n2]

and an orthogonal matrix On such that D̃n = OnDnO
−1
n . From this equation and the definition

of Q̃n and Qn we get

Q̃n = OnD
−1

n O−1
n ZnZ

′
nOnD

−1

n O−1
n

= OnD
−1

n O−1
n DnD

−1
n ZnZ

′
nD
−1
n DnOnD

−1

n O−1
n

= OnD
−1

n O−1
n DnQnDnOnD

−1

n O−1
n . (2.15)

Note that
κQ = lim

n→∞

√
n

max{dn1,
√
n}

= 0

means that
√
n = o(dn1) and ∆n = dn1. Hence,

Dn =

(
dn1 0
0 ∆n

)
= dn1I for all large n
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and Dn commutes with any second-order matrix. Therefore (2.15) can be rearranged as

O−1
n Q̃nOn = D

−1

n Dn(O−1
n QnOn)DnD

−1

n .

It is reasonable to assume that
(c) the limit O = plimOn exists.
Then (2.14) implies O−1

n Q̃nOn
p→ O−1Q̃O and an argument similar to Step 2 of the proof of

Theorem 2.4 shows that all diagonal elements of O−1Q̃O are positive.
Now we want to see when both diagonal elements of C = O−1QO are positive. Since κ1 = 1,

the jack equals J = ακ1/(1− β) = α/(1− β) and by Theorem 2.1

Q =

(
1 ρ
ρ ρ2

)
, where ρ =

α

1− β
.

A second-order orthogonal matrix O can be represented as

O =

(
cosφ − sinφ
sinφ cosφ

)
, −π < φ ≤ π.

Simple algebra gives the following expressions for the diagonal elements of C:

c11 = (cosφ− ρ sinφ)2, c22 = (sinφ+ ρ cosφ)2.

c11 is zero where cotφ = ρ and c22 is zero where tanφ = −ρ. Thus, for any φ such that

cotφ 6= ρ, tanφ 6= −ρ (2.16)

both c11, c22 are positive.
The positivity of the diagonal elements of O−1Q̃O and O−1QO leads to existence of positive

limits plim(d̄ni/dni)
2 and to a contradiction, as in Steps 3 and 4 of the proof of Theorem 2.4.

This contradiction arises because of the assumption (2.14) with a non-diagonal Q̃. Hence, we
have to restrict our attention to diagonal normalizers in which case our normalizer is unique up
to an asymptotically constant factor. Now we make one more assumption:

(d) The normalizer is a continuous function of the model parameters.
Under this condition uniqueness of our diagonal normalizer (which does not depend on the

model parameters) extends to the values of φ excluded in (2.16).
The conclusion is that the benefits of non-diagonal normalization, if they exist, are rather

an exception than a rule. They may exist when one or more of the conditions imposed in this
example are violated.

Example 7. [14, Section 16.3] derives the asymptotic distribution of the OLS estimator for
yt = α + δt + φ1yt−1 + ... + φpyt−p + et following the suggestion by [27] to detrend the series.
Specifically, the argument is based on the idea that yt − α− δt should be covariance-stationary
(see [14], p.464, second paragraph from the bottom). This idea neglects the fact that not only
the term α + δt but also the lags of y contribute to the long-run trend of y. Here, by deriving
the long-run trend, we show that yt − α− δt is not covariance-stationary.

For simplicity, take p = 1, y0 = 0 and denote

φ = φ1, α
∗ =

α

1− φ
, β∗ =

β

1− φ
, where |φ| < 1.

By induction, it is easy to derive the representation

yt =
t−1∑
k=0

[α + (t− k)β + et−k]φ
k, k ≥ 1.
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With the notation

αt = α

t−1∑
k=0

φk, βt = β
t−1∑
k=0

(
1− k

t

)
φk

it takes the form

yt = αt + βtt+
t−1∑
k=0

φket−k.

Obviously, αt → α∗ as t→∞. For a given ε > 0 choose t0 such that |φ|t0 < ε. Let t1 be so large
that t0/t1 ≤ ε. Since 0 ≤ 1− k/t ≤ 1 for 0 ≤ k < t, we have for all t ≥ t1

|βt − β∗| = |β|

∣∣∣∣∣
(

t0∑
k=0

+
t−1∑

k=t0+1

)(
1− k

t

)
φk −

(
t0∑
k=0

+
∑
k>t0

)
φk

∣∣∣∣∣
= |β|

∣∣∣∣∣−
t0∑
k=0

k

t
φk +

t−1∑
k=t0+1

(
1− k

t

)
φk −

∑
k>t0

φk

∣∣∣∣∣
≤ |β|

(
t0∑
k=0

t0
t

∣∣φk∣∣+
t−1∑

k=t0+1

|φk|+
∑
k≥t0

|φk|

)

≤ |β|
(

ε

1− |φ|
+

2|φ|t0
1− |φ|

)
≤ 3ε|β|

1− |φ|
.

This proves that βt → β∗.
Of course, one can detrend yt by α∗ + β∗t but then the detrended series will not be truly

stationary. The realization of the idea requires a finer technique than just stationarity.

3 Appendix

3.1 Operators arising in the theory of autoregressive models

If A,B are two matrices, the function with values AF1B, ..., AFnB should be distinguished from
the function with values A1F1B1, ..., AnFnBn where A,B are two functions. In both cases we
denote the product by AFB indicating whether A,B are matrices or functions. Let F be a
matrix-valued function. With two square matrices A,B we can associate three operators:

(PAF )t =
t−1∑
s=1

At−1−sFs, (QAF )t =
n∑

s=t+1

FsA
s−1−t,

(RA,BF )t =
t−1∑
s=1

At−1−sFsB
t−1−s, t = 1, ..., n,

where by definition the corresponding matrix is null if the summation set is empty: (PAF )1 = 0,
(QAF )n = 0, (RA,BF )1 = 0. Note that along with the sum (PAF )t = At−2F1 + ...+A0Ft−1 with
decreasing powers of A one can think of increasing powers as in A0F1 + ...+At−2Ft−1. Observe
also that in PA the summation set increases with t, whereas in QA it decreases. We use the
same notation PA for such modalities because the corresponding operators have the same limits.
The same agreement applies to the other two operators. The next theorem is taken from [19,
Chapter 8].

Theorem 3.1. (i) If {Xn} is Lp-approximable and p <∞, then
limn→∞max1≤t≤n||Xnt||p = 0.
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(ii) Let 1 < p < ∞. Consider sequences of matrix-valued functions {Xn}, {Yn}, {Zn} such
that Xn, Yn, Zn are defined on τn, n = 1, 2, ... If {Xn} is Lp-close to Xc ∈ Lp, {Yn} is
Lq-close to Y c ∈ Lq and {Zn} is L∞-close to Zc ∈ C[0, 1], then

lim
n→∞

n∑
t=1

XntYntZnt =

∫ 1

0

Xc(x)Y c(x)Zc(x)dx.

(iii) Suppose B is a square matrix with eigenvalues satisfying |λ| < 1 and let 1 ≤ p ≤ ∞. Then

max{||PB||, ||QB||, ||RB,B′ ||} <∞

uniformly in n = 1, 2, ... where the operator norms are from lp(τn,Mp) to itself. Suppose,
further, that p < ∞ and {Xn} is Lp-close to Xc ∈ Lp. Then {PBXn} is Lp-close to the
left resolvent (I − B)−1Xc, {QBXn} is Lp-close to the right resolvent Xc(I − B)−1 and
{RB,B′Xn} is Lp-close to the enveloping resolvent

∑∞
s=0B

sXcB′s.

(iv) If {Xn} is Lp-close to Xc ∈ Lp and {Yn} is Lp-close to Y c ∈ Lp, then {Xn+Yn} is Lp-close
to Xc + Y c.

(v) If {Xn} is Lp-close to Xc ∈ Lp, p <∞, and {Yn} is L∞-close to Y c ∈ C[0, 1], then {XnYn}
is Lp-close to XcY c. In particular, if {An} is a sequence of matrices converging to A, then
{AnXn} is Lp-close to AXc.

(vi) If {Xn} is L∞-close to Xc ∈ L∞, then {n−1/pXn} is Lp-close to Xc.

3.2 An integral version of the Cramér-Wold device

To reduce the problem of convergence in distribution of a sequence of stochastic matrices {Wn}
to the one-dimensional case we prove an extension of a well-known device [1, Theorem 7.7.7].

Lemma 3.1. Convergence in distribution

vecWn
d→ N

(
0,

∫ 1

0

Ω1(x)⊗ Ω2(x)dx

)
,

where Ω1, Ω2 are symmetric matrices with square-integrable components, takes place if and only
if for any constant matrix C

tr(WnC)
d→ N

(
0,

∫ 1

0

tr[C ′Ω1(x)CΩ2(x)]dx

)
.

Proof. Using
tr(ABC) = (vecB′)′(I ⊗ C)vecA (3.1)

we get
tr(WnC) = c′vecWn (3.2)

where c = vec(C ′). From (3.1) and

vec(AB) = (B′ ⊗ I)vecA, (A⊗B)(C ⊗D) = (AC)⊗ (BD)

we see that ∫ 1

0

tr[(C ′Ω1)CΩ2]dx =

∫ 1

0

c′(I ⊗ Ω2)vec(C ′Ω1)dx (3.3)

= c′
∫ 1

0

(I ⊗ Ω2)(Ω′1 ⊗ I)dxc = c′
∫ 1

0

Ω1(x)⊗ Ω2(x)dxc.

(3.2), (3.3) and the Cramér-Wold theorem prove the lemma.
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3.3 Operations with uniformly integrable functions

In the next lemma ν and µ are arbitrary sets of indices and, as before, matrices in a sequence
are of the same size. ”u.i.” will mean "uniformly integrable".

Lemma 3.2. (i) For a sequence {Xn : n ∈ ν} of random matrices uniform integrability of
(i, j)th elements {Xnij} for all i, j is equivalent to uniform integrability of {||Xn||2}.

(ii) If variables ||Xn||p2, n ∈ ν, are u.i., variables ||Ym||q2, m ∈ µ, have uniformly bounded
L1-norms and p <∞, then a double-index family {XnYm : n ∈ ν, m ∈ µ} is u.i.

(iii) If vectors Xm, m ∈ µ, are u.i. and, for each n ∈ ν, {αnm : m ∈ µn} is a set of
constant matrices satisfying µn ⊂ µ, α = supn

∑
m∈µn ||αnm||2 < ∞, then the family{∑

m∈µn αnmXn : n ∈ ν
}

is u.i.

(iv) For {Xn} a sequence of random matrices the following conditions are equivalent: (1) all
elements of X ′nXn are u.i., (2) variables ||Xn||22 = tr(X ′nXn) are u.i.

Proof. It is easy to prove the lemma using the next characterization from [10, Theorem 12.9]:
{Xn} is u.i. if and only if supn E|Xn| < ∞ and for any ε > 0 there is a δ > 0 such that for all
events A of probability P (A) < δ one has supn E|Xn|I(A) < ε.

By equivalence of any two norms on a finite-dimensional space one has

c1E||Xn||2I(A) ≤
∑
i,j

E|Xnij|I(A) ≤ c2E||Xn||2I(A),

which implies (i). To prove (ii), it suffices to apply the above characterization to ||Xn||p2 and use
the Hölder inequality:

E||XnYm||2I(A) ≤ (E||Xn||p2I(A))1/p(E||Ym||q2)1/q ≤ ε sup
m

(E||Ym||q2)1/q.

(iii) follows from

E

∥∥∥∥∥∑
m∈µn

αnmXm

∥∥∥∥∥
2

I(A) ≤ α sup
m

E ‖Xm‖2 I(A) ≤ αε.

Let us prove (iv). If all elements of X ′nXn are u.i., then such are the elements of the main
diagonal and by (iii) ||Xn||22 = tr(X ′nXn) is u.i. Conversely, let ||Xn||22 be u.i. and let δ > 0 be
such that E||Xn||22I(A) < ε for all A satisfying P (A) < δ. Then for the (i, j)th element of X ′nXn

we have

E

∣∣∣∣∣∑
l

XnliXnlj

∣∣∣∣∣ I(A) ≤ E||Xn||22I(A) < ε,

which is what we want.

3.4 A martingale weak law and central limit theorem

For proving convergence in mean the following Chow-Davidson theorem is useful, see [10, The-
orem 19.7].

Theorem 3.2. If {Xnt,Fnt} is an m.d. array, positive constants cnt satisfy supn
∑n

t=1 cnt <
∞ and limn→∞

∑n
t=1 c

2
nt = 0 and variables Xnt/cnt are uniformly integrable, then

E|
∑n

t=1Xnt| → 0.
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Note that this theorem trivially extends to vector m.d. arrays.
Following [3], among different versions of martingale central limit theorems we choose the

format suggested by [11], for the simple reason that it allows σ2 = 0. However, this technical
simplification does not make redundant the analysis of the singular case (see our main results
in Section 2). Anderson and Kunitomo do not do such analysis.

Theorem 3.3. (Dvoretzky CLT) If {Xnt,Fnt} is an m.d. array, σ2
nt denotes E(X2

nt|Fn,t−1),

plim
n∑
t=1

σ2
nt = σ2, (3.4)

where σ2 ≥ 0 is a constant, the σ-fields are nested: Fnt ⊂ Fn+1,t for 1 ≤ t ≤ n, n ≥ 1 and for
any ε > 0

plim
n∑
t=1

E(X2
ntI(|Xnt| > ε)|Fn,t−1) = 0, (3.5)

then
∑n

t=1Xnt
d→ N(0, σ2).

The original Dvoretzky paper misses the requirement that σ-fields should be nested, see [13]
for details.

3.5 Convergence in mean of two auxiliary vector sequences

In the next lemma we study the behavior of two auxiliary random vectors

Un =
1

∆n

n∑
t=1

Xnt(PBEn)′t

and

Vn =
1

n

n∑
t=1

Xnt(PBEn)t(PBEn)′t =
1

n

n∑
t=1

Xnt

t−1∑
k,l=1

Bt−1−kenke
′
nlB

′t−1−l (3.6)

(here {Xn} is some deterministic sequence and not the Xn from (1.4)). They will be used
to control second-order conditional moments in the proof of our vector central limit theorem
(Theorem 2.2).

Lemma 3.3. Let Assumptions 1 and 3 hold.

(a) If {Xn} is vector-valued and L2-close to Xc ∈ L2, then

L2- limUn = 0. (3.7)

(b) If {Xn} is L∞-close to Xc ∈ C[0, 1], then

L1- limVn = lim EVn =

∫ 1

0

Xc(x)Ξ(x)dx. (3.8)
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Proof. (a) Since X ′ntXnt is a scalar, we have

E||Un||22 = Etr(U ′nUn) =
1

∆2
n

n∑
s,t=1

Etr[(PBEn)tX
′
ntXns(PBEn)′s]

=
1

∆2
n

n∑
s,t=1

X ′ntXnsEtr

(
t−1∑
k=1

Bt−1−kenk

s−1∑
l=1

e′nlB
′t−1−l

)

=
1

∆2
n

n∑
t=1

||Xnt||22tr

(
t−1∑
k=1

Bt−1−kΣnkB
′t−1−k

)

=
1

∆2
n

n∑
t=1

||Xnt||22tr(RB,B′Σn)t.

By Theorem 3.1(iii) and Assumption 3(iii) ||RB,B′Σn||∞ ≤ c, so

E||Un||22 ≤
c

∆2
n

n∑
t=1

||Xnt||22 → 0

which proves (3.7).
(b) By orthogonality (2.10)

EVn =
1

n

n∑
t=1

Xnt

t−1∑
k=1

Bt−1−kΣnkB
′t−1−k =

n∑
t=1

1√
n
Xnt

(
RB,B′

1√
n

Σn

)
t

. (3.9)

By Theorem 3.1(vi)
{

1√
n
Xn

}
is L2-close to Xc and

{
1√
n
Σn

}
is L2-close to Σc. By Theorem

3.1(iii)
{
RB,B′

1√
n
Σn

}
is L2-close to Ξ(x). Thus the second equation in (3.8) follows from (3.9)

and Theorem 3.1(ii).
Before proving the other part of (3.8), we need to reveal the m.d. structure of the difference

Vn − EVn. From (3.6) and (3.9) we have

Vn − EVn =
1

n

n∑
t=1

Xnt

t−1∑
k=1

Bt−1−k(enke
′
nk − Σnk)B

′t−1−k (3.10)

+
1

n

n∑
t=1

Xnt

t−1∑
k=1

k−1∑
l=1

[Bt−1−kenke
′
nlB

′t−1−l

+Bt−1−lenle
′
nkB

′t−1−k].

Here each pair (k, l) such that 1 ≤ l < k ≤ t−1 is matched by another pair with 1 ≤ k < l ≤ t−1.
In the second pair k and l are switched places. Changing summation order in the first big sum
in (3.10) we get

n∑
t=1

Xnt

t−1∑
k=1

Bt−1−k(enke
′
nk − Σnk)B

′t−1−k (3.11)

=
n−1∑
k=1

n∑
t=k+1

XntB
t−1−k(enke

′
nk − Σnk)B

′t−1−k.
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A part of the second sum in (3.10) can be rearranged as follows:
n∑
t=1

Xnt

t−1∑
k=1

k−1∑
l=1

Bt−1−kenke
′
nlB

′t−1−l (3.12)

=
n−1∑
k=1

n∑
t=k+1

XntB
t−1−kenk

(
k−1∑
l=1

e′nlB
′k−1−l

)
B′t−k

=
n−1∑
k=1

n∑
t=k+1

XntB
t−1−kenk(PBEn)′kB

′t−k.

Similarly,
n∑
t=1

Xnt

t−1∑
k=1

(
k−1∑
l=1

Bt−1−lenl

)
e′nkB

′t−1−k (3.13)

=
n−1∑
k=1

n∑
t=k+1

XntB
t−k

(
k−1∑
l=1

Bk−1−lenl

)
e′nkB

′t−1−k

=
n−1∑
k=1

n∑
t=k+1

XntB
t−k(PBEn)ke

′
nkB

′t−1−k.

Equations (3.10)-(3.13) are summarized in

Vn − EVn =
n−1∑
k=1

Ynk

where

Ynk =
1

n

n∑
t=k+1

Xnt[B
t−1−k(enke

′
nk − Σnk)B

′t−1−k

+Bt−1−kenk(PBEn)′kB
′t−k +Bt−k(PBEn)ke

′
nkB

′t−1−k].

Since (PBEn)k is Fn,k−1-measurable, {Ynk} is clearly a vector m.d. array. The numbers cnt = 1/n,
t = 1, ..., n, satisfy conditions of Theorem 3.2.

By Assumption 3(ii) the family {||ent||22} is u.i., so by the equivalent characterization [10,
Theorem 12.9]

lim
P (A)→0

sup
n,t

E||ent||22I(A) = 0, sup
n,t
||ent||22 <∞.

Hence, by Lemma 3.2(ii) the family {enke′nl} is u.i. Next we apply Assumption 1 and Lemma
3.2(iii) to conclude that the products

(PBEn)ke
′
nk =

(
k−1∑
l=1

Bk−1−lenl

)
e′nk.

are u.i. Therefore, invoking also Assumption 3(iii), we see that the family consisting of those
products and differences enke′nk − Σnk is u.i. Finally, the variables Ynk/cnt are u.i. by Lemma
3.2(iii), because ||Xnt||∞ ≤ c <∞ and

n∑
t=k+1

||Xnt||2[||Bt−1−k||22 + 2||Bt−1−k||2||Bt−k||2] ≤ c

∞∑
s=0

||Bs||22 <∞.

Thus Theorem 3.2 yields E||Vn − EVn||2 → 0 which completes the proof.
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3.6 Negligibility of the terms containing the residual

The next lemma establishes the standard fact that the influence of the initial value in (2.7) and
(2.8) is asymptotically negligible.

Lemma 3.4. If Assumptions 1 through 5 hold, then

dlim EnZ ′nD−1
n = dlim

(
EnH ′n,

1

∆n

EnM ′
n

)
, (3.14)

L1- limD−1
n ZnZ

′
nD
−1
n = L1- lim

(
HnH

′
n

1
∆n
HnM

′
n

1
∆n
MnH

′
n

1
∆2

n
MnM

′
n

)
, (3.15)

assuming that the limits on the right exist.

Proof. (3.14) follows from (2.7), Assumptions 1, 3 and 5 and the bound

E

∥∥∥∥ 1

∆n

Enρ′n
∥∥∥∥

2

≤ 1

∆n

n∑
t=1

E||ent||2||y0||2||Bt−1||2

≤ 1

∆n

sup
n,t

(E||ent||22)1/2(E||y0||22)1/2

∞∑
t=1

||Bt−1||2 → 0.

{Hn} satisfies a condition of type (2.9), so

E

∥∥∥∥ 1

∆n

Hnρ
′
n

∥∥∥∥
2

≤ 1

∆n

n∑
t=1

||Hnt||2E||y0||2||Bt−1||2

≤ 1

∆n

(
n∑
t=1

||Hnt||22

)1/2( ∞∑
t=1

||Bt−1||22

)1/2

E||y0||2 → 0.

Obviously,

E

∥∥∥∥ 1

∆2
n

ρnρ
′
n

∥∥∥∥
2

≤ 1

∆2
n

∞∑
t=1

||Bt−1||22E||y0||22 → 0.

By Assumptions 2, 4 and Theorem 3.1(v) {AbnHn} is L2-close to AbHc. Assumption 1 and
Theorem 3.1(iii) therefore imply

PBAbnHn is L2-close to (I −B)−1AbHc = JHc. (3.16)

Combine this fact with (2.6) to get

E

∥∥∥∥ 1

∆2
n

Mnρ
′
n

∥∥∥∥
2

= E

∥∥∥∥∥ 1

∆2
n

n∑
t=1

[(PBAdnHn)t + (PBEn)t]y
′
0B
′t−1

∥∥∥∥∥
2

≤ 1

∆n

n∑
t=1

||(PBAbnHn)t||2E||y0||2||Bt−1||2

+
1

∆2
n

n∑
t=1

t−1∑
k=1

||Bt−1−k||2E||enky0||2||Bt−1||2

≤ 1

∆n

(
n∑
t=1

||(PBAbnHn)t||22
∞∑
t=1

||Bt−1||22

)1/2

E||y0||2

+
1

∆2
n

sup
n,t

(E||y0||22E||ent||22)1/2

(
∞∑
t=1

||Bt−1||2

)2

→ 0.

Now (3.15) follows from (2.8) and the last three bounds.
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3.7 "Scalarization" of the problem of convergence of the N-factor

The last lemma and (2.7) explain why we are interested in studying the vector

Wn =

(
EnH ′n,

1

∆n

EnM ′
n

)
. (3.17)

Proving convergence of Wn will be a long journey. Partitioning C conformably, C ′ = (C ′1, C
′
2),

and utilizing (3.17) we get

tr(WnC) = tr

(
EnH ′nC1 +

1

∆n

EnM ′
nC2

)
= tr

[
n∑
t=1

entH
′
ntC1 +

1

∆n

n∑
t=1

ent(PBAdnHn + PBEn)′tC2

]

=
n∑
t=1

[H ′ntC1 + (PBAbnHn)′tC2] ent +
1

∆n

n∑
t=1

(PBEn)′tC2ent.

Hence, denoting
Gnt = C ′1Hnt + C ′2(PBAbnHn)t, Snt = G′ntent, (3.18)

Tnt =
1

∆n

(PBEn)′tC2ent =
1

∆n

t−1∑
s=1

e′nsB
′t−1−sC2ent (3.19)

we have the decomposition

tr(WnC) =
n∑
t=1

(Snt + Tnt). (3.20)

Snt and Tnt are real-valued m.d.s because (PBEn)t is Fn,t−1- measurable.

3.8 Convergence of conditional second moments

Denote

Ω0(x) =

(
Hc(Hc)′ Hc(Hc)′J ′

JHc(Hc)′ JHc(Hc)′J ′

)
.

Lemma 3.5. Under Assumptions 1-4

lim
n∑
t=1

E(S2
nt|Fn,t−1) = tr

∫ 1

0

C ′Ω0(x)CΣc(x)dx, (3.21)

L2- lim
n∑
t=1

E(SntTnt|Fn,t−1) = 0, (3.22)

L1- lim
n∑
t=1

E(T 2
nt|Fn,t−1) = κ2

Qtr

∫ 1

0

C ′2Ξ(x)C2Σc(x)dx. (3.23)

Proof. From (2.10) and (3.18) we see that

n∑
t=1

E(S2
nt|Fn,t−1) =

n∑
t=1

G′ntE(ente
′
nt|Fn,t−1)Gnt =

n∑
t=1

G′ntΣntGnt. (3.24)
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Using (3.16), by Theorem 3.1, items (iv) and (v), we get

Kn ≡ C ′1Hn + C ′2PBAbnHn is L2-close to Kc ≡ (C ′1 + C ′2J)Hc. (3.25)

Since {Σn} is L∞-close to Σc, by Theorem 3.1(ii)

n∑
t=1

K ′ntΣntKnt →
∫ 1

0

(Kc)′ΣcKcdx. (3.26)

Note that
Kc = (C ′1, C

′
2)

(
Hc

JHc

)
= C ′

(
Hc

JHc

)
, Kc(Kc)′ = C ′Ω0C,

so ∫ 1

0

(Kc)′ΣcKcdx = tr

∫ 1

0

Kc(Kc)′Σcdx = tr

∫ 1

0

C ′Ω0CΣcdx. (3.27)

Now (3.21) follows from (3.24), (3.26) and (3.27).
Using definitions (3.18) and (3.19) rearrange

n∑
t=1

E(SntTnt|Fn,t−1) =
1

∆n

n∑
t=1

K ′ntE(ente
′
nt|Fn,t−1)C ′2(PBEn)t

=
1

∆n

n∑
t=1

K ′ntΣntC
′
2(PBEn)t

=
1

∆n

tr
n∑
t=1

C2ΣntKnt(PBEn)′t.

This type of variable appeared in Lemma 3.3(a) with Xnt = C2ΣntKnt. By (3.25), Assumption
3(iii) and Theorem 3.1(v) {Xn} is L2-close to C2ΣcKc, so by Lemma 3.3(a) (3.22) is true.

Since (PBEn)t is Fn,t−1-measurable, (3.19) implies

n∑
t=1

E(T 2
nt|Fn,t−1) =

1

∆2
n

n∑
t=1

(PBEn)′tC2E(ente
′
nt|Fn,t−1)C ′2(PBEn)t

=
1

∆2
n

tr
n∑
t=1

(PBEn)′tC2ΣntC
′
2(PBEn)t

=
n

∆2
n

tr
1

n

n∑
t=1

C2ΣntC
′
2(PBEn)t(PBEn)′t.

Here Xn = C2ΣnC
′
2 is L∞-close to C2ΣcC ′2 by Assumption 3(iii) and Theorem 3.1(v). Therefore

(3.23) follows from Lemma 3.3(b) and Assumption 4.

3.9 Convergence of tr(WnC)

Denote

σ2 = tr

∫ 1

0

C ′Ω1CΣcdx.

Lemma 3.6. If Assumptions 1 through 4 hold, then for any constant matrix C

tr(WnC)
d→ N(0, σ2). (3.28)
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Proof. We are going to apply Theorem 3.3. According to (3.20) we need to consider Xnt =
Snt + Tnt. By Lemma 3.5 we have a stronger statement than (3.4):

L1- lim
n∑
t=1

σ2
nt = tr

∫ 1

0

[C ′Ω0CΣc + κ2
QC
′
2Ξ(x)C2Σc]dx = σ2.

The proof of (3.5) is a little longer. We need to study properties of φnt = 1
∆n
||(PBEn)t||2.

Obviously, φnt is Fn,t−1-measurable and by Lemma 3.3(b) and Assumption 4

L1- lim
n∑
t=1

φ2
nt = L1- lim

n

∆2
n

tr
1

n

n∑
t=1

(PBEn)t(PBEn)′t (3.29)

= κ2
Qtr

∫ 1

0

Ξ(x)dx.

By the Chebyshev inequality for any δ > 0

EI(φnt > δ) ≤ 1

δ∆n

E

∥∥∥∥∥
t−1∑
k=1

Bt−1−kenk

∥∥∥∥∥
2

≤ c1

δ∆n

. (3.30)

By the Minkowski inequality and Assumption 3(ii)

(E|φnt|p)1/p =
1

∆n

(
E

∥∥∥∥∥
t−1∑
k=1

Bt−1−kenk

∥∥∥∥∥
p

2

)1/p

≤ 1

∆n

t−1∑
k=1

∥∥Bt−1−k∥∥
2

sup
n,k

(E||enk||p2)1/p ≤ c2

∆n

.

With p1 = p/2, q1 = p1/(p1 − 1) from the last two bounds we get

Eφ2
ntI(φnt > δ) ≤ (EI(φnt > δ))1/q1(E|φnt|2p1)1/p1 (3.31)

≤ c3

(δ∆n)1/q1∆2
n

.

Since {Kn} is L2-approximable (see (3.25)), by (2.9) and Theorem 3.1(i) there exists n0 =
n0(δ) such that

sup
n≥1
||Kn; l2(τn,M2)|| <∞, sup

n≥1
max
1≤t≤n

||Knt||2 ≤ δ. (3.32)

Using the last estimate and |Xnt| ≤ c(||Knt||2 + φnt)||ent||2, for any δ > 0 and n ≥ n0 we have

I(|Xnt| > ε) ≤ I
(

(||Knt||2 + φnt)||ent||2 >
ε

c

)
[I(||Knt||2 + φnt ≤ 2δ)

+I(||Knt||2 + φnt > 2δ)] ≤ I
(
||ent||2 >

ε

2δc

)
+ I(φnt > δ).

This together with
X2
nt ≤ 2(S2

nt + T 2
nt) ≤ c(||Knt||22 + φ2

nt)||ent||22
allows us to proceed with proving (3.5):

n∑
t=1

E(X2
ntI(|Xnt| > ε)|Fn,t−1) (3.33)

≤ c

n∑
t=1

(||Knt||22 + φ2
nt)E

(
||ent||22I

(
||ent||2 >

ε

2δc

)
|Fn,t−1

)
+c

n∑
t=1

(||Knt||22 + φ2
nt)I(φnt > δ)E

(
||ent||22|Fn,t−1

)
.
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By (3.29) and (3.32)

αn ≡
n∑
t=1

(||Knt||22 + φ2
nt) = Op(1)

which in combination with Assumption 3(iv) leads to
n∑
t=1

(||Knt||22 + φ2
nt)E

(
||ent||22I

(
||ent||2 >

ε

2δc

)
|Fn,t−1

)
(3.34)

≤ αn sup
n,t

E
(
||ent||22I

(
||ent||2 >

ε

2δc

)
|Fn,t−1

)
p→ 0, δ → 0.

Further, application of (3.30), (3.31) and (3.32) results in

E
n∑
t=1

(||Knt||22 + φ2
nt)I(φnt > δ)E

(
||ent||22|Fn,t−1

)
(3.35)

=
n∑
t=1

||Knt||22EI(φnt > δ)trΣnt +
n∑
t=1

Eφ2
ntI(φnt > δ)trΣnt

≤ c1

δ∆n

+
c2n

(δ∆n)1/q1∆2
n

→ 0, n→∞,

for any δ > 0, because q1 < ∞. The left side of (3.34) can be made small uniformly in n by
choosing a small δ. For the selected δ, the left side of (3.35) can be made small by taking n
sufficiently large. Then (3.33), (3.34) and (3.35) prove (3.5). By Theorem 3.3, (3.28) follows.

3.10 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. (i) We consider the blocks of the matrix at the right of (3.15) one by one.
By Assumption 2 and Theorem 3.1(ii)

lim
n→∞

HnH
′
n = lim

n→∞

n∑
t=1

HntH
′
nt =

∫ 1

0

Hc(Hc)′dx = G.

Denote Fn = PBAbnHn. From (2.6), (3.16), Theorem 3.1(ii) and Lemma 3.3(a)

L2- lim
1

∆n

HnM
′
n = L2- lim

[
HnF

′
n +

1

∆n

Hn(PBEn)′
]

=

∫ 1

0

Hc(Hc)′J ′dx = GJ ′.

The block in the lower right corner of (3.15) equals

1

∆2
n

MnM
′
n = FnF

′
n +

1

∆n

Fn(PBEn)′ +
1

∆n

(PBEn)F ′n +
1

∆2
n

(PBEn)(PBEn)′.

Here by (3.16) and Lemma 3.3(a)

limFnF
′
n = JGJ ′, L2- lim

1

∆n

Fn(PBEn)′ = 0,

so by Lemma 3.3(b) and Assumption 4

L1- lim
1

∆2
n

(PBEn)(PBEn)′ = κ2
Q

∫ 1

0

Ξ(x)dx.
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The proof is complete.
(ii) Suppose |Q| 6= 0. If |G| = 0, then some row of G is a linear combination of the others.

Denote the rows (G)1, ..., (G)r and suppose (G)i =
∑

j 6=i cj(G)j. Then (GJ ′)i =
∑

j 6=i cj(GJ
′)j.

This means that among the first rows of Q one is a linear combination of the others and hence
|Q| = 0. This proves necessity of (b).

When proving necessity of (a) and (c), we can assume that (b) is true, without loss of
generality. Equation (2.11) implies (a) and (c). Sufficiency of (a), (b) and (c) also follows from
(2.11).

Proof of Theorem 2.2. (i) Lemma 3.4 reduces convergence of the N -factor to that of Wn. By
Lemma 3.1 Wn converges if tr(WnC) converges for any C. This last convergence has been
established in Lemma 3.6. Lemma 3.1 provides the expression for the variance of the limit
because if we denote H = Hc(Hc)′, then

Ω0 ⊗ Σc =

(
H⊗ Σc (H⊗ Σc)(J ′ ⊗ I)

(J ⊗ I)(H⊗ Σc) (J ⊗ I)(H⊗ Σc)(J ′ ⊗ I)

)
.

The proof of part (ii) is similar to the proof of part (ii) of Theorem 2.1.

Proof of Corollary 2.1. Convergence of vecUn and vecVn is a consequence of vec (EnZ ′nD−1
n ) =(

vecUn
vecVn

)
and (2.12). Denoting G =

∫ 1

0
[Hc(Hc)′]⊗Σcdx, we can write the variance matrix in

(2.12) as ∫ 1

0

Ω1(x)⊗ Σc(x)dx =

(
G G(J ′ ⊗ I)

(J ⊗ I)G (J ⊗ I)G(J ′ ⊗ I)

)
.

Equation V = UJ ′ implies vecU = (J ⊗ I)vecU , so that
(

vecU
vecV

)
has the same variance.

Since a normal vector is uniquely defined by its mean and variance, this proves the corollary.

3.11 Example of a proper mixed autoregression

Lemma 3.7. If A and B are defined by (2.13) with α1...αr 6= 0 and |G| 6= 0, then model (1.1)
is a proper mixed autoregression.

Proof. By definition, we need to fix b with at least one nonzero diagonal element. Since none of
the alphas is zero, the vector ζ = (α1κ1, ..., αrκr)

′ is not null. Let ei = (0, ..., 0, 1, 0, ..., 0)′ denote
the ith unit vector in Rs. Then

Ab =

 α1 ... αr
... ... ...
0 ... 0


 κ1 0

. . .
0 κr

 =

(
ζ ′

0

)

and
AbG(Ab)′ =

(
ζ ′

0

)
G
(
ζ 0

)
= ζ ′Gζe1e

′
1

where ζ ′Gζ > 0 because G is positive definite. Hence,

JGJ ′ = ζ ′Gζ(I −B)−1e1e
′
1(I −B′)−1. (3.36)

Let us prove that
e′iB

k = e′i−1B
k−1 for all k ≥ 1, 2 ≤ i ≤ s. (3.37)
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To apply induction in k, consider k = 1 first. e′iB is the ith row of B and e′i−1I is the ith row of
I, so (3.37) is true. Now suppose it holds for some k ≥ 1. Denoting bklm (bk−1

lm ) the elements of
Bk (Bk−1, respectively), by the induction assumption we have

(bki1, ..., b
k
is) = (bk−1

i−1,1, ..., b
k−1
i−1,s) for all i.

This leads to

e′iB
k+1 = e′i

 bk11 ... bk1s
... ... ...
bks1 ... bkss




β1 β2 ... βs
1 0 ... 0
... ... ... ...
0 0 ... 0


= (bki1β1 + bki2, b

k
i1β2 + bki3, ..., b

k
i1βs−1 + bkis, b

k
i1βs)

= (bk−1
i−1,1β1 + bk−1

i−1,2, ..., b
k−1
i−1,1βs) = e′i−1B

k.

The proof of (3.37) is complete.
Repetitive application of (3.37) gives

e′i(I −B)−1e1 =

(
e′i

i−2∑
k=0

Bk + e′i

∞∑
k=i−1

Bk

)
e1

=

(
i−2∑
k=0

e′i−kB
k−k +

∞∑
k=i−1

e′i−(i−1)B
k−(i−1)

)
e1

=

(
i−2∑
k=0

e′i−kI + e′1

∞∑
k=0

Bk

)
e1 = e′1(I −B)−1e1.

This equation entails equality of diagonal elements of (I −B)−1e1e
′
1(I −B′)−1:

e′i(I −B)−1e1e
′
1(I −B′)−1ei = e′1(I −B)−1e1e

′
1(I −B′)−1e1, i = 1, ..., s.

Combining this with (3.36) we see that all diagonal elements of JGJ ′ are equal to ζ ′Gζ. (In fact,
a slight modification of the last step shows that all elements of JGJ ′ are the same).

3.12 Proof of Theorem 2.4 and Corollary 2.2

Proof of Theorem 2.4. Step 1. Let us prove that all diagonal elements of Q are positive. To
avoid notational clutter, denote

Kn = D−1
n Zn =

 kn1

...
kn,r+s

 ,

so that by Theorem 2.1

Qn = D−1
n ZnZ

′
nD
−1
n = KnK

′
n = (knik

′
nj)

r+s
i,j=1

p→ Q.

The first r diagonal elements of Q are unities because by construction kni = h
(i)
n are the rows of

Hn and
∥∥∥h(i)

n

∥∥∥
2

= 1 for all n. Since the system is assumed to be a proper mixed autoregression,
the last s diagonal elements of Q are positive if the balancer is not null. Suppose b = 0, that is

lim
n→∞

dni
max{dn1, ..., dnr,

√
n}

= 0, i = 1, ..., r.
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From these equations for the function fn = max{dn1/
√
n, ..., dnr/

√
n} we obtain

lim fn/max{fn, 1} = 0. Hence, fn → 0 and

κQ = lim
n→∞

√
n

max{dn1, ..., dnr,
√
n}

= lim
1

max{fn, 1}
= 1,

which contradicts the assumption κQ = 0.

Step 2. All objects in the parallel world (with the alternative normalizer D̃n) will be capped
with a tilde. Thus, there are diagonal elements d̃ni of D̃n, rows k̃ni of K̃n and elements q̃ij of Q̃.
Here we show that all diagonal elements of Q̃ are positive.

Suppose q̃ii = 0 for some i. Q̃n
p→ Q̃ implies k̃nik̃′nj

p→ q̃ij for all i, j. By the Cauchy-Schwartz
inequality for any j

|k̃nik̃′nj| ≤
∥∥∥k̃ni∥∥∥

2

∥∥∥k̃nj∥∥∥
2

= (k̃nik̃
′
nik̃nj k̃

′
nj)

1/2.

By taking limits we get |q̃ij| ≤ (q̃iiq̃jj)
1/2 for any j. Thus, the whole ith row in Q̃ is null and

|Q̃| = 0, contradicting (2.14). Hence, our assumption is wrong and q̃ii is positive (it cannot be

negative because q̃ii = plim
∥∥∥k̃ni∥∥∥2

2
).

Step 3. Denote rni = (d̃ni/dni)
2, i = 1, ..., r + s, where dn,r+i = ∆n for i = 1, ..., s. Here we

prove that the limits plimrni = ri exist.
Letting Cn = D−1

n D̃n we note the relationship between Kn and K̃n:

Kn = D−1
n D̃nD̃

−1
n Zn = CnK̃n (3.38)

which implies kni = (d̃ni/dni)k̃ni. Recalling that the diagonal elements of both Q and Q̃ are not
zero, we see that the limits

plimrni = plim
knik

′
ni

k̃nik̃′ni
=
qii
q̃ii

(3.39)

exist and are positive
Step 4. (3.38) implies Qn = KnK

′
n = CnK̃nK̃

′
nCn. This equation and the assumptions

|Q| = 0 and (2.14) give
r+s∏
i=1

(
d̃ni
dni

)2

= |Cn|2 =
|Qn|
|Q̃n|

p→ 0.

This obviously contradicts (3.39). Thus (2.14) is impossible.

Proof of Corollary 2.2. Step 2 of the proof of Theorem 2.4, applied to Q, shows that if |Q| 6= 0,
then all diagonal elements of Q are positive. In case |Q| = 0 the same conclusion is true by Step
1. Thus, regardless of the value of |Q|, the limits ri are positive and the limits λi = plimd̃ni/dni
are nonzero. We obtain the uniqueness statement D̃n = DnD

−1
n D̃n = DnCn with plimCn =

diag[λ1, ..., λr+s] ≡ Λ.

Suppose the conventional scheme works with D̃n, that is the limits

dlimEnZ ′nD̃−1
n , Q̃ = plimD̃−1

n ZnZ
′
nD̃
−1
n

exist and |Q̃| 6= 0. Then the limits

dlimEnZ ′nD−1
n = dlimEnZ ′nD̃−1

n Λ, Q = plimD−1
n ZnZ

′
nD
−1
n = ΛQ̃Λ

also exist and |Q| 6= 0.
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