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Abstract. In this article we study the eigenvalue variations of Heisenberg and quaternion
Lie groups under the Ricci flow and we investigate the deformation of some characteristics of
compact nilmanifolds Γ\N under the Ricci flow, where N is a simply connected 2-step nilpotent
Lie group with a left invariant metric and Γ is a discrete cocompact subgroup of N , in particular
Heisenberg and quaternion Lie groups.

1 Introduction

2-step nilpotent Lie groups play an important role in mathematics, and Heisenberg type,
Heisenberg-like type Lie groups have a special significance. Heisenberg-type groups introduced
by Kaplan [17], are examples of Carnot groups. A Carnot group is simply a connected m-step
nilpotent Lie group N whose Lie algebra N decomposes into the direct sum of vector subspaces
V1 ⊕ V2 ⊕ ...⊕ Vm satisfying the following relations:

[V1,Vk] = Vk+1 , 1 ≤ k < m, [V1,Vm] = {0}.

Carnot groups have applications in complex analysis, semiclassical analysis of quantum mechan-
ics, control theory, and probability theory of degenerate diffusion processes, see [20] for further
details. The geometry of Carnot groups has been studied extensively by many mathematicians,
for instance, [2], [9], [10], [17].

The spectrum of a Riemannian manifold (M, g), denoted by spec(M, g), is the collection of
eigenvalues with multiplicities of the associated Laplace-Beltrami operator acting on smooth
functions. Studying the eigenvalues of geometric operators plays a powerful role in geometric
analysis. A basic question in spectral geometry is determining what geometric information is
contained in the spectrum of a Riemannian manifold. Despite considerable research in the area,
only a few geometric properties are known to be spectrally determined; for example, dimension,
volume, and total scalar curvature. Two Riemannian manifolds (M, g) and (M̃, g̃) are said to be
isospectral if spec(M, g) = spec(M̃, g̃). Examples of isospectral manifolds provide us with the
only means for determining properties not determined by the spectrum (see [3], [4], [5], [18],
[19] ).

On the other hand, the length spectrum of a Riemannian manifold is the set of lengths
of closed geodesics, counted with multiplicity. The multiplicity of a length is defined as the
number of distinct free homotopy classes in which the length occurs. The length spectrum and



12 S. Azami, A. Razavi

isospectral have relationship with each other (see [11], [13], [14], [16] ).

Let N be a simply connected Lie group and let Γ be a cocompact discrete subgroup of
N . A Riemannian metric g is left invariant if left translations of N are isometries. The left
invariant metric g projects to a Riemannian metric on Γ \ N , which we also denote by g.
Eberlein in [9] and [10] studied the differential geometry of simply connected, 2-step nilpotent
Lie groups N with a left invariant Riemannian metric <,>. The goal of this article is to
discuss relationships between the Laplace spectrum, the length spectrum and the geodesic flow
of compact Riemannian manifolds.

Let M be a Riemannian manifold with a Riemannian metric g0. The un-normalized Ricci
flow on M is defined by the equation:

d

dt
g(t) = −2Ric(g(t)), g(0) = g0, (1.1)

where Ric is the Ricci tensor of g(t). The volume of a manifold does not remain constant under
this Ricci flow, but it is preserved under the equation

d

dt
g(t) = −2Ric(g(t)) +

2r

n
g, g(0) = g0, (1.2)

where

r =

∫
M
Rdµ∫

M
dµ

is the average of the scalar curvature. (1.2) is called the normalized Ricci flow. Exitence and
uniqueness of the solution to the Ricci flow over a sufficiently short time have been proved by
Hamilton in [6], [7], by DeTurk in [8] on a compact Riemannian manifold and by G. Xu in
[24] on a noncompact Riemannian manifold.

In [1] and [21] the Ricci flow equation has been constructed and solved for some classes of
Carnot groups, the first is related to the multidimensional space of quaternion numbers which
is called quaternion nilpotent Lie group, the second one is the higher-dimensional classical
Heisenberg nilpotent Lie group.

Let M be a Riemannian manifold, Ω a bounded domain with smooth boundary in M and
f : Ω −→ R be a smooth function on Ω or f ∈ W 1,p(Ω), the Sobolev space. The p-Laplacian of
f for 1 < p <∞ is defined as

4pf = div(|∇f |p−2∇f) (1.3)
= |∇f |p−2∆f + (p− 2)|∇f |p−4(Hessf)(∇f,∇f),

where
(Hessf)(X, Y ) = ∇(∇f)(X, Y ) = Y.(X.f)− (∇YX).f, X, Y ∈ X (M).

Note that, for p = 2, ∆p is the usual Laplace-Beltrami operator. We say that λ is an eigenvalue
of the p-Laplacian on Ω whenever f 6= 0 on Ω̄ and{

∆pf + λ|f |p−2f = 0 on Ω,

f = 0 on ∂Ω,



Deformation of spectrum and length spectrum on some compact nilmanifolds under the Ricci flow 13

or equivalently ∫
Ω

|∇f |p−2 < ∇f,∇ϕ > dµ = λ

∫
Ω

|f |p−2fϕdµ ∀ϕ ∈ W 1,p
0 (Ω), (1.4)

where W 1,p
0 (Ω) is the closure of C∞0 (Ω) in Sobolev space W 1,p(Ω). In this case we say that f is

an eigenfunction associated to λ. Taking ϕ = f in (1.4) implies∫
Ω

|∇f |pdµ = λ

∫
Ω

|f |pdµ,

hence

λ =

∫
Ω
|∇f |pdµ∫

Ω
|f |pdµ

.

Normalized eigenfunctions are defined as follows :∫
Ω

|f |pdµ = 1. (1.5)

The nonzero first eigenvalue of the p-Laplacian is

λ1,p = inf
f 6=0

{∫
Ω
|∇f |pdµ∫

Ω
|f |pdµ

: f ∈ W 1,p(Ω),

∫
Ω

|f |p−2fdµ = 0

}
.

Let (Mn, g(t)) be a solution of the Ricci flow on the smooth manifold (Mn, g0) in the interval
[0;T ), then

λ(t) =

∫
Ω

|∇f(x)|pdµt (1.6)

defines the evolution of an eigenvalue of the p-Laplacian under the variation of g(t) where an
eigenfunction associated to λ(t) is normalized. Suppose that for any metric g(t) on Mn

Specp(g) = {0 = λ0(g) ≤ λ1(g) ≤ λ2(g) ≤ ... ≤ λk(g) ≤ ...}

is the spectrum of ∆p = g∆p. In [23] it is shown that along the Ricci flow the λ(t) is differentiable
on [0, T ], therefore, in what follows we assume the existence and C1-differentiability of the
elements λ(t) and f(t) under a Ricci flow deformation g(t) of a given initial metric.

2 Variation of eigenvalues

In this section, we will be using evolution formulas for λ(t) under the Ricci flow of [22] and
compute those in particular cases.

In [22] and [23] it has been shown that the variation formula for the eigenvalues of the
p-Laplacian under the Ricci flow is as follows:

i) for the un-normalized Ricci flow

dλ

dt
= λ

∫
Ω

R|f |pdµ−
∫

Ω

R|∇f |pdµ+ p

∫
Ω

Ric(∇f,∇f)|∇f |p−2dµ, (2.1)

ii) for the normalized Ricci flow

dλ

dt
= −prλ

n
+ λ

∫
Ω

R|f |pdµ−
∫

Ω

R|∇f |pdµ+ p

∫
Ω

Ric(∇f,∇f)|∇f |p−2dµ. (2.2)
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2.1 Variation of eigenvalues on the Heisenberg Lie group

We now recall the construction and properties of the higher-dimensional, classical Heisenberg
Lie group. Let Hn be a (2n+ 1)-dimensional Heisenberg Lie group. Let

x = (x1, ..., xn),

y = (xn+1, ..., x2n).

If q = (x, y, z) ∈ Hn × R and q = (x′, y′, z′) ∈ Hn × R, then the group multiplication is

(x, y, z) ◦ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + x.y′)

where x.y′ is the usual inner product of vectors x ∈ Rn and y′ ∈ Rn. With respect to this
multiplication, we have the following frame of left invariant vector fields,

ei = ∂i, en+i = ∂n+i + xi∂2n+1, e2n+1 = ∂2n+1, for all 1 ≤ i ≤ n,

and the only nontrivial Lie bracket relation is

[ei, en+i] = e2n+1, for all 1 ≤ i ≤ n.

The dual coframe is

θi = dxi, θn+i = dxn+i, θ2n+1 = dx2n+1 −
n∑
k=1

xkdxn+k, for all 1 ≤ i ≤ n.

In [21] it has been shown that the solution to the Ricci flow equation in the Heisenberg nilpotent
Lie group with the initial diagonal left-invariant metric

gi(0)gn+i(0) = g2n+1(0), for all i, 1 ≤ i ≤ n

is gi(t) = gi(0)

(
(n+ 2)t+ 1

)−2ri
n+2

, if 1 ≤ i ≤ 2n+ 1;

(r1, . . . , r2n+1) = −1
2
(1, 1, . . . , 1,−n)

(2.3)

where gi(t) = gii(t). The orthogonality of vector fields is invariant under this metric. For the
metric g(t) defined by (2.3), the Ricci tensor is diagonal and for 1 ≤ i ≤ 2n+ 1 we have

Ri = −2
∂gi
∂t

= rigi(0)

(
(n+ 2)t+ 1

)−2ri
n+2
−1

= rigi(t)

(
(n+ 2)t+ 1

)−1

,

where Ri = Rii, therefore
R = giRi =

−n
2((n+ 2)t+ 1)

is a constant. Let ∇i = ∇ei , then

Ric(∇f,∇f) = Rij∇if∇jf = Ri(∇if)2

=
ri

(n+ 2)t+ 1
gi(t)(∇if)2

=
−1

2((n+ 2)t+ 1)
gi(t)(∇if)2 +

n+ 1

2((n+ 2)t+ 1)
g2n+1(t)(∇2n+1f)2

=
−1

2((n+ 2)t+ 1)
|∇f |2 +

n+ 1

2((n+ 2)t+ 1)
g2n+1(t)(∇2n+1f)2.
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Using (2.1) for the un-normalized Ricci flow eigenvalue variation of the p-Laplacian we get

dλ

dt
=

−pλ
2((n+ 2)t+ 1)

+
(n+ 1)p

2((n+ 2)t+ 1)

∫
Ω

((n+ 2)t+ 1)
n

n+2

g2n+1(0)
(∂2n+1f)2|∇f |p−2dµ

=
−pλ

2((n+ 2)t+ 1)
+

(n+ 1)p((n+ 2)t+ 1)
−2
n+2

2g2n+1(0)

∫
Ω

(∂2n+1f)2|∇f |p−2dµ

and using (2.2) for the normalized Ricci flow of the p-Laplacian, we obtain

dλ

dt
= − prλ

2n+ 1
+

−pλ
2((n+ 2)t+ 1)

+
(n+ 1)p((n+ 2)t+ 1)

−2
n+2

2g2n+1(0)

∫
Ω

(∂2n+1f)2|∇f |p−2dµ.

Example 1. Let (N , <,>) be a two-step nilpotent metric Lie algebra of a Lie group (N,<,>),
which has the orthogonal decomposition N = V ⊕Z, where Z is center and V is the orthogonal
complement of Z. Define the linear transformation j : Z → SO(V) by j(Z)X = (adX)∗Z for
Z ∈ Z and X ∈ V . Equivalently, for each Z ∈ Z, j(Z) : V → V is the skew-symmetric linear
transformation defined by

< (adX)∗Z, Y >=< Z, (adX)Y > (2.4)

for all X, Y ∈ V . Here adX(Y ) = [X, Y ] for all X, Y ∈ N , and (adX)∗ denotes the (metric)
adjoint of adX. We say that (N,<,>) is of Heisenberg type whenever for any Z ∈ Z we have
j(Z)2 = −|Z|2Id. Note, that given the above definitions, Hn is two-step nilpotent. Set

V = {ei, en+i|1 ≤ i ≤ n}, Z = {e2n+1}

If we choose an inner product on Hn such that V
⋃
Z is an orthonormal basis for Hn then the

Heisenberg Lie group is of Heisenberg type. Let <,> be a left-invariant metric on a Lie group
N and ∇ its metric connection, then for X, Y, Z,W ∈ N , we have:

∇XY =
1

2
{(adX)Y − (adX)∗Y − (adY )∗X} .

Now, in the Heisenberg Lie group (Hn, g(t)) for all 1 ≤ I ≤ 2n+ 1, we have

∇eIeI =
1

2
{[eI , eI ]− (adeI)

∗eI − (adeI)
∗eI} = −(adeI)

∗eI

hence
< ∇eIeI , eJ >= − < −(adeI)

∗eI , eJ >= − < eI , [eI , eJ ] >= 0

this implies that ΓJII = 0. If g(t) is the metric in (2.3) then it is diagonal and for 1 ≤ I, J,K ≤
2n+ 1 we have

∆f = gIJ(eIeJf − ΓKIJeKf) = gI(eIeIf − ΓKIIeKf)

= gI(eI(eIf))

=
n∑
i=1

gi∂2
i f +

n∑
i=1

gi+n

(
∂2
i+nf + 2xi∂i+n∂2n+1f + (xi)2∂2

2n+1f

)
+ g2n+1∂2

2n+1f.

For p = 2 if f(x) = exp(x1) where x = (x1, ..., xn, xn+1, ..., x2n, x2n+1), then ∆f = g1∂2
1f .

Therefore

λ(t) = g1 = (g1(0))−1

(
(n+ 2)t+ 1

) −1
n+2

.
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For p 6= 2, we compute

|∇f |2 = gIJ(eIf)(eJf) =
1

g1(0)

(
(n+ 2)t+ 1

) −1
n+2

f 2,

and

|∇f |p−2∇f = (
1

g1(0)
)
p−2
2

(
(n+ 2)t+ 1

)−(p−2)
2(n+2)

fp−2∇f,

therefore

∆pf = div(|∇f |p−2∇f)

= ∇I(|∇f |p−2∇f)I

= gIJ
{
∇I(|∇f |p−2∇f)J

}
= gIJ

{
eI(|∇f |p−2∇f)J − ΓKIJ(|∇f |p−2∇f)K

}
= g1e1(|∇f |p−2∇f)1

=
1

g1(0)

(
(n+ 2)t+ 1

) −1
n+2

∂1

(
(

1

g1(0)
)
p−2
2

(
(n+ 2)t+ 1

)−(p−2)
2(n+2)

fp−1

)
= (

1

g1(0)
)
p
2

(
(n+ 2)t+ 1

) −(p)
2(n+2)

(p− 1)fp−1,

which implies that

λ(t) = (
1

g1(0)
)
p
2

(
(n+ 2)t+ 1

) −(p)
2(n+2)

(p− 1).

2.2 Variation of eigenvalues on quaternion Lie group

We now recall the construction and properties of higher-dimensional classical quaternion Lie
groups. Let N = Qn be a (4n+ 3)−dimensional quaternion Lie group. Let

x =
(
x11, x21, ..., xn1, ..., x1n, x2n, ..., x4n

)
,

z = (z1, z2, z3) .

If q = (x, z) ∈ N and q′ = (x′, z′) ∈ N and

M1 =


A1 O · · · O

O A1
. . . ...

... . . . . . . O
O · · · O A1

 , M2 =


A2 O · · · O

O A2
. . . ...

... . . . . . . O
O · · · O A2



M3 =


A3 O · · · O

O A3
. . . ...

... . . . . . . O
O · · · O A3

 ,
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where

A1 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , A2 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

A3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,
then the multiplication on N is defined by

Lq(q
′) = L(x,z)(x

′, z′) = (x, z) ◦ (x′, z′)

=

(
x+ x′, z1 + z′1 +

1

2
(M1x, x

′), z2 + z′2 +
1

2
(M2x, x

′), z3 + z′3 +
1

2
(M3x, x

′)

)
,

where (Mkx, x
′) is the usual inner product of the vectors Mkx ∈ R4n, x′ ∈ R4n. With respect to

this multiplication, we have the following vector fields

e1l =
∂

∂x1l
+

1

2

(
x2l ∂

∂z1
− x4l ∂

∂z2
− x3l ∂

∂z3

)
e2l =

∂

∂x2l
+

1

2

(
−x1l ∂

∂z1
− x3l ∂

∂z2
+ x4l ∂

∂z3

)
e3l =

∂

∂x3l
+

1

2

(
x4l ∂

∂z1
+ x2l ∂

∂z2
+ x1l ∂

∂z3

)
e4l =

∂

∂x4l
+

1

2

(
−x3l ∂

∂z1
+ x1l ∂

∂z2
+ x2l ∂

∂z3

)
e4n+m =

∂

∂zm

l = 1, 2, ..., n , m = 1, 2, 3

The Lie brackets of these vector fields are

[e1l, e2l] = −e4n+1, [e1le3l] = Z4n+3, [e1l, e4l] = e4n+2

[e2l, e2l] = e4n+2, [e2l, e4l] = −Z4n+3, [e3l, e4l] = −e4n+1. (2.5)

Other brackets are equal to zero. The duals of the above vector fields are as follows:

dxkl, θr = dzr − 1

2
(Mrx, dx), k = 1, 2, 3, 4, 1 ≤ l ≤ n, r = 1, 2, 3.

Given the above definitions, Qn is two-step nilpotent. Set

V = {X1l, X2l, X3l, X4l|1 ≤ l ≤ n}, Z = {Z1, Z2, Z3}

If we choose an inner product on Qn such that V
⋃
Z is an orthonormal basis for Qn, then

the quaternion Lie group is of Heisenberg type. The solution to the Ricci flow equation in a
quaternion nilpotent Lie group with the initial diagonal left-invariant metric

gj(0) = g1(0), g4n+1(0) = g4n+2(0) = g4n+3(0), for 1 ≤ j ≤ 4n



18 S. Azami, A. Razavi

is 
gi(t) = g1(0)

(
2n+6
g21(0)

g4n+1(0)t+ 1

) 3
2n+6

, if 1 ≤ i ≤ 4n;

gk(t) = g4n+1(0)

(
2n+6
g21(0)

g4n+1(0)t+ 1

) −n
n+3

, if 4n+ 1 ≤ k ≤ 4n+ 3;.
(2.6)

The orthogonality of vector fields is invariant under this metric. For metric (2.6) the Ricci tensor
on Qn is diagonal and for 1 ≤ I ≤ 4n+ 3, we have

Ri = −1

2

∂gi
∂t

=


−6g4n+1(0)

g21(0)
gi(t)

(
2n+6
g21(0)

g4n+1(0)t+ 1

)−1

, if 1 ≤ I ≤ 4n;

4ng4n+1(0)

g21(0)
gi(t)

(
2n+6
g21(0)

g4n+1(0)t+ 1

)−1

, if 4n+ 1 ≤ I ≤ 4n+ 3;

hence

R = giRi =
−12ng4n+1(0)

g2
1(0)

gi(t)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1

,

is a constant. Also

Ric(∇f,∇f) = Ri(∇if)2

=
−6g4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1 4n∑
I=1

gi(t)(∇if)2

+
4ng4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1 4n+3∑
I=4n+1

gi(t)(∇if)2

=
−6g4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1

|∇f |2

+
(4n+ 6)g4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1 4n+3∑
I=4n+1

gi(t)(∇if)2.

Using (2.1), now we compute the eigenvalues variation of the p-Laplacian on (Qn, g(t)). For the
un-normalized Ricci flow we have

dλ

dt
=
−6pλg4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1

+
(4n+ 6)g4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1 4n+3∑
i=4n+1

∫
Ω

gi(t)(∇if)2|∇f |p−2dµ,

and using (2.2) for the normalized Ricci flow we can write

dλ

dt
= − prλ

4n+ 3
+
−6pλg4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1

= +
(4n+ 6)g4n+1(0)

g2
1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

)−1 4n+3∑
i=4n+1

∫
Ω

gi(t)(∇if)2|∇f |p−2dµ.
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Example 2. Using the notation of Example 1 and the brackets of (2.5), we compute

∇eiei =
1

2
{[ei, ei]− (adei)

∗ei − (adei)
∗ei} = −(adei)

∗ei,

hence
< ∇eiei , ei >= − < −(adei)

∗ei , ei >= − < ei, [ei, ei] >= 0,

which implies that Γjii = 0. Similarly to Example 1, if p = 2, then for f(x) = exp(x11) where
x = (x11, x21, ..., xn1, ..., x1n, x2n, ..., x4n, z1, z2, z3), we obtain

∆f = gieieif = g1e1e1f = g1f

and

λ(t) = g1(t) =
1

g1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

) −3
2n+6

.

If p 6= 2, then we have

∆pf = g1∂1(|∇f |p−2∇f)1 = (g1)
p
2 (p− 1)fp−1

and

λ(t) =

(
1

g1(0)

(
2n+ 6

g2
1(0)

g4n+1(0)t+ 1

) −3
2n+6

) p
2

(p− 1).

Definition 1. Two Riemannian manifolds are said to be isospectral if the associated Laplace-
Beltrami operators have the same eigenvalue spectrum.

Definition 2. A continuous family Nt of Riemannian manifold is said to be an isospectral
deformation of M0 if the manifolds are pairwise isospectral.

Definition 3. The solution g(t) of the Ricci flow with the initial condition g(0) = g0 is called a
Ricci soliton if there exist a smooth function u(t) and a 1-parameter family of diffeomorphisms
ψt of Mn such that

g(t) = u(t)ψ∗t (g0), u(0) = 1, ψ0 = idMn .

Remark 1. Now, let (M, g) and (N, h) be two manifolds and

ϕ : (M, g)→ (N, h)

an isometry, then we have
g∆ ◦ ϕ∗ = ϕ∗ ◦ h∆.

Hence, for a given diffeomorphism ϕ : Mn →Mn we have that

ϕ : (Mn, ϕ∗g)→ (Mn, g)

is an isometry, therefore we conclude that (Mn, ϕ∗g),and (Mn, g) have the same spectrum

Spec(g) = Spec(ϕ∗g)

with eigenfunctions fk, ϕ∗fk respectively. If g(t) is a Ricci soliton on (Mn, g0), then (M, g0) and
(M,ϕ∗tg) are isospectral and this implies that the family (Mn, ψ∗t g) is an isospectral deformation
of (M, g0).
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3 Deformation of marked length spectrum

In the last section we investigate the eigenvalue variations of the p-Laplacian under the Ricci
flow and show that the spectrum on a closed manifold is preserved under the Ricci soliton. In
this section we also show that the spectrum and the marked length spectrum on a nilmanifold
are preserved under the Ricci soliton.

Suppose that the Lie group N is Hn or Qn and g(t) is the solution of Ricci flow in (2.3),
(2.6) respectively. If g(t) is a solution of the Ricci flow on N with the additional condition
g1(0)gn+1(0) = 1 on Hn and g4n+1(0) = g2

1(0) on Qn, then for t = 0 we have

j(Z)2 = −|Z|2Id for all Z ∈ Z,

that is the group N is of Heisenberg type. But if for the Heisenberg Lie group (Hn, g(t))

ηt = ((n+ 2)t+ 1)
−2
n+2 ,

then for (Hn, g(t)) we have

j(Z)2 = −ηt|Z|2t Id for all Z ∈ Z.

Also if for the quaternion Lie group (Qn, g(t)) we suppose that,

ζt = ((2n+ 6)t+ 1)−1

then in (Qn, g(t)) we obtain

j(Z)2 = −ζt|Z|2t Id for all Z ∈ Z.

Let Pt = ηt or ζt. For Hn or Qn we have j(Z)2 = −Pt|Z|2t Id.

Proposition 3.1. Let |N , <,>t | be the Lie algebra of N where N is Hn or Qn . Then we have

1. < j(Z)X, j(Z∗)X >t= Pt < Z,Z∗ >t< X,X >t for all Z,Z∗ ∈ Z and X ∈ V;

2. < j(Z)X, j(Z)Y >t= Pt < Z,Z >t< X, Y >t for all Z ∈ Z and X, Y ∈ V;

3. |j(Z)X|t = P
1
2
t |Z|t|X|t for all Z ∈ Z and X ∈ V;

4. j(Z) ◦ j(Z∗) + j(Z∗) ◦ j(Z) = −2Pt < Z,Z∗ >t Id for all Z,Z∗ ∈ Z;

5. [X, j(Z)X] = Pt < X,X >t Z for all Z ∈ Z andX ∈ V.

Proof. 1. Take u = j(Z)X and v = j(Z∗)X in the relation

< u+ v, u+ v >t − < u− v, u− v >t= 4 < u, v >t .

j is a linear mapping, therefore

< j(Z + Z∗)X, j(Z + Z∗)X >t − < j(Z − Z∗)X, j(Z − Z∗)X >t

= 4 < j(Z)X, j(Z∗)X >t .

j is skew symmetric, hence

4 < j(Z)X, j(Z∗)X >t = < j(Z + Z∗)2X,X >t − < j(Z − Z∗)2X,X >t

= Pt|Z + Z∗|2t |X|2t − Pt|Z − Z∗|2t |X|2t
= 4Pt|X|2t < Z,Z∗ >t
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2. j is a linear mapping, therefore

< j(Z)X, j(Z)Y >t= − < j(Z)2X, Y >t= Pt|Z|2t < X, Y >t .

3. In (2), let X = Y , then |j(Z)X|2t = Pt|Z|2t |X|2t .

4. For all Z,Z∗ ∈ Z, we have

−2Pt < Z,Z∗ >t Id = −Pt(|Z + Z∗|2t − |Z|2t − |Z∗|2t )Id
= (j(Z + Z∗)2 − j(Z)2 − j(Z∗)2)Id

= j(Z) ◦ j(Z∗) + j(Z∗) ◦ j(Z).

5. For all Z ∈ Z,

< [X, j(Z)X], Z∗ > = < (adX)(j(Z)X), Z∗ >=< j(Z)X, j(Z∗)X >

= Pt|X|2t < Z,Z∗ >t .

From [9] we have

1. ∇XY = 1
2
[X, Y ] for all X, Y ∈ V ;

2. ∇XZ = ∇ZX = −1
2
j(Z)X for all Z ∈ Z and X ∈ V ;

3. ∇ZZ
∗ = 0 for all Z,Z∗ ∈ Z.

Definition 4. Let (M, g(t)) be a complete Riemannian manifold with the tangent bundle TM .
For all v ∈ TM and s ∈ R, define G(s,t)(v) = σ′v(s, t) to be the velocity in time s of the unique
geodesic σ(s, t) with the initial speed v. The G(s,t) is called a geodesic flow.

Let σ(s, t) be a curve in 2-step nilpotent Lie group with a left invariant metric (N, g(t)),
where N is Hn or Qn, such that σ(0, t) = e and σ′(0, t) = X0(t) + Z0(t), where X0(t) ∈ V(t),
Z0(t) ∈ Z(t) and e is the identity in N . Using the exponential coordinates, write σ(s, t) =
exp(X(s, t) + Z(s, t)), with

X(s, t) ∈ V(t), X ′(0, t) = X0(t), X(0, t) = 0 (3.1)
Z(s, t) ∈ Z(t), Z ′(0, t) = Z0(t), Z(0, t) = 0.

With the above notation from [17], we have the following statement.

Proposition 3.2. A curve σ(s, t) is a geodesic if and only if the following geodesic equations
are satisfied: {

X ′′(s, t) = j(Z0(t))X ′(s, t),

Z ′(s, t) + 1
2
[X ′(s, t), X(s, t)] = Z0(t).

(3.2)

From [9] we have the following lemma and corollary.

Lemma 3.1. With the above notion we have

σ′(s, t) = dLσ(s,t)

(
esj(Z0(t))X0(t) + Z0(t)

)
.
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Corollary 3.1. Let {G(s,t)} be a geodesic flow in TN . With the above notation, if n ∈ N then

G(s,t)

(
dLn(X0(t) + Y0(t))

)
= dLσ(s,t)

(
esj(Z0(t))X0(t) + Z0(t)

)
.

Proposition 3.3. With the above notation, if the curve σ(s, t) = exp(X(s, t) + Z(s, t)) in
(N, g(t)) satisfies in (2.3) and (2.6) where N is Hn or Qn, then

X(s, t) = (cossθ − 1)J−1X0(t) + sinsθ
θ
X0(t),

Z(s, t) =

(
s(1 +

|X0(t)|2t
2|Z0(t)|2t

) + sinsθ
θ

|X0(t)|2t
2|Z0(t)|2t

)
Z0(t),

(3.3)

where J = j(Z0(t)), θ =
√
Pt|Z0(t)|t.

Proof. We verify that the expressions for X(s, t) and Z(s, t) given above satisfy (3.2) together
with the initial conditions. Taking s = 0 in (3.3), we have

X(0, t) = Z(0, t) = 0, X ′(0, t) = X0(t), Z ′(0, t) = Z0(t),

therefore X(s, t) and Z(s, t) satisfy the initial conditions. Also by differentiating the first equa-
tion of (3.3) we obtain

∂X

∂s
(s, t) = −θ(sinsθ)J−1X0(t) + cossθX0(t),

which implies that X(s, t) satisfies the first equation of (3.2). Furthermore

∂2X

∂s2
(s, t) = −θ2(cossθ)J−1X0(t)− θ(sinsθ)X0(t)

= J(−θ2(cossθ)J−2X0(t)− θ(sinsθ)J−1X0(t)) = JX ′(s, t).

Similarity by differentiating the second equation of (3.3) we obtain

∂Z

∂s
(s, t) =

(
(1 + (1− cossθ) < X0(t), X0(t) >t

2 < Z0(t), Z0(t) >t

)
Z0(t),

which implies that

∂Z

∂s
+

1

2
[
∂X

∂s
,X] =

(
(1 + (1− cossθ) |X0(t)|2t

2|Z0(t)|2t

)
Z0(t)

+
1

2
sin2sθ[X0, J

−1X0] +
1

2
(cos2sθ − cossθ)[X0, J

−1X0]

=

(
(1 + (1− cossθ) |X0(t)|2t

2|Z0(t)|2t

)
Z0(t) +

1

2
(1− cossθ)[X0, J

−1X0].

On the other hand, using property 5 of Proposition 3.1, we have

[X0, J
−1X0] = [X0,−

1

θ2
JX0] = − 1

θ2
Pt|X0|2tZ0 = −|X0|2t

|Z0|2t
Z0,

therefore
∂Z

∂s
+

1

2

[
∂X

∂s
,X

]
= Z0

which completes the proof.
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Definition 5. A nonidentity element ϕ(t) of (N, g(t)) translates a unit speed geodesic σ(s, t) in
(N, g(t)) by an amount ω(t) > 0 if ϕ(t).σ(s, t) = σ(s + ω(t), t) for all s ∈ R. The amount ω(t)
is called a period of ϕ(t).

Remark 2. Let G be a 2-step nilpotent Lie group with corresponding Lie algebra G, then for
all X, Y ∈ G and also ϕ = exp(X), ψ = exp(Y ) from [15] we have

1. exp(X)exp(Y ) = exp(X + Y + 1
2
[X, Y ])

2. ϕψϕ−1 = exp(Y + [X, Y ])

Proposition 3.4. Let ϕ(t) be a family of nonidentity elements of a two-step nilpotent Lie group
with the left invariant metric (N, g(t)) and let dϕ(t) : (N, g(t)) → R be the distance function
defined by dϕ(t)(n) = dt(n, ϕ(t).n). Then dϕ(t) attains its minimum ω(t) > 0 on (N, g(t)) and
translates any unit speed geodesic σ(s, t) of N by an amount ω(t) > 0. The amount ω(t) is called
the smallest period of ϕ(t).

Proof. Choose V ∗(t) ∈ V and Z∗(t) ∈ Z so that ϕ(t) = exp(V ∗(t) + Z∗(t)). If

ZV ∗(t) = {exp[V ∗(t), ξ(t)]; ξ(t) ∈ N},

then ZV ∗(t) is a closed subgroup of the center of N . Therefore the set ϕ(t).ZV ∗(t) = ZV ∗(t).ϕ(t)
is closed in N , and we may choose an element ψ∗(t) ∈ ϕ(t).ZV ∗(t) such that

dt(e, ψ
∗(t)) ≤ dt(e, ψ(t)), for all ψ(t) ∈ ϕ(t).ZV ∗(t).

So ω(t) = dt(e, ψ
∗(t)) is the minimum value of dϕ(t) and the dϕ(t) attains its minimum value at

exp(ξ∗(t)), where ξ∗(t) ∈ N is any element such that

ψ∗(t) = ϕ(t).exp[V ∗(t), ξ∗(t)]

= exp(V ∗ + Z∗ + [V ∗, ξ∗(t)]).

If ξ(t) ∈ N is arbitrary, then

ψ(t) = exp(−ξ(t)).ϕ(t).exp(ξ(t))

= exp(V ∗ + Z∗ + [V ∗, ξ(t)])

= ϕ(t).exp[V ∗(t), ξ(t)] ∈ ϕ(t).ZV ∗(t),

hence

dϕ(t)exp(ξ(t)) = dt(e, exp(−ξ∗(t)).ϕ(t).exp(ξ∗(t))) = dt(e, ψ
∗(t)) ≤ dt(e, ψ(t))

= dϕ(t)exp(ξ(t)).

So dϕ(t) attains its minimum ω(t) = d(e, ψ∗(t)) at exp(ξ∗(t)) and ω(t) is the smallest period of
ϕ(t) and ϕ(t) translates any minimizing geodesic from exp(ξ∗(t)) to ϕ(t).exp(ξ∗(t)).

Lemma 3.2. Let N be a Heisenberg Lie group or quaternion Lie group with the left invariant
metric g(t). Let (N , <,>t) be the associated metric Lie algebra. Let ϕ(t) = exp(V ∗(t) + Z∗(t))
be a family of nonidentity elements of N .

a) if ϕ(t) does not lie in the center of N , let ξ(t) ∈ N be such that Z∗(t) = [ξ(t), V ∗(t)].
Let σ(s, t) = exp(ξ(t))exp( s

|V ∗(t)|t (V
∗(t))). The period of ϕ(t) is precisely |V ∗(t)|t i.e.

ϕ(t).σ(s, t) = σ(s+ |V ∗(t)|t, t),
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b) if ϕ(t) is an element of the center of N , let ξ(t) ∈ N be arbitrary and σ(s, t) =
exp(ξ(t))exp( s

|Z∗(t)|t (Z
∗(t))), then ϕ(t).σ(s, t) = σ(s + |Z∗(t)|t, t). Also if ω(t) is another

period of ϕ(t) then ω(t) ≤ |Z∗(t)|t.

Proof. a) if a = exp(ξ(t)), we define

ϕ∗(t) = a−1.ϕ(t).a = exp(V ∗(t) + Z∗(t) + [V ∗(t), ξ(t)]) = exp(V ∗(t)).

The condition ϕ(t).σ(s, t) = σ(s + ω∗(t), t) for all s ∈ R is equivalent to the condition
ϕ∗(t).γ∗(s, t) = γ∗(s+ ω∗(t), t) where

γ∗(s, t) = a−1γ(s, t) = exp(−ξ(t))exp(V ∗(t) + Z∗(t)) = exp(
s

ω∗
V ∗(t)).

Note that (σ∗)′(0, t) = V ∗(t)
ω∗(t)

is the unit vector by the definition of ω∗(t). σ∗(s, t) is a geodesic and
σ(s, t) = a.σ∗(s, t) is a unit speed geodesic. The uniqueness of the period follows by Proposition
4.5 of [9].
b) The proof is similar to the proof of a).

Definition 6. Let N be a simply connected, nilpotent Lie group with a left invariant metric,
and let Γ ⊆ N be a discrete subgroup of N . The group Γ is said to be a lattice in N if the
quotient manifold Γ \N obtained by letting Γ act on N by left translation is compact.

Proposition 3.5. Let (N, g(t)) be (Hn, g(t)) or (Qn, g(t)) and Γ be a discrete subgroup of N .
Let ϕ(t) ∈ Γ be a family of nonidentity elements of the center of N , such that logϕ(t) ∈ Z.
Then ϕ(t) = exp(V ∗(t) + Z∗(t)) has the following periods{

|Z∗(t)|t,
√

(4πk)(|Z∗(t)|t − πk);where k is an integer and {1 ≤ k ≤ 1

2π
|Z∗(t)|t}

}
.

Proof. Every unit speed geodesic of N is translated by some element ϕ(t) of N (see [9]) and
(3.3) proves the proposition.

Definition 7. Let M be a compact Riemannian manifold. For each nontrivial free homotopy
class C of closed curves inM we define l(C) to be the collection of all lengths of smoothly closed
geodesics that belong to C.

Definition 8. The length spectrum of a compact Riemannian manifold M is the collection of
all ordered pairs (L,m), where L is the length of a closed geodesic inM and m is the multiplicity
of L, i.e. m is the number of free homotopy classes C of closed curves inM that contain a closed
geodesic of length L.

Lemma 3.3. If g(t) is a solution of Ricci flow in (2.3) and (2.6) then (Γ \ Hn, g(t)) and
(Γ \ Hn, g0) have the same length spectrum, also (Γ \ Qn, g(t)) and (Γ \ Qn, g0) have the same
length spectrum.

Proof. Let (N, g(t)) be (Hn, g(t)) or (Qn, g(t)). If ϕ(t) belongs to a discrete group Γ ⊆ N , then
the periods of ϕ(t) are precisely the lengths of the closed geodesic in Γ\N that belong to the free
homotopy class of closed curves in Γ\N determined by ϕ(t). Therefore a free homotopy class of
closed curves in Γ\N corresponds to the conjugate class of an element ϕ in Γ and the collection
l(C) is then precisely the set of periods of ϕ; note that the conjugatae elements of Γ have the
same periods. An arbitrary nonidentity element ϕ(t) = exp(V ∗(t)+Z∗(t)) ∈ N that does not lie
in the center of N , by Lemma 3.2 has a unique period ω(t) = |V ∗(t)|t. Therefore in a Heisenberg
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Lie group (Hn, g(t)), if {e1, ..., e2n, e2n+1} is a basis for Hn and if V ∗(t) = Σn
i=1aiei + bien+i for

some ai, bi ∈ R, then we obtain

|V ∗(t)|2t = Σn
i=1a

2
i |ei|2t + b2

i |en+i|2t
= Σn

i=1a
2
i ((n+ 2)t+ 1)

−1
n+2 |ei|20 + b2

i ((n+ 2)t+ 1)
−1
n+2 |en+i|20

= ((n+ 2)t+ 1)
−1
n+2 |V ∗(t)|20

and in a quaternion Lie group, if

V ∗(t) = Σn
i=1aiX1i + biX2i + ciX3i + diX4i for some ai, bi, ci, di ∈ R,

then

|V ∗(t)|2t = Σn
i=1a

2
i |X1i|2t + b2

i |X2i|2t + c2
i |X3i|2t + d2

i |X4i|2t
= ((2n+ 6)t+ 1)

3
2n+6 Σn

i=1a
2
i |X1i|20 + b2

i |X2i|20 + c2
i |X3i|20 + d2

i |X4i|20
= ((2n+ 6)t+ 1)

3
2n+6 |V ∗(t)|20.

Let
W ∗(t) = ((2n+ 6)t+ 1)

−3
4n+12 V ∗(t)

and ψ(t) = exp(W ∗(t) +Z∗(t)), then |W ∗(t)|t = |V ∗(t)|0, hence the period of ψ(t) is ω(t). Also,
for arbitrary nonidentity elements ϕ(t) = exp(V ∗(t) + Z∗(t)) ∈ N which are in the center of N ,
we have the following periods:{

|Z∗(t)|t,
√

(4πk)(|Z∗(t)|t − πk);where k is an integer and {1 ≤ k ≤ 1

2π
|Z∗(t)|t}

}
.

Therefore in a Heisenberg Lie group (Hn, g(t))) we see that Z∗(t) = ae2n+1 for some a ∈ R and

|Z∗(t)|2t = a2|e2n+1|2t = a2((n+ 2)t+ 1)
n

n+2 |e2n+1|20
= ((n+ 2)t+ 1)

n
n+2 |Z∗(t)|20.

If in a quaternion Lie group

Z∗(t) = Σ3
i=1aiZ4n+i for some ai ∈ R,

then

|Z∗(t)|2t = Σ3
i=1a

2
i |Z4n+i|2t

= ((2n+ 6)t+ 1)
−n
n+3 Σ3

i=1a
2
i |Z4n+i|20

= ((2n+ 6)t+ 1)
−n
n+3 |Z∗(t)|20.

So in any case the set of periods of ϕ(t) is similar and this implies that the length spectrum on
(Hn, g0) or (Qn, g0) is preserved under the metric in (2.3) and (2.6).

Definition 9. Two Riemannian manifolds M1 and M2 are said to have the same marked length
spectrum if there exists an isomorphism (called a marking) T : π1(M1) → π1(M2) such that,
for each γ ∈ π1(M1), the collection of lengths (counting multiplicities) of closed geodesics in the
free homotopy class [γ] of M1 coincides with the analogous collection in the free homotopy class
[T (γ)] of M2, i.e. l(T∗(C)) = l(C) for all nontrivial free homotopy classes of closed curves in M1,
where T∗ denotes the induced map on free homotopy classes.
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Definition 10. Two Riemannian manifolds (M1, g1) and (M2, g2) are said to have Ck-conjugate
geodesic flows if there is a Ck diffeomorphism F : S(M1, g1) → S(M2, g2) between their unit
tangent bundles that intertwines their geodesic flows i.e., F ◦ Gs

M1
= Gs

M2
◦ F where Gs

M1
and

Gs
M2

are geodesic flow of M1 and M2 respectively.

Remark 3. Ck-conjugate geodesic flow relation between Riemannian manifolds is a transitive
relation.

Definition 11. A compact Riemannian manifold M is said to be Ck-geodesically rigid within
a given classM of Riemannian manifolds if any Riemannian manifold M1 inM whose geodesic
flow is Ck-conjugate to that of M is isometric to M .

Definition 12. (a) Let Γ be a uniform discrete subgroup of a simply connected nilpotent Lie
group N . An automorphism Φ of N is said to be Γ-almost inner if Φ(γ) is conjugate to γ
for all γ ∈ Γ. An automorphism is said to be almost inner if Φ(x) is conjugate to x for all
x ∈ N .

(b) A derivation φ of the Lie algebra N corresponding to a Lie group N is said to be Γ-almost
inner (respectively almost inner) if φ(x) ∈ image(ad(x)) for all x ∈ logΓ (respectively for
all x ∈ N ).

Theorem 3.1. The spectrum and the marked length spectrum on a compact nilmanifold are
preserved under the Ricci soliton.

Proof. If g(t) = ϕ∗tg0 is the Ricci soliton on a compact nilmanifold (Γ \N, g0), then

(ϕt)∗ : S(Γ \N,ϕ∗g0)→ S(Γ \N, g0)

is a diffeomorphism intertwining their geodesic flows. Therefore (Γ \ N,ϕ∗g0) and (Γ \ N, g0)
are Ck−conjugate geodesic flow whenever ϕt is Ck+1. On the other hand according to [12],
if (Γ \ N, g) and (Γ∗ \ N∗, g∗) are compact two-step nilmanifolds and if F : S(Γ \ N, g) →
S(Γ∗\N∗, g∗) is a homeomorphism intertwining their geodesic flows, then there exists a Γ-almost
inner automorphism Φ of N such that (Γ∗ \N∗, g∗) is isometric to (Φ(Γ) \N, g), also (Γ \N, g)
and (Φ(Γ) \ N, g) are isospectral. Therefore, there exists a Γt-almost inner automorphism Φt

of N such that (Γ \ N, g0) is isometric to (Φt(Γ) \ N,ϕ∗tg0), and the manifolds (Γ \ N, g0) and
(Γ \ N,ϕ∗g0) are isospectral. Moreover, according to [9], two compact two-step nilmanifolds
(Γ \N, g) and (Γ∗ \N∗, g∗) have the same marked length spectrum if and only if there exists a
Γ-almost inner automorphism Φ of N such that (Γ∗\N∗, g∗) is isometric to (Φ(Γ)\N, g). Hence,
the manifolds (Γ \N,ϕ∗g0) and (Γ \N, g0) have the same marked length spectrum.

Theorem 3.2. The geodesical rigidity on a compact nilmanifold of Heisenberg type is invariant
under the Ricci soliton.

Proof. If g(t) = ϕ∗tg0 is the Ricci soliton on a compact nilmanifold (Γ \N, g0), then

(ϕt)∗ : S(Γ \N,ϕ∗g0)→ S(Γ \N, g0)

is a diffeomorphism intertwining their geodesic flows. (Γ \ N, g0) is of Heisenberg type. Let
(M, g) is an arbitrary compact nilmanifold such that (Γ\N,ϕ∗g0) and (M, g) have C0-conjugate
geodesic flow such that

F : S(Γ \N,ϕ∗g0)→ S(M, g),

then
F ◦ ((ϕt)∗)

−1 : S(Γ \N, g0)→ S(M, g)
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is a C0 diffeomorphism between S(Γ \N, g0) and S(M, g) intertwining their geodesic flows. On
the other hand as in [12], compact nilmanifolds of Heisenberg type are C0−geodesically rigid
within the class of all compact nilmanifolds. Hence, the manifold (Γ \ N, g0) is isometric to
(M, g). Moreover (Γ \ N,ϕ∗g0) is isometric to (Γ \ N, g0), hence (Γ \ N,ϕ∗g0) is isometric to
(M, g). This implies that (Γ \N,ϕ∗g0) is C0−geodesically rigid within the class of all compact
nilmanifolds.
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