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Abstract. Weighted inequalities are proved for the weighted Hardy operators and the weighted
dual of the classical Hardy operator acting from one weighted variable exponent Lebesgue space
Lp(.),ω1(0,∞) to another weighted variable exponent Lebesgue space Lp(.),ω2(0,∞) for 0 < p(x) ≤
q(x) < 1.

1 Introduction

Function spaces of variable integrability appeared in the work by Orlicz [8] already in 1931, but
the recent interest in there spaces is based on the paper of Kovac̆ik and Râkosnik [7] together with
applications to modeling electrorheological fluids [9]. A fundamental breakthrough concerning
spaces of variable integrability was the observation that, under certain regularity assumptions
on p(.), the Hardy-Littlewood maximal operator is bounded on Lp(.)(Rn), see [6].

The aim of this paper is to obtain weighted inequalities for the weighted Hardy operator and
the weighted dual of the classical Hardy operator acting from one weighted variable exponent
Lebesgue space to another weighted variable exponent Lebesgue space for 0 < p(x) < 1, for
non-negative Lebesgue measurable functions on (0,∞) satisfying a certain weak condition of
monotonicity type.

It is well known that for Lp-spaces with 0 < p < 1 the Hardy inequality is not satisfied for ar-
bitrary non-negative measurable functions, but is satisfied for non-negative monotone functions.
Moreover in [4], pp. 90-91, the sharp constant in the Hardy-type inequality for non-negative non-
increasing functions was found (see [5] for more details). Later the monotonicity was replaced
by a weaker condition (see [11]), in particular, the following statements were proved.

Let for x > 0, f ∈ Lloc1 (0,∞),

(Hf)(x) =
1

x

∫ x

0

f(t)dt.

Theorem 1.1. Let x > 0, 0 < p < 1, and α < 1− 1
p
. If f is a non-negative Lebesgue measurable

function on (0,∞) and satisfies for some M > 0 the inequality

f(x) ≤ M

x

(∫ x

0

fp(y)yp−1dy
) 1

p
, (1.1)

for all x > 0, then
‖xα(Hf)(x)‖Lp(0,∞) ≤ N‖tαf(t)‖Lp(0,∞), (1.2)
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where

N = M1−pp1− 1
p

(
1− α− 1

p

)− 1
p

. (1.3)

Moreover, the constant N is sharp.

Later inequality (1.2) was extended for the weighted Hardy operator (for more details see
[1]). Namely the following statements were proved there.

Let ω denote a weight function on (0,∞), i.e. a positive Lebesgue measurable function on
(0,∞). For 0 < p <∞ the weighted space Lp,ω(0,∞) is the space of all real-valued functions
with finite quasi-norm

‖f‖Lp,ω(0,∞) =
(∫ ∞

0

|f(x)|pω(x)dx
) 1

p
.

The weighted Hardy operator is defined by

(Hωf)(x) =
1

W (x)

∫ x

0

f(t)ω(t)dt, x > 0,

where 0 < W (x) =
∫ x

0
ω(t)dt <∞ for all t > 0.

Note that for ω(t) ≡ 1, the operator Hω is the usual Hardy operator

(Hf)(x) =
1

x

∫ x

0

f(t)dt.

Lemma 1.1. Let 0 < p < 1, c1 > 0, A > 0, ω be a weight function on (0,∞) satisfying the
condition

ω(t) ≤ c1ω(y) for 0 < y < t <∞. (1.4)
If f is a non-negative Lebesgue measurable function on (0,∞) such that for almost all 0 < t <∞,

f(t) ≤ A
(∫ t

0

ω(y)yp−1dy
)− 1

p
(∫ t

0

fp(y)ω(y)yp−1dy
) 1

p
, (1.5)

then for all x > 0

(Hωf)(x) ≤ c2

xω(x)
1
p

(∫ x

0

fp(y)ω(y)yp−1dy
) 1

p
, (1.6)

where c2 = p
1
pA1−pc

2
p
−1

1 .

Remark 1. If in Lemma 1.1 ω = 1, then inequality (1.5) takes form (1.1) with M = Ap
1
p and

c1 = 1, consequently c2 = p
1
pA1−p (see[1]).

Remark 2. If f is a non-increasing function on (0,∞), then (1.5) holds with A = 1 (see [1]).

Theorem 1.2. Let 0 < p < 1, c1 > 0, A > 0, ω be a weight function on (0,∞) satisfying
condition (1.4), and α < 1 − 1

p
. If f is a non-negative Lebesgue measurable function on (0,∞)

satisfying (1.5), then
‖xα(Hωf)(x)‖Lp,ω(0,∞) ≤ D‖tαf(t)‖Lp,ω(0,∞), (1.7)

where

D = A1−pc
2
p
−1

1

(
1− α− 1

p

)− 1
p

. (1.8)

In Bandaliev’s paper [3], two weighted inequalities were proved for the classical Hardy op-
erator acting from one weighted variable exponent Lebesgue space to another weighted variable
exponent Lebesgue space for non-negative monotone functions defined on (0,∞). In this work
weighted inequalities are proved for the weighted Hardy operator and the weighted dual of the
classical Hardy operator. In particular if ω(x) = 1 and f is a non-increasing function, we obtain
Bandaliev’s results (see Theorem 2.2) and some corollaries for p(x) = p = const.
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2 Preliminaries

Let H∗w be the dual of the operator Hω in L2(0,∞). Then for any f, g ∈ L2(0,∞)∫ ∞
0

( 1

W (x)

∫ x

0

f(t)ω(t)dt
)
g(x)dx =

∫ ∞
0

(∫ ∞
t

g(x)

W (x)
dx
)
f(t)ω(t)dt

=

∫ ∞
0

ω(t)(H∗g)(x)f(t)dt

=

∫ ∞
0

ω(t)
(∫ ∞

t

g(x)

W (x)
dx
)
f(t)dt.

Hence the equality (Hωf, g)L2(0,∞) = (f,H∗ωg)L2(0,∞) is satisfied for the operator H∗ω defined by(
H∗ωf

)
(x) = ω(x)

∫ ∞
x

g(t)

W (t)
dt, x > 0.

Lemma 2.1. Let 0 < p < 1, B > 0, ω be a weight function on (0,∞) such that for all
x > 0

∫ x
0
ω(y)dy < ∞. If f is a non-negative Lebesgue measurable function on (0,∞) such

that for almost all 0 < x <∞ ∫ ∞
x

fp(y)ω(y)yp−1dy <∞

and

f(x) ≤ B

x

(∫ ∞
x

fp(y)ω(y)yp−1dy
)1/p

ω(x)
1

1−p

(∫ x

0

ω(y)dy
) 1

1−p
. (2.1)

Then for r > 0

(H∗ωf)(r) ≤ c3ω(r)
(∫ ∞

r

fp(y)ω(y)yp−1dy
)1/p

, (2.2)

where c3 = pB1−p.

Proof. By (2.1) it follows that

x1−pf(x)1−p ≤ B1−p
(∫ ∞

x

f(y)pω(y)yp−1dy
) 1

p
−1

ω(x)

∫ x

0

ω(y)dy.

Hence
f(x)

W (x)
≤ B1−p

(∫ ∞
x

f(y)pω(y)yp−1dy
) 1

p
−1

ω(x)f(x)pxp−1

= pB1−p(−1)
[( ∫ ∞

x

f(y)pω(y)yp−1dy
) 1

p
]′
.

Integrating over (r,∞) we obtain ∫ ∞
r

f(x)

W (x)
dx

≤ pB1−p lim
b→+∞

((∫ ∞
r

f(y)pω(y)yp−1dy

) 1
p

−
(∫ ∞

b

f(y)pω(y)yp−1dy

) 1
p

)

≤ pB1−p
(∫ ∞

r

f(y)pω(y)yp−1dy
) 1

p
,
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hence

(H∗ωf) (r) = ω(r)

∫ ∞
r

f(x)

W (x)
dx ≤ pB1−pω(r)

(∫ ∞
r

f(y)pω(y)yp−1dy
) 1

p
.

If ω(x) = 1 in (2.1) and (2.1), then we have the following corollary.

Corollary 2.1. Let 0 < p < 1. If f is non-negative Lebesque measurable function on (0,∞)
such that for all 0 < x <∞

∫∞
x
fp(y)yp−1dy <∞ and for some B > 0 the inequality

f(x) ≤ B

xp′

(∫ ∞
x

fp(y)yp−1dy

) 1
p

, (2.3)

is satisfied, then for r > 0

(H∗f)(r) ≤ c3

(∫ ∞
r

fp(y)yp−1dy

) 1
p

, (2.4)

where c3 = pB
1−p and p′ is the conjugate exponent of p.

Remark 3. Inequality (2.3), (2.4) respectively, are analogues of inequality (1.1) and inequality
(2.2) in [7] for the dual of the classical Hardy operator.

Theorem 2.1. Let 0 < p < 1, x > 0 and −1
p
< α < 1 − 1

p
. If f is a non-negative Lebesgue

measurable function on (0,∞) and satisfies (2.3), then

‖δα(H∗f)(δ)‖Lp(0,∞) ≤ c4‖yα+1f(y)‖Lp(0,∞) (2.5)

where c4 = pB1−p(αp+ 1)−
1
p .

Proof.

K1 = ‖δα (H∗f) (δ)‖Lp(0,∞) =

[∫ ∞
0

δαp (H∗f)p (δ)dδ

] 1
p

=

[∫ ∞
0

δαp
(∫ +∞

δ

f(y)

y
dy

)p
dδ

] 1
p

.

Then by (2.4) it follows that

K1 ≤
[∫ ∞

0

δαpcp3

(∫ ∞
δ

fp(y)yp−1dy

)
dδ

] 1
p

= c3

[∫ ∞
0

fp(y)yp−1

(∫ y

0

δαpdδ

)
dy

] 1
p

= pB1−p(αp+ 1)−
1
p‖yα+1f(y)‖Lp(0,∞).

Let Rn be the n-dimensional Euclidean space of points x = (x1, ..., xn), Ω be a Lebesgue
measurable subset of Rn. Suppose that p is a Lebesgue measurable function on Ω such that
0 < p ≤ p(x) ≤ p <∞, p = ess infx∈Ω p(x), p = ess supx∈Ω p(x) and w is a weight function on
Ω, i.e. is a non-negative, almost everywhere (a.e) positive function on Ω.
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Definition 1. By Lp(x),ω(Ω) we denote the set of all measurable function f on Ω such that

Ip,ω(f) =

∫
Ω

(|f(x)|ω(x))p(x)dx <∞. (2.6)

Note that the expression

‖f‖Lp(.),ω(Ω) = inf{λ > 0;

∫
Ω

( |f(x)|ω(x)

λ

)p(x)

dx ≤ 1}, (2.7)

defines a quasi-norm on Lp(x),ω(Ω). Lp(x),ω(Ω) is a quasi-Banach space equipped with this quasi-
norm (see [7] and [10]).

In [3] the following Corollary was proved.

Corollary 2.2. Let 0 < p ≤ p(x) ≤ q(x) ≤ q <∞ and r(x) = p(x)q(x)
q(x)−p(x)

. Suppose that ω1 and ω2

are weight functions in Ω satisfying the condition:∥∥∥ω1

ω2

∥∥∥
Lr(.)(Ω)

<∞.

Then the inequality

‖f‖Lp(.),ω1
(Ω) ≤ (A1 +B1 + ‖χΩ2‖L∞(Ω))

1/p
∥∥∥ω1

ω2

∥∥∥
Lr(.)(Ω)

‖f‖Lq(.),ω2
(Ω), (2.8)

holds for every f ∈ Lq(x),ω2(Ω), where

Ω1 = {x ∈ Ω : p(x) < q(x)}, Ω2 = {x ∈ Ω : p(x) = q(x)},

A1 = sup
x∈Ω1

p(x)

q(x)
, B1 = sup

x∈Ω1

q(x)− p(x)

q(x)
.

The following lemma is known (see [2]).

Lemma 2.2. Let 1 ≤ p ≤ p(x) ≤ q(y) ≤ q < ∞; for all x ∈ Ω1 ⊂ Rn and y ∈ Ω2 ⊂ Rm. If
p ∈ C(Ω1), then the inequality∥∥∥‖f‖Lp(.)(Ω1)

∥∥∥
Lq(.)(Ω2)

≤ Cp,q

∥∥∥‖f‖Lq(.)(Ω2)

∥∥∥
Lp(.)(Ω1)

(2.9)

is valid, where

Cp,q =
(
‖χ∆1‖∞ + ‖χ∆2‖∞ +

p

q
+
p

q

)
(‖χ∆1‖∞ + ‖χ∆2‖∞), (2.10)

q = ess inf
Ω2

q(x) q = ess sup
Ω2

q(x),

∆1 = {(x, y) ∈ Ω1 × Ω2; p(x) = q(x) }, ∆2 = Ω1 × Ω2/∆1,

and C(Ω1) is the space of continuous functions in Ω1 and f : Ω1 × Ω2 → R is any measurable
function such that

∥∥∥‖f‖Lq(.)(Ω2)

∥∥∥
Lp(.)(Ω1)

<∞.

The following theorem is proved in [3].
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Theorem 2.2. Let x ∈ (0,∞); 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) =
pp(x)

p(x)−p , and f be a
non-negative and non-increasing function defined on (0,∞). Suppose that ω1 and ω2 are weight
functions defined on (0,∞).

Then for any f ∈ Lp(x),ω1(0,∞) the inequality

‖Hf‖Lq(.),ω2
(0,∞) ≤ p

1
pCp,qdp

∥∥∥t1/p′‖ω2

x
‖Lq(.)(t,∞)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞), (2.11)

holds, where
Cp,q

=

(
‖χ M1 ‖L∞(0,∞) + ‖χ M2 ‖L∞(0,∞) + p

(
1

q
− 1

q

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)\S1 and dp =
(

1− p−p
p

+ ‖χS1‖L∞(0,∞)

) 1
p .

3 Main results

We consider the weighted Hardy operator

(Hωf)(x) =
1

W (x)

∫ x

0

f(t)ω(t)dt.

Theorem 3.1. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, α < 1− 1
p
, r(x) =

pp(x)

p(x)−p and f be
a non-negative Lebesgue measurable function defined on (0,∞) satisfying inequality (1.5) with p
replaced by p and ω be a weight function satisfying condition (1.4). Suppose that ω1 and ω2 are
weight functions defined on (0,∞).

Then for any f ∈ Lp(x),ω1(0,∞) the inequality

‖(Hωf)(x)‖Lq(.),ω2
(0,∞)

≤ c2Cp,qdp

∥∥∥ω1/py1/p′‖ ω2(x)

xω1/p(x)
‖Lq(.)(y,∞)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞), (3.1)

holds, where c2 = p
1
p c

2
p
−1

1 A1−p.

Proof. By applying Lemma 1.1, we obtain

‖Hωf‖Lq(.),ω2
(0,∞) = ‖ω2Hωf‖Lq(.)(0,∞)

≤
∥∥∥ c2ω2(x)

xω1/p(x)

(∫ x

0

fp(y)ω(y)yp−1dy
)1/p∥∥∥

Lq(.)(0,∞)

= c2

∥∥∥ ω2(x)

xω1/p(x)

(∫ x

0

fp(y)ω(y)yp−1dy
)1/p∥∥∥

Lq(.)(0,∞)
.

Let I1 =
∥∥∥ ω2(x)

xω1/p(x)

( ∫ x
0
fp(y)ω(y)yp−1dy

)1/p∥∥∥
Lq(.)(0,∞)

, then

I1 =
∥∥∥(∫ ∞

0

[
fp(y)ω(y)

]
χ(0,x)(y)

[ ω2(x)

xω1/p(x)

]p
yp−1dy

)1/p∥∥∥
Lq(.)(0,∞)
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=
∥∥∥∫ ∞

0

[
fp(y)ω(y)

]
χ(0,x)(y)

[ ω2(x)

xω1/p(x)

]p
yp−1dy

∥∥∥1/p

L q(.)
p

(0,∞)

=
∥∥∥‖[fp(y)ω(y)]χ(0,x)(y)

[ ω2(x)

xω1/p(x)

]p
yp−1‖L1(0,∞)

∥∥∥1/p

L q(.)
p

(0,∞)
.

Next, by applying Lemma 2.2, we get

I1 ≤ Cp,q

(∫ ∞
0

∥∥∥[fp(y)ω(y)]χ(0,x)(y)
[ ω2(x)

xω1/p(x)

]p
yp−1

∥∥∥
L q(.)

p

(0,∞)
dy
)1/p

= Cp,q

(∫ ∞
0

fp(y)ω(y)yp−1
∥∥∥χ(0,x)(y)

[ ω2(x)

xω1/p(x)

]p∥∥∥
L q(.)

p

(0,∞)
dy
)1/p

= Cp,q

(∫ ∞
0

fp(y)ω(y)yp−1
∥∥∥ ω2(x)

xω1/p(x)

∥∥∥p
Lq(.)(y,∞)

dy
)1/p

= Cp,q

∥∥∥f(y)ω1/p(y)y1/p′
∥∥∥ ω2(x)

xω1/p(x)

∥∥∥
Lq(.)(y,∞)

∥∥∥
Lp(0,∞)

.

Let I2 =
∥∥∥f(y)ω1/p(y)y1/p′

∥∥∥ ω2(x)

xω1/p(x)

∥∥∥
Lq(.)(y,∞)

∥∥∥
Lp(0,∞)

,

then by applying Corollary 2.2, we obtain

I2 ≤ dp

∥∥∥ω1/p(y)y1/p′‖ ω2(x)

xω1/p(x)
‖Lq(.)(y,∞)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞),

consequently

‖Hωf‖Lq(.),ω2
(0,∞) ≤ c2Cp,qdp

∥∥∥ω1/p(y)y1/p′‖ ω2(x)

xω1/p(x)
‖Lq(.)(y,∞)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞).

For the dual operator H∗ω, we have the following theorem.

Theorem 3.2. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, α < 1− 1
p
, r(x) =

pp(x)

p(x)−p and f be
a non-negative Lebesgue measurable function defined on (0,∞) satisfying inequality (2.1) with
p replaced by p and w be a weight function satisfying conditions of Lemma 2.1 Suppose that ω1

and ω2 are weight functions defined on (0,∞).
Then for any f ∈ Lp(x),ω1(0,∞) the inequality

‖(H∗ωf)(x)‖Lq(.),ω2
(0,∞)

≤ c3Cp,qdp

∥∥∥ω1/p(y)y1/p′‖ω2(x)ω(x)‖Lq(.)(0,y)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞) (3.2)

holds, where c3 = pB1−p.
Proof. By applying Lemma 1.1, we get

‖H∗ωf‖Lq(.),ω2
(0,∞) = ‖ω2H

∗
ωf‖Lq(.)(0,∞)

≤ c3

∥∥∥ω2(x)ω(x)
(∫ ∞

x

fp(y)ω(y)yp−1dy
)1/p∥∥∥

Lq(.)(0,∞)
.
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Let J1 =
∥∥∥ω2(x)ω(x)

( ∫∞
x
fp(y)ω(y)yp−1dy

)1/p∥∥∥
Lq(.)(0,∞)

,

hence

J1 =
∥∥∥(∫ ∞

0

[
fp(y)ω(y)

]
χ(x,∞)(y)

[
ω2(x)ω(x)

]p
yp−1dy

)1/p∥∥∥
Lq(.)(0,∞)

=
∥∥∥∫ ∞

0

[
fp(y)ω(y)

]
χ(x,∞)(y)

[
ω2(x)ω(x)

]p
yp−1dy

∥∥∥1/p

L q(.)
p

(0,∞)

=
∥∥∥‖[fp(y)ω(y)]χ(x,∞)(y)

[
ω2(x)ω(x)

]p
yp−1‖L1(0,∞)

∥∥∥1/p

L q(.)
p

(0,∞)
.

Now, by applying Lemma 2.2, we obtain

J1 ≤ Cp,q

(∫ ∞
0

∥∥∥[fp(y)ω(y)]χ(x,∞)(y)
[
ω2(x)ω(x)

]p
yp−1

∥∥∥
L q(.)

p

(0,∞)
dy
)1/p

= Cp,q

(∫ ∞
0

fp(y)ω(y)yp−1
∥∥∥χ(x,∞)(y)

[
ω2(x)ω(x)

]p∥∥∥
L q(.)

p

(0,∞)
dy
)1/p

= Cp,q

(∫ ∞
0

fp(y)ω(y)yp−1
∥∥∥ω2(x)ω(x)

∥∥∥p
Lq(.)(0,y)

dy
)1/p

= Cp,q

∥∥∥f(y)ω1/p(y)y1/p′‖ω2(x)ω(x)‖Lq(.)(0,y)

∥∥∥
Lp(0,∞)

.

Finally, applying Corollary 2.2, we get∥∥∥f(y)ω1/p(y)y1/p′‖ω2(x)ω(x)‖Lq(.)(0,y)

∥∥∥
Lp(0,∞)

≤ dp

∥∥∥ω1/p(y)y1/p′‖ω2(x)ω(x)‖Lq(.)(0,y)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞).

Thus

‖H∗ωf‖Lq(.),ω2
(0,∞) ≤ c3Cp,qdp

∥∥∥ω1/p(y)y1/p′‖ω2(x)ω(x)‖Lq(.)(0,y)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞).

Taking in account Remark 1., Remark 2. and replacing (1.5) by (1.1) in the proof of
Theorem 3.1, we obtain the following corollary.

Corollary 3.1. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, α < 1 − 1
p
, r(x) =

pp(x)

p(x)−p and
f be a non-negative Lebesgue measurable function defined on (0,∞) satisfying inequality (1.1).
Suppose that ω1 and ω2 are weight functions defined on (0,∞). Then for any f ∈ Lp(x),ω1(0,∞)
the inequality

‖Hf‖Lq(.),ω2
(0,∞) ≤ KCp,qdp

∥∥∥y1/p′‖ω2(x)
x
‖Lq(.)(y,∞)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞), (3.3)

holds, where K = p
1
pA1−p.
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Remark 4. If f is non-negative non-increasing function on (0,∞), inequality (1.1) is satisfied
with M = p

1
p and in corollary 3.1 K = p

1
p , consequently we obtain inequality (2.11) of

Theorem 2.2.

We consider the operator (H∗f) with ω(x) = 1, we get

(H∗f)(x) =

∫ ∞
x

f(y)

y
dy.

Replacing (2.2) by (2.4) in the proof of Theorem 3.2, we obtain the following corollary for the
operator H∗f .

Corollary 3.2. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, α < 1 − 1
p
, r(x) =

pp(x)

p(x)−p and f
be a non-negative Lebesgue measurable function satisfying inequality (2.4). Suppose that ω1 and
ω2 are weight functions defined on (0,∞).

Then for any f ∈ Lp(x),ω1(0,∞) the inequality

‖H∗1f‖Lq(.),ω2
(0,∞)

≤ pB1−pCp,qdp

∥∥∥y1/p′‖ω2(x)‖Lq(.)(0,y)

ω1

∥∥∥
Lr(.)(0,∞)

‖f‖Lp(.),ω1
(0,∞), (3.4)

holds, where B,Cp,q, dp are respectively the constants in Corollary 2.1 and Corollary 3.1.

Remark 5. Note that Corollary 3.1 in the case where f is non-negative non-increasing function
and p(x) = q(x) = p = const with ω1(x) = ω2(x) = xα was proved in [5] with sharp constant in
Hardy type inequality.
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