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1 Introduction

The study of loaded differential equations is one of the actual directions in the theory of ordinary
differential equations and partial differential equations.

The first works on loaded equations were devoted to loaded integral equations. These include
the works of L. Lichtenstein [28], N.N. Nazarov [35], N.M. Gunter and A.Sh. Gabibzade [12]. In the
work of A.M. Nakhushev [34] there is given the most general definition of a loaded equation and a
detailed classification of various loaded equations: loaded differential, integral, integro-differential,
functional equations, as well as their numerous applications.

At present, the range of problems under consideration for loaded equations of the first kind of
hyperbolic-parabolic and elliptic-parabolic types, when the loaded part contains only the trace or
derivative of the desired function, has expanded significantly. Note the works [3], [5], [6], [8 -10], [16],
[17], [19], [22], [23], [39].The obtained results on fractional differential and integral operators (see [13],
[27], [32]) can be useful in the study of local and non-local problems for mixed loaded equations of
the first kind, when the loaded part contains integro-differential operators in the sense of Riemann-
Liouville and Caputo [7], [18], [25], [26], [40]. This is due to the fact, that the loaded equations
describe the problems of optimal control [21], regulation of the soil water layer and ground moisture
[33], modeling of particle transfer processes [45], problems of heat and mass transfer at a finite rate,
modeling of fluid filtration in porous media [43], the study of inverse problems [29].The monographs
[21], [33] contain various applications of loaded equations as a method for studying mathematical
problems of biology, mathematical physics, theory of mathematical modeling of non-local processes
and phenomena, theory of elastic shells.

The theory of boundary value problem with nonlocal integral condition for loaded equations was
studied numerically in research work [1]. Boundary value problems for nonlinear loaded difference
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equations with multipoint boundary conditions have been studied by many researchers. We note
works [2], [4], [36].

Boundary-value problems for mixed type equations of the second kind, in which the line of
degeneracy is the envelope of a family of characteristics and is itself also a characteristic, are usually
called as the mixed-type equations of the second kind, in the literature.

In works [15], [24], [30], [37], [38], [42], [46], introducing a generalized solution of the class R2,
there were studied the analognes of the Tricomi problem for a model degenerate equation of parabolic-
hyperbolic and elliptic-hyperbolic types of the second kind.

Notice, that the boundary value problems for loaded degenerate equations of mixed type of the
second kind have not yet been studied (see [20]). This is due, first of all, to the lack of representa-
tions of the general solution, on the other hand such problems are reduced to little-studied integral
equations with a shift.

Proceeding from this, in this paper general representations of the solution to a degenerate loaded
equation of parabolic-hyperbolic type of the second kind are constructed. Using the general repre-
sentation and the method of energy integrals, the uniqueness of the solution to the problem with the
Gellerstedt conditions on different characteristics, which were not previously known, is proved. The
existence of a solution to the problem is equivalently reduced to little-studied integral equations with
a shift, and a new approach is found for proving the unique solvability of such an equation.

2 Formulation of Problem

We consider the equation

0 =

{
uxx − xpuy − µ1u (x, 0) , (x, y) ∈ D1,

uxx − (−y)m uyy + µ2u (x, 0) , (x, y) ∈ D2,
(2.1)

where m, p, µ0 µ1 µ2 are arbitrary real constants such that

0 < m < 1, p > 0, µ1 > 0, µ2 < 0. (2.2)

Let D 1 be the connected domain, bounded by segments AB, AA0, BB0, A0B0 on the lines
y = 0, x = 0, x = 1, y = h, respectively;

D21 be the characteristic triangle, bounded by the segment A (0, 0)E (x0, 0) of the x axis and by
two characteristics AC1 : x− 2

2−m (−y)
2−m

2 = 0, EC1 : x+ 2
2−m (−y)

2−m
2 = x0 of equation (2.1), going

out from the points A(0; 0), E(x0; 0) and intersecting at the point C1

[
x0
2

; −
(

2−m
4
x0

) 2
2−m
]

;

D22 be the characteristic triangle, bounded by the segment E(x0; 0)B(1; 0) of the x axis and by two
characteristics EC2 : x− 2

2−m (−y)
2−m

2 = x0, BC2 : x+ 2
2−m (−y)

2−m
2 = 1 of equation (2.1), going out

from the points E (x0; 0) and B (1; 0) and intersecting at the point C2

[
1+x0

2
;−
(

2−m
4

(1− x0)
) 2

2−m
]

;

D23 be the characteristic rectangle, bounded by the characteristics C1C : x− 2
2−m (−y)

2−m
2 = 0,

EC1, EC2 and C2C : x + 2
2−m (−y)

2−m
2 = 1 of equation (2.1), intersecting at the points E, C1, C2

and C
[

1
2
; −

(
2−m

4

) 2
2−m
]
, where x > 0, y < 0, and x0 ∈ [0, 1].

We denote: J = {(x, y) : 0 < x < 1, y = 0},

J1 = {(x, y) : 0 < x < x0, y = 0} , J2 = {(x, y) : x0 < x < 1, y = 0} ,

D2 = D21 ∪D22 ∪D23 ∪ EC1 ∪ EC2, D = D1 ∪D2 ∪ J, 2β = m/(m− 2)

moreover, we assume thet
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−1 < 2β < 0, (2.3)

Dσ
axf(x) =


sign(x−a)

Γ(−σ)

∫ x
a

f(t)dt

|x−t|1+σ , at σ < 0,

f(x), at σ = 0,

[sign(x− a)]n+1 dn+1

dxn+1Dσ−(n+1)
ax f(x), at σ > 0,

(2.4)

is the fractional integro-differential operator of order σ [44, с.16], Dσ
ax ≡ Dσ

ax at x > a and Dσ
ax ≡ Dσ

xa

at x < a, n = [σ] is the integer part of the number σ.
In the domain D for equation (2.1) we investigate a boundary value problem with Gellerstedt

conditions on the different characteristics.
Problem AG1. Find in the domain D a function u(x, y), with the following properties:

1) u(x, y) ∈ C(D)∩C1(D), besides uy (x, 0) can tend to infinity of order less than −2β at x→ x0,
in addition at x→ 0 and x→ 1 u(x, y) is bounded;

2) u(x, y) ∈ C2,1
x,y(D1) and it is a regular solution of equation (2.1) in the domain D 1;

3) u(x, y) is а generalized solution of equation (2.1) belonging to the class R2 [24] in the domain
D2\ {EC1 ∪ EC2};

4) u(x, y) satisfies the boundary conditions

u(x, y)|AA0
= ϕ1(y), u(x, y)|BB0

= ϕ2(y), 0 ≤ y ≤ h, (2.5)

u|EC1
= ψ1(x),

x0

2
≤ x ≤ x0, u|EC2

= ψ2(x), x0 ≤ x ≤ x0 + 1

2
, (2.6)

where ϕj(y), ψj(x) (j = 1, 2) are given functions, satisfyig the following conditions

ϕ1(0) = ϕ2(0) = 0, ψ1(x0) = ψ2(x0), (2.7)

ϕ1 (y) , ϕ2 (y) ∈ C [0, h] ∩ C1 (0, h) , (2.8)

ψ1 (x) ∈ C 1
[x0

2
, x0

]
∩ C2

(x0

2
, x0

)
, ψ2 (x) ∈ C 1

[
x0,

x0 + 1

2

]
∩ C2

(
x0,

x0 + 1

2

)
. (2.9)

3 Investigation of Problem AG1 for equation (2.1)

If conditions 1) - 3) of AG1 are satisfied, then any regular solution to equation (2.1) can be
represent in the form [16], [41]:

u(x, y) = υ(x, y) + ω(x), (3.1)

where
υ (x, y) =

{
υ1(x, y) (x, y) ∈ D1,
υ2k(x, y) (x, y) ∈ D2k,

(k = 1, 3), (3.2)

ω (x) =

{
ω1 (x) , (x, 0) ∈ J̄ ,
ω2j (x) , (x, 0) ∈ J̄j,

(j = 1, 2), (3.3)

here υ1 (x, y) and υ2j (x, y) are regular solutions to the equations

0 =

{
Lυ1 ≡ υ1xx − xpυ1y, (x, y) ∈ D1,

Lυ2j ≡ υ2 jxx − (−y)m υ2j yy, (x, y) ∈ D2j,
(3.4)

ω1(x), ω2j (x) (j = 1, 2) are arbitrary twice continuously differentiable solutions to the equations

ω′′1 (x)− µ1ω1 (x) = µ1υ1 (x, 0) , (x, 0) ∈ J, (3.5)
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ω′′2j (x) + µ2ω2j (x) = −µ2υ2j (x, 0) , (x, 0) ∈ Jj. (3.6)

Remark 3.1. Taking into account, that the function ax + b satisfies equation (3.3), the functions
ω1(x) and ω2i(x) can be defined uniquely if they satisfy the conditions

ω1(0) = ω1 (1) = 0, (3.7)

ω21(0) = ω21 (x0) = 0, (3.8)

ω22 (x0) = ω22(1) = 0. (3.9)

Solutions to problems (3.5), (3.7) and (3.6), (3.8)((3.9)) have the forms

ω1(x) =

√
µ1sh (x− 1)

√
µ1

sh
√
µ1

1∫
0

sht
√
µ1τ1 (t)dt−

−√µ1

1∫
0

sh
√
µ1(x− t)τ1 (t)dt, (x, 0) ∈ J , (3.10)

ω2j(x) = (−1)j
√
−µ2sh

√
−µ2(x0 − x)

sh
√
−µ2(x0 − θj)

∫ x0

θj

τ2j(t)sh
√
−µ2(t− θj) dt−

−(−1)j
√
−µ2

∫ x

x0

τ2j(t)sh
√
−µ2 ((−1)j(x− t))dt, (x, 0) ∈ J̄j, (3.11)

respectively, where θj = 0 at j = 1, θj = 1 at j = 2, τ1(x) = υ1(x, 0), (x, 0) ∈ J̄ , τ2j(x) =
υ2j(x, 0), (x, 0) ∈ J̄j.

By virtue of representation (3.1) owing to (3.7), (3.8), (3.9), Problem AG1 is reduced to Problem
AG∗1 of finding a solution to equation (3.4) in the domain D satisfying the conditions

υ1(x, y)|AA0
= ϕ1 (y) , υ1(x, y)|BB0

= ϕ 2(y), 0 ≤ y ≤ h, (3.12)

υ21|EC1
= ψ1(x)− ω21(x),

x0

2
≤ x ≤ x0, (3.13)

υ22|EC2
= ψ2(x)− ω22(x), x0 ≤ x ≤ x0 + 1

2
, (3.14)

where ω2j (x) (j = 1, 2) are defined in (3.11).

3.1. Function relations

The generalized solution of the class R2 [24] of the Cauchy problem with the initial conditions

υ2j(x,−0) = τ2j(x), (x, 0) ∈ J̄j, υ2jy (x,−0) = ν2j (x) , (x, 0) ∈ Jj (3.15)

for equation (3.4) in the domains ∆2j(j = 1, 2) is given by the formula

υ21 (ξ, η) =

∫ x0

ξ

(t− ξ)−β (t− η)−β T1 (t) dt+

∫ ξ

η

(ξ − t)−β (t− η)−β N1 (t) dt, (3.16)

υ22 (ξ, η) =

∫ η

x0

(ξ − t)−β (η − t)−β T2 (t) dt+

∫ ξ

η

(ξ − t)−β (t− η)−β N2 (t) dt, (3.17)
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where ∆21 = {(ξ, η) : 0 < η < ξ, 0 < ξ < x0} , ∆22 = {(ξ, η) : x0 < η < 1, η < ξ < 1} ,

ξ = x+
2

2−m
(−y)

2−m
2 , η = x− 2

2−m
(−y)

2−m
2 , (3.18)

τ2j(x) = (−1)j
∫ x

x0

[
(−1)j(x− t)

] −2β
Tj(t)dt, (x, 0) ∈ Jj, (3.19)

Nj (x) = Tj (x) /2 cos πβ − γ2ν2j (x) , (j = 1, 2), (3.20)

besides, the functions Tj (x) and ν2j (x) are continuous on Jj and integrable on J̄j.
Substituting ξ = x0, η = x and η = x0, ξ = x into (3.16) and (3.17) respectively, taking into

account (2.4), (3.13), (3.14), (3.20), D1−β
xx0
·Dβ−1

xx0
f(x) = f(x), D1−β

x0x
·Dβ−1

x0x
f(x) = f(x) [27], [44] we

get

Tj(x) = γ3ν2j(x) +
2 cosπβ

Γ(1− β)

[
(−1)j(x− x0)

]β
(−1)jD1−β

x0x
Ψj(x), (x, 0) ∈ Jj, (3.21)

where γ3 = 2γ2 cos πβ, Ψj(x) = ψj(x)− ω2j(x), (j = 1, 2).
From (3.21) and (3.19), we find the following functional relation between τ2j(x) and ν2j(x), which

follows from D2i on the Ij:

τ2j(x) = γ3(−1)j
∫ x

x0

[
(−1)j(x− t)

]−2β
ν2j(t)dt+ Φj(x), (x, 0) ∈ J̄j, (3.22)

where

Φj(x) =
2Γ(1− 2β) cosπβ

Γ(1− β)
D−(1−2β)
xx0

[
(−1)j(x− x0)

]β
D1−β
xx0

Ψj(x), (j = 1, 2). (3.23)

According to the conditions 1) - 2) of Problem AG1, taking into account (3.1), (3.7), passing to
the limit in equation (3.4) as y → + 0, taking into account (3.12) and

υ1 (x,+0) = τ1 (x) , (x, 0) ∈ J̄ , υ1y (x,+0) = ν1 (x) , (x, 0) ∈ J (3.24)

we get
τ ′′1 (x) = xpν1 (x) , (3.25)

τ1(0) = ϕ1(0), τ1(x0) = ψ1(x0),
τ1(x0) = ψ2(x0), τ1 (1) = ϕ2 (0) .

(3.26)

Solving equations (3.25) and (3.26) considering gluing condition ( see conditions of Problem AG1),
we get the second functional relation between τ2j(x) and ν2j(x), which follows from D1 on Jj:

τ2j(x) = (−1)j−1

∫ x0

θj

Gj (x, t) tpν2j(t)dt+ fj(x), (x, 0) ∈ J̄j, (3.27)

where θj = 0 at j = 1, θj = 1 при j = 2,

G1 (x, t) =

{
t(x−x0)
x0

, 0 ≤ t ≤ x,
x(t−x0)
x0

, x ≤ t ≤ x0,
G2 (x, t) =

{
(x−1)(t−x0)

1−x0 , x0 ≤ t ≤ x,
(t−1)(x−x0)

1−x0 , x ≤ t ≤ 1,
(3.28)

f1(x) = ϕ 1(0) +
x

x0

[ψ1(x0)− ϕ 1(0)] , f2(x) = ϕ2(0) +
1− x
1− x0

[ψ2(x0)− ϕ2(0)] . (3.29)
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3.2. Uniqueness of a solution to Problem AG1

To prove the uniqueness of a solution to Problem AG1, at the first step we prove the uniqueness
of a solution to Problem AG∗1 for equation (3.4).

The following lemma plays an important role in proving the uniqueness of a solution to Problem
AG∗1 for equation (3.4).

Lemma 3.1. If conditions (2.2), (2.3), (2.7) are satisfied,

p+ 2β > 1, (−y)−m/2υ21(E) = 0, (−y)−m/2υ22(B) = 0, (3.30)

and

ϕ1(y) ≡ ϕ2(y) ≡ 0, ∀y ∈ [0, h ], ψ1(x) ≡ 0,∀x ∈
[x0

2
, x0

]
, ψ2(x) ≡ 0,∀x ∈

[
x0,

x0 + 1

2

]
,

then
τ2j(x) ≡ 0, ∀x ∈ J̄j (j = 1, 2), (3.31)

where τ2j(x) (j = 1, 2) if defined in (3.15).

Proof. We prove this lemma using the method of energy integrals. Let υ2j(x, y) be a twice contin-
uously differentiable solution of the homogeneous problem AG∗1 in the domain D̄ε

2j, here Dε
21 is a

domain with boundaries ∂Dε
21 = AεC1ε∪C1εEε∪ J̄1ε, strictly lying in the domain D21 for j = 1, and

for j = 2, Dε
22 is a domain with boundaries ∂Dε

22 = EεC2ε ∪ C2εBε ∪ J̄2ε, strictly lying in the region
D22, ε is a sufficiently small positive number.

Let j = 1, then, integrating the equality

0 = xp(−y)−mυ21(υ21xx − (−y)m υ21 yy) =
∂

∂x
(xp(−y)−mυ21υ21x)−

∂

∂y
(xpυ21υ21 y)−

−xp
[
(−y)−mυ2

21x − υ2
21y

]
− pxp−1(−y)−mυ21υ21x (3.32)

over the domain D̄ε
21 and applying Green‘s formula, we have∫

AεC1ε∪C1εEε∪J̄1ε
xp(−y)−mυ2υ2xdy + xpυ2υ2 ydx =

∫∫
Dε21

xp
[
(−y)−mυ2

2x − υ2
2y

]
dxdy+

+p

∫∫
Dε21

xp−1(−y)−mυ2υ2xdxdy.

From here, passing to the limit at ε→ 0, taking into account conditions (2.7) and 1)-3) of Problem
AG∗1, we obtain∫ x0

0

xpτ21(x)ν21(x)dx = −
∫
AC1

xp(−y)−
m
2 υ21dυ21 +

∫
C1E

xp(−y)−
m
2 υ21dυ21−

−
∫∫

D21

xp
[
(−y)−mυ2

21x − υ2
21y

]
dxdy − p

∫∫
D21

xp−1(−y)−mυ21υ21xdxdy, (3.33)

where τ21(x), ν21(x) are defined in (3.15) (see [11, Chapter 5, pp. 96-97]).
To calculate the right-hand side of equality (3.32), we move on to the characteristic coordinates

ξ = x + 2
2−m(−y)

2−m
2 , η = x − 2

2−m(−y)
2−m

2 . Further, considering (3.13), (3.14) with ψ1(x) =
0, ψ2(x) = 0 and using in the domain ∆21 the canonical form of hyperbolic equation (3.4) in the
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form: υ21ξη = β
ξ−η (υ21ξ − υ21η) from the right-hand side of equality (3.33), taking into account (3.30),

we find

−
∫
AC1

xp(−y)−
m
2 υ21dυ21 = −

(
1

2

)p+1(
2−m

4

)2β

xp+2β
0

(
ω21

(x0

2

))2

+

+
p+ 2β

2

(
1

2

)p(
2−m

4

)2β ∫ x0

0

υ2
21(ξ, 0)

ξ1−p−2β
dξ, (3.34)

∫
C1E

xp(−y)−
m
2 υ21dυ21 = −

(
1

2

)p+1(
2−m

4

)2β

xp+2β
0

(
ω21

(x0

2

))2

−

−
(

1

2

)p+1(
2−m

4

)2β

p

∫ x0

0

(x0 + η)p−1

(x0 − η)−2β
υ 2

21(x0, η)dη+

+

(
1

2

)p(
2−m

4

)2β

β

∫ x0

0

(x0 + η)p

(x0 − η)1−2β
υ2

21(x0, η)dη, (3.35)

−
∫∫

D21

xp
[
(−y)−mυ2

21x − υ2
21y

]
dxdy =

=

(
1

2

)p(
2−m

4

)2β

xp+2β
0

(
ω21

(
1

2

))2

− (β + p)

(
1

2

)p(
2−m

4

)2β ∫ 1

0

ξp+2β−1υ2
21(ξ, 0)dξ+

+

(
1

2

)p(
2−m

4

)2β

p

∫ x0

0

(x0 + η)p−1(x0 − η)2βυ2
21(x0, η)dη−

−
(

1

2

)p(
2−m

4

)2β

β

∫ x0

0

(x0 + η)p(x0 − η)2β−1υ2
21(x0, η)dη−

−
(

1

2

)p(
2−m

4

)2β

p(p− 1))

∫∫
∆21

(ξ + η)p−2(ξ − η)2βυ2
21(ξ, η)dξdη, (3.36)

−p
∫∫

D 2

xp−1(−y)−mυ2υ2xdxdy =

(
1

2

)p+1(
2−m

4

)2β

p ×

×
[ ∫ x0

0

ξp+2β−1υ2
21(ξ, 0)dξ −

∫ x0

0

(x0 + η)p−1(x0 − η)2βυ2
21(x0, η)dη

]
+

+

(
1

2

)p(
2−m

4

)2β

p(p− 1)

∫∫
∆21

(ξ + η)p−2(ξ − η)2βυ2
21(ξ, η)dξdη. (3.37)

Substituting (3.34)-(3.37) in (3.32) owing to (2.2), (2.3) and p+ 2β > 1, we get∫ x0

0

xpτ21(x)ν21(x)dx = 0. (3.38)

Let j = 2, then integrating identity (3.31) over the domain D22 in the same way, we obtain∫ 1

x0

xpτ22(x)ν22(x)dx = 0, (3.39)

where τ22(x), ν22(x) are defined in (3.15).
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Substituting (3.19) in (3.38) and (3.39), taking into account the conditions of Problem AG1 and
Lemma 1, as well as the equalities τ21(0) = τ22(1) = 0, τ2j(x0) = 0, (j = 1, 2), we find∫ x0

0

xpτ21(x)ν21(x)dx =

∫ x0

0

τ21(x)τ ′′21(x)dx = −
∫ x0

0

τ ′221(x)dx ≤ 0, (3.40)

∫ 1

x0

xpτ22(x)ν22(x;λ)dx = −
∫ 1

x0

τ ′222(x)dx ≤ 0. (3.41)

Comparing (3.40) and (3.41), we have

x0∫
0

xpτ21(x)ν21(x)dx = 0 if

x0∫
0

τ ′221(x)dx = 0

 1∫
x0

xpτ22(x)ν22(x)dx = 0 if
1∫

x0

τ ′222(x)dx = 0

 .

This implies the validity of equality (3.31).

By virtue of (3.2), (3.31) and condition 1) of Problem AG1, due to the equalities
υ1(x,+0) = υ21(x,−0), (x, 0) ∈ J̄1, υ1(x,+0) = υ22(x,−0), (x, 0) ∈ J̄2, we get

τ1(x) ≡ 0, (x, 0) ∈ J̄ . (3.42)

Taking into account (3.3), (3.15), (3.24), (3.31), (3.42) , from (3.10) and (3.11), we get

ω(x) ≡ 0, ∀ x ∈ J̄ . (3.43)

Theorem 3.1. If the conditions of Lemma 3.1 and (3.43) are satisfied, then Problem AG∗1 in the
domain D cannot have more than one solution.

Proof. According to the maximum principle for parabolic equations [14], boundary value problem
AG∗1 for equation (3.4) in domain D̄ 1 with homogeneous conditions (3.12) and υ1(x, 0) = 0, (x, 0) ∈
J̄ and (3.43) does not have a non-zero solution, i.e. υ1(x, y) ≡ 0 to D̄1 .

Due to the uniqueness of a solution of the Cauchy problem with homogeneous conditions (3.15)
for equation (3.4) in the domain D2, taking into account (3.43), we get υ2(x, y) ≡ 0 in D̄2.

Consequently, from (3.2) we have

υ(x, y) ≡ 0, (x, y) ∈ D̄ . (3.44)

From (3.44) the uniqueness of a solution of Problem AG∗1 for equation (3.4).

Theorem 3.2. If the conditions of Theorem 3.1 are satisfied, then Problem AG1 in D cannot have
more than one solution.

Proof. By virtue (3.42), (3.43) from (3.1) it follows, that

u(x, y) ≡ 0, (x, y) ∈ D̄ . (3.45)

This proves the uniqueness of a solution to Problem AG1 for equation (2.1).
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3.3. Existence of a solution to Problem AG1

The existence of a solution to Problem AG1 is proved by the method integral equations. To prove
the existence of a solution to Problem AG1, first we prove the existence of a solution to Problem
AG∗1 for equation (3.4).

Theorem 3.3. If p+2β > 1, and conditions (2.2), (2.3), (2.8), (2.9) hold, then a solution to Problem
AG∗1 in D exists.

Proof. Substituting (3.27) in (3.19), taking into account the properties of operator (2.4) and gluing
conditions (see the conditions of Problem AG1), we find the function Ti(x):

Tj(x) =
sin2βπ

2βπ
(−1)j−1

∫ x0

θj

tpν2j(t)dt
d 2

dx 2
(−1)j

∫ x

x0

Gj (z, t) ((−1)j(x− z))2βdz+

+
(−1)jD1−2β

xx0
fj(x)

Γ(1− 2β)
, (j = 1, 2), (3.46)

where θj = 0 at j = 1, θj = 1 at j = 2, Gj (z, t) and fj(x) are defined in (3.28) and (3.29)
respectively.

Now eliminating Tj(x) from (3.21) and (3.37) owing to (3.7) and the equality D1−2β
0x g(x) =

D−2β
0x g′(x) we get the integral equation for ν2j(x):

ν2j(x)−
∫ x0

θj

Pj(x, t)ν2j(t)dt = Fj(x), (x, 0) ∈ Jj, (3.47)

where θj = 0 at j = 1, θj = 1 at j = 2,

Pj(x, t) =
(−1)j−1tp

γ3

{
2 cosπβ

β Γ(1− β)

µ2 [(−1)j−1(x0 − x)]
2β

sh
√
−µ2 (x0 − θj)

(−1)j ×

×
∫ x0

θj

Gj (z, t) sh
√
−µ2(z − θj)dz +

2 cosπβ

β Γ(1− β)

µ2

√
−µ2 [(−1)j−1(x0 − x)]

β

sh
√
−µ2 (x0 − θj)

(−1)j−1×

×
∫ x0

θj

Gj (z, t) sh
√
−µ2(z − θj) dz

∫ x0

x

[
(−1)j−1(s− x)

]β
sh
√
−µ2(x0 − s)ds−

+
2µ2 cos πβ

βΓ(1− β)

[
(−1)j−1(x0 − x)

]β
(−1)j−1

∫ x0

x

Gj (z, t)
[
(−1)j−1(z − x)

]β
dz+

+
2µ2

√
−µ2 cosπβ [(−1)j−1(x0 − x)]

β

Γ(1− β)
(−1)j−1

∫ x0

x

[
(−1)j−1(s− x)

]β
ds×

×
∫ x0

s

Gj (z, t) sh
√
−µ2(z − s)dz+

+
sin2βπ

2βπ

d

dx
(−1)j−1

∫ x0

x

∂Gj (z, t)

∂z

[
(−1)j−1(z − x)

]2β
dz

}
, (3.48)

Fj(x) =
2µ2 cosπβ

βγ3 Γ(1− β)

[(−1)j−1(x0 − x)]
2β

sh
√
−µ2 (x0 − θj)

(−1)j
∫ x0

θj

fj(t)sh
√
−µ2(t− θj) dt+

+
2µ2

√
−µ2 cos πβ

βγ3 Γ(1− β)

[(−1)j−1(x0 − x)]
β

sh
√
−µ2 (x0 − θj)

(−1)j−1

∫ x0

θj

fj(z)sh
√
−µ2(z − θj) dz×
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×
∫ x0

x

[
(−1)j−1(t− x)

]β
sh
√
−µ2(x0 − t)dt−

− 2µ2 cos πβ

βγ3 Γ(1− β)

[
(−1)j−1(x0 − x)

]β
(−1)j−1

∫ x0

x

[
(−1)j−1(t− x)

]β
fj(t)dt−

− 2µ2 cos πβ

βγ3 Γ(1− β)

[
(−1)j−1(x0 − x)

]β
(−1)j−1

∫ x0

x

[
(−1)j−1(t− x)

]β
dt×

×
∫ x0

t

fj(z)sh
√
−µ2 (z − t)dz +

sin2πβ

2πβγ3

[(−1)j−1(x0 − x)]
2β

x0 − θj
ψj(x0)+

+
2 cosπβ

βγ3 Γ(1− β)

[
(−1)j−1(x0 − x)

]2β
ψ′j(x0)+

+
[
(−1)j−1(x0 − x)

]β
(−1)j−1

∫ x0

x

[
(−1)j−1(t− x)

]β
ψ′′j (t)dt

]
. (3.49)

By virtue of (2.2), (2.3), (2.8) and (2.9), the properties of the operator of integro-differentiation,
Beta-function, hypergeometric functions [44, Chapter 1, §1, 2 and 4, pp. 4-32] and the functions
Gj(x, t) (3.48) and (3.49) imply that the kernel and the right-hand side of equation (3.47) admit the
following estimates

|P1(x, t)| ≤ c1(x0 − x)2β, |P2(x, t)| ≤ c2(x− x0)2β, (3.50)

|F1(x)| ≤ c3(x0 − x)2β, |F2(x)| ≤ c4(x− x0)2β, ci = const > 0. (3.51)

Based on (2.8), (2.9), taking into account (3.51), we conclude that Fj(x) ∈ C2(Jj), and the
functions Fj(x) (j = 1, 2) can go to infinity with order of growth less than −2β for x→ x0, and for
x→ 0 and x→ 1 they are bounded.

By virtue of (2.2), (3.50) and (3.51) equation (3.47) is a Fredholm integral equation of the second
kind. According to the theory of Fredholm integral equations [31] and from the uniqueness of a
solution to Problem AG∗1 (see Theorems 3.1), we conclude that integral equation (3.47) is uniquely
solvable in the class C2 (Jj), and the solutions ν2j(x) can have the order of singularity less than −2β
for x→ x0, and for x→ 0 and x→ 1 are bounded and have the form:

ν2j(x) = Fj(x) +

∫ x0

θj

P ∗j (x, t)Fj(t)dt, (x, 0) ∈ Jj, (3.52)

where P ∗j (x, t) is the resolvent kernel.
Substituting (3.52) into (3.22) and (3.27) to the equalities υ1(x,+0) = υ21(x,−0),

(x, 0) ∈ J̄1, υ1(x,+0) = υ22(x,−0), (x, 0) ∈ J̄2, we find

τj(x) ∈ C(J̄) ∩ 2(J), (j = 1, 2) . (3.53)

Therefore, Problem AG∗1 is uniquely solvable due to its equivalence to the Fredholm integral
equation of the second kind (3.47).

Thus, the solution to Problem AG∗1 can be reconstructed in the domain D1 as a solution of the
first boundary value problem for equation (3.4), and in the domains D2j (D23) (j = 1, 2) as a solution
to the Cauchy (Goursat) problem for equation (3.4). This completes the study of the existence of a
solution of Problem AG∗1 for equation (3.4).

We turn to the proof of the existence of a solution to Problem AG1.
The following theorem is true.
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Theorem 3.4. If the conditions of Theorem 3.3 are satisfied, then a solution to Problem AG1 in D
exists.

Proof. By virtue (3.27) (or (3.22)) taking (3.52) into account, from (3.10) and (3.11) we find ω1(x)
and ω2j(x) (j = 1, 2). Then, a solution to Problem AG1 in the domain can be found as u1(x, y) =
υ1(x, y)+ω1(x), where υ1(x, y) is a solution of the first boundary value problem for equation (3.4). In
the domains D2i and D23 it has the form u2(x, y) = υ2j(x, y) +ω2i(x), (j = 1, 3), (i = 1, 2), where
υ2i(x, y) (υ23(x, y)) is a solution of the Cauchy problem for equation (3.4) in the domain D2i (D23).

Thus, in the domain D, a solution to Problem AG1 exists.
This completes the study of Problem AG1 for equation (2.1).

Example illustrating the problem.
Let m = 1

2
, p = 1, µ1 = 1 µ2 = −1, x0 = 0, β = −1

6
, ϕ1(y) ≡ ϕ2(y) ≡ 0, ψ2(x) =

ψ(x) = x, then the problem posed is reduced to Problem T1 :

0 =

{
uxx − xuy − u (x, 0) , x > 0, y > 0,

uxx −
√
−yuyy − u (x, 0) , x > 0, y < 0,

(3.54)

u(x, y)|AA0
= 0, u(x, y)|BB0

= 0, 0 ≤ y ≤ h,

u|AC = x, 0 ≤ x ≤ 1

2
.

In this case the conditions of Theorems 3.1, 3.2 and 3.3 are satisfied. Then formulas (3.22) and
(3.27) take the form

τ2(x) = γ̃3

x∫
0

(x− t)−
1
3ν2(t)dt+ Φ2(x), x ∈ [0, 1] , (3.55)

τ1(x) =

1∫
0

G1 (x, t) tν1(t)dt, x ∈ [0, 1] , (3.56)

where

γ̃3 = 16
√

3

(
3

8

)4/3

Γ

(
1

3

)
/Γ2

(
1

6

)
,

G1 (x, t) =

{
t(x− 1), 0 ≤ t ≤ x,
x(t− 1), x ≤ t ≤ 1,

(3.57)

Φ2(x) =
2
√

3Γ
(

1
3

)
Γ
(

1
6

) D
− 4

3
0x x

− 1
6D

7
6
0x

x− x∫
0

τ2 (t) sh (x− t) dt

 , x ∈ [0, 1] .

From (3.55) and (3.56 ) taking into account condition 1) of Problem AG1 and that D4/3
0x g(x) =

D
1/3
0x g′(x), we get the following integral equation for ν2(x) :

ν2(x) +

1∫
0

P̃2(x, t)ν2(t)dt = F2(x), x ∈ (0, 1) , (3.58)

where P̃2(x, t) and F2(x) are the known functions satisfying the estimates∣∣∣P̃2(x, t)
∣∣∣ ≤ c1x

− 1
3 , |F2(x)| ≤ c2x

− 1
3 , c1, c2 = const > 0.
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According to the theory of Fredholm integral equations and from the uniqueness of a solution to
Problem T1 (see Theorem 3.2), we conclude that integral equation (3.58) is uniquely solvable in the
class C2 (0, 1) , and ν2(x) has a singularity of order less than 1

3
and for x → 0, and for x → 1, is

bounded.
In the same way as above, the solution of Problem T1 is restored.
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